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Abstract

The techniques of fractional calculus are applied successfully in many branches of science and engineering,

one of the techniques is the Elzaki Adomian decomposition method (EADM), which researchers did not
study with the fractional derivative of Caputo Fabrizio. This work aims to study the Elzaki Adomian
decomposition method (EADM) to solve fractional differential equations with the Caputo-Fabrizio
derivative. We presented the algorithm of this method with the CF operator and discussed its convergence
by using the method of the Cauchy series then, the method has applied to solve Burger, heat-like, and,
couped Burger equations with the Caputo -Fabrizio operator. To conclude the method was convergent and
effective for solving this type of fractional differential equations.

Keywords: Burger equation, Caputo-Fabrizio fractional operator, Ezaki decomposition method, Heat-

like equation.

Introduction

Fractional calculus (that is, calculus of
integrals and derivatives of any arbitrary real or
complex order) has grown in popularity and
relevance over the last three decades, owing to its
proven applications in a wide range of apparently
disparate domains of science and engineering. It
does, in fact, give some potentially valuable methods
for solving differential and integral equations, as well
as a variety of other problems requiring
mathematical physics special functions, as well as
their extensions and generalizations in one or more
variables .

In the past decade, Caputo and Fabrizio
introduced a new fractional differential operator
many researchers studied this operator and
researchers are still interested in this operator
because of its importance, as some studies have
applied methods of approximate solutions to
equations that include this fractional operator 5.

The requirement for a model that represents the
behavior of classic viscoelastic materials, thermal
media, electromagnetic systems, and so on has
piqued the attention of researchers in this unique
technique. Plasticity, fatigue, and damage, as well as
electromagnetic hysteresis, appear to benefit most
from the original concept of fractional derivative.
When these effects are missing, it appears that the
new fractional derivative is more appropriate ’.

Despite the importance of integrative
transformations in solving differential equations,
most studies have focused on some of those
transformations and neglected other transformations.
Among these transformations is the Elzaki
transformation presented by researcher Tariq Elzaki
in recent years. Therefore, in this study, The Elzaki
decomposition method will be presented for solving
differential equations that include the fractional
operator Caputo-Fabrizio &1,
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Fractional calculus preliminaries

Definition 1: *2 The fractional derivative with the
Caputo-Fabrizio operator for 0 < a < 1 is defined
as:

Fpru(t) = (a)f [ ate 5)]u (8)ds, 1
where € H'(31,3;),51 < 25, w'(8)is the
derivative of 2 , and €(a) is a normalization function
such that £(0)=g(1 )=1.

The operator's fundamental attributes are as follows
13,14

1. “D2u(t) = u(t), where a = 0.

2. D u(t) + v(t)] = TDEu(t) + TDEv(t),
where u,v € H1(z4,25)

3. FD¢(c) = 0, ¢ is constant.

Definition 2: ¥ Over a set of functions A, the
Elzaki transform is defined,

£l
AIM, 11,7, > 0, |u(@®)| <Me™ !l

A = {u(t)
if £ € (=1)/ x [0, )

by the following formula
o0 _t
Elu(®)} = w [, u()e wdt, w € (11,75), 2

where w is a parameter of Elzaki transform.

Elzaki transform for some functions 5-1°:

1. E{1}=w?
2. E{t}=w?3.
3. E{x"} = n'w"”.
aty _
4. E{e*™} = "
5. E{sm(at)} = m.
6. E{cos(at)}= m.

Lemma 1: The Elzaki transform for the Caputo-
Fabrizio fractional operator is defined as follows if

0<a <1

[E{u(t)}—wzu (0)]
1-a+aw

E{*" D¢ u(t)} =

, 3

Proof:

E{“"D¢ u(t)}

=E{ f’LL(é) exp @]dﬁ},
_ f a(t —3)
= u'(8) exp =z ds ¢,

L] )

—1

_w w?(l-a)
=1- [ B{u(e)) — w w(O) [m]
_ [E{u(®)} — w?u (0)]

- l-a+aw

Analysis of EDM

In the Caputo-Fabrizio operator sense, consider the
following nonlinear partial differential equation:

CEDE w(x,t) + Rlu] + N [u] = g(x,t), 4

with initial condition w(x,0) = uy(x), 5

where ¢S D& u(x, ) is Caputo-Fabrizio operator of
w(x,%) , alinear operator is R, anonlinear operator
is V" and a source term is g.

Applying the Elzaki transform to both sides of the
Eq.4,

E{*}D¢ w(x, t) + R[u] + N [u]} = E{g}, 6
from Lemma 1 and Eq.5,

[E{u(®)}-w?u (0] _ E{g — Rlu] -

1-a+aw

Nlul}, 7
or
E{u} = w?uy(x) + (1 — a + aw) E{g}
—(1 - a + aw) E{R[u]}
—(1—-a+aw)E{N [u]}, 8
by using the Elzaki transform'’s inverse to EQ.8,

w(x,t) = E"Yawr?u(x)}
+E7Y(1 - a + aw) E{g}}
—E7YH(1 - a + aw)E{R[u]}}

—E7H(1 - a + aw)E{WNV [u]}}. 9

Suppose that 2 (x, 1) is a solution of Eq.9, which it
expressed as

u(x, t) = Z;.10=0 un(x, t)! 10
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the nonlinear term can be decomposed as

Nu(x, )] = X0 An, 11

where,
1 9" .
A = 0w IV Elo TG ]gzo, 12
where,n =0,1,2, .....

Substituting Eg.10 and Eq.11 into Eq.9 gives us the
result that

Z;ozo Up =

E Y {w?uy(x)} + ETH(1 — a + aw)E{g}}
—E7Y{(1 - a + aw) E{R[T5- o un 13}
—E"H(1 - a+ aw) E{T3 o An 3} 13

When the left and right sides of Eq.13 are
compared,

wo = uo(x) + ETH{(1 — a + aw)E{g}},
w, = —E7H{(1 - a + aw)E{R[u, 1}}
—E"H(1 - a+ aw) E{A, }},
u, = —E7H(1 - a + aw) E{R[u, (x, £) 1}}
—-E"Y{(1-a+aw)E{A,}}. 14

In its general form, a recursive relation is

wo = uo(x) + ETH{(1 — a + aw)E{g}},

Unsr = —E"H(1 — a + aw) E{R[u, 1}}
—E"H(1 - a+aw)E{A,}). 15

The approximate solution is given by

w(x, ) =ug+ug +uy +-=320u;. 16

Convergence analysis

This section discusses the convergence of Elzaki
decomposition method to the exact solution of
fractional differential equations as well as the
estimated error resulting from the approximate
solutions.

Theorem 1: Suppose that B is a Banach space,
Yicou; in Eq.16 is convergence to § € B if
3(0 <x< 1),5t.Vn € N = |y <o [Juey_4]|-

Proof: The sequence of partial sums is defined as
{8n}n=0

60=’LLO
61:’I/L0+’I/L1
62 =Uygt+u+u,

5n=u0+'u1+"'+’u,7,

now, it is necessary to prove that, {5, },~¢ is a
Cauchy series in Banach space,

1841 = 8yl = 129 0 = B el = [t all <

o ||aty|| < -+ S g, 17

foralln,m e N asn =>m,
”571 - 6m|| = ”(511 - 677—1) + (57)—1 - 671—2) + o

+ (8mr1 = 6)
= ”577 - 577—1“ + ”511—1 - 511—2” +
et ||6m+1 - 64%”
<o g ||+ [latg || + -+ +
o+ g ||
=0Cm+1 ”,uoll(ocn—m—l_l_ocn—m—Z_l_
_ 1T ot
=— [l1eo - 18

Since (o<~ 14oc1=™M~2 4 ... +) is a geometric
series and 0 <x< 1, then,
lim ||6, — 6, =0,

n,/Mm—>00

thus, {6,}5=0 is Cauchy sequence in Banach space
B, therefore produces that the series solution « =
Yo, defined in Eq.16 converges.

Theorem 2: Suppose that the series solution Y2, ;
in Eg.16 is convergent to the solution w(x, 1) .If
Yizou; is used as an approximation to the solution
w(x, t) of Eq.5 then the maximum error, E,, (x, %)
is estimated as

Ep(26,8) < —— o™+ [lagg].

Proof: From Theorem 1, inequality 18
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1—-o~
1-x

187 = 8l < o™ et |,
forn = m, now, asn — o then §,, - u(x,%) so,

llw(x,2) = EiZowuill <

1—oT—M
ot gl 19

o
Also, since 0 <x< 1 produces (1 —7=") < 1.

Therefor the above inequality 19 becomes
Epn(26,£) < —— o1 g 20
Ilustrative examples

Example 1: Consider the following, Burger's
equation in the Caputo-Fabrizio sense is nonlinear.

cFpa ou _ Ou
0Dtu+uax_ax2 , 0<a<l, 21
subject to the initial condition (%, 0) = . 22

By taking the Elzaki transform to both sides of
Eq.21,

E{*ID¢ u} = wix +E {‘;274:} —E {ug—Z}, 23

using the inverse Elzaki transform to both sides of

Eq.23,
92 Zﬁ”:oun
E{ dx? }]} 24
_E{Z;ozodqn}

As a result, the approximate solution may be
derived using Eqg.15

w= x+E‘1{(1 —a+aw)[

uo(x,4) = x,
E{cAo}

wy(x,t) =E" {1 —a+aw) _E{azuo} ,

0x?
E{A,}
u,(x,t) =E"1{(1—-a+ aw) g {62u1} )

0x?
by the above algorithms and after simple steps,
Uy = X,
u; = —x(1 —a+at),
2 _ 2 22
uzzx(Za 24a+at)’ o5
—4a“t +4at +2

and so on.

Therefore, the series solution . (x, £) of Eq.21 is
given by

u(x,t)=x—x2(1—a+at)
2a* — 4a + a? t* )
+x ( —e. 26
—4a’t +4at +2
Ifitwas a — 1 in Eqg.26 then, the exact solution is

w(x,t) = x — xt + 2% — -,

= 2 T (k= = 27
Table 1 displays the values of the exact and
approximate solutions of Eq.21 at the different a
values, also includes the absolute error of the
approximate solutions for the exact solutions. Fig. 1
shows graphs of the exact and approximate solutions

of Eq.21 at the different a values between 0 and 1.

Table 1. The approximate and exact solution of Burger’s equation with fractional operator
CF, uq isapp.sol.ofuata = 0.9, u, isapp. sol. of uata = 1, u, is exact sol. of u .

x t U, Uu; U3 | —uz|  |u, —us|
0.2500 0.2500 0.2089 0.2031 0.2000 0.0089 0.0031
0.7500 0.2500 0.6267 0.6094 0.6000 0.0267 0.0094
0.2500 0.5000 0.2131 0.1875 0.1667 0.0465 0.0208
0.5000 0.5000 0.4262 0.3750 0.3333 0.0929 0.0417
0.7500 0.5000 0.6394 0.5625 0.5000 0.1394 0.0625
0.2500 0.7500 0.2427 0.2031 0.1429 0.0998 0.0603
0.5000 0.7500 0.4853 0.4062 0.2857 0.1996 0.1205
0.7500 0.7500 0.7280 0.6094 0.4286 0.2994 0.1808
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Figure 1. The graphs of the approximate and the exact solutions among different values of x and t in
case (3D) and fixed x in case (2D) when a = 0.9,1 for nonlinear Burger’s equation in the CF fractional
operator,(A) is the app. sol. of u at a = 0.9, (B) is the app. sol. of uat a = 1, (C) is the exact sol. of u.

Example 2: Consider the following
heat-like equation in the Caputo-
Fabrizio sense

2 2
C%D?u(x,y,,t) — 0“u  0°u 08

a2 oy
where 0 < x,¢ < 2m,4 > 0, with the initial
condition

u(x,4,0) = sin(x) sin(y), 29
applying the Elzaki transform differentiation
property on Eq.28

E{“}D¢ w} = w? sin(x) sin(y)

0%u
E{5s)
+(1—-a+aw) 520 | 30
{5
by using the inverse Elzaki
transform to both sides of Eq.30,
u = sin(x) sin(y)
0%u
1 E{7)
+E 1—-a+aw) N 31
{5

as a result, the approximate solution may be derived
using Eq.15,
1 = sin(x) sin(y),

0*un_y
E{ 0x2 }
0%un—q
E{ dy? }
Hence, from Eq 29 and Eq 32, the components give
as follows:

1y = sin(x) sin(y),

u, =E {1 -a+aw) 32

[ az’uo )
u, =E7"{(1-a+aw) ?un) |
_+E { dy? }
= —2sin(x) sin(y) (1 —a + at)
[ %) T
—" E{ 0x2 }
#u, =E 1-a+aw) ?un) |
_+E { dy? }
= 4 sin(x) sin(yg) [(1 —2a+a*)+ (2a-
2a®)t + %aztz]. 33

and so on.
Therefore, the approximate solution of w(x, ¢, t)
of Eq.28 is given by
u = sin(x) sin(y)

—2sin(x) sin(yg) (1 — a + at),

_ _ (1-2a+a?

4 sin(x) sin(y) +Q2a - 2a*)t+ %aztz

+ 34
If it was @ — 1 in Eq.34 then, the exact solution is,
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. . (2t)?
u = sin(x) sin(y) (1 — 2¢ + TR
= sin(x) sin(y) e ™27, 35
Table 2 displays the values of the exact and
approximate solutions of Eq.28 at the different a
values, also includes the absolute error of the

approximate solutions for the exact solutions. Fig. 2
shows graphs of the exact and approximate solutions
of Eq.28 at the different a values between 0 and 1.

Table 2. The approximate and exact solution of heat-like equation with fractional operator CF, u4 is

app.sol.ofuata = 0.9, u, isapp. sol. of u ata = 1, u4 is exact sol. of u .

x y t uny Uy Uus |y —uz|  |uy; —us|
0.2500 0.2500 0.2500 0.0411 0.0383 0.0371 0.0040 0.0011
0.5000 0.2500 0.2500 0.0796 0.0741 0.0719 0.0077 0.0022
0.7500 0.2500 0.2500 0.1132 0.1054 0.1023 0.0109 0.0031
0.2500 0.5000 0.2500 0.0796 0.0741 0.0719 0.0077 0.0022
0.5000 0.5000 0.2500 0.1543 0.1437 0.1394 0.0149 0.0042
0.7500 0.5000 0.2500 0.2194 0.2042 0.1982 0.0211 0.0060
0.2500 0.7500 0.2500 0.1132 0.1054 0.1023 0.0109 0.0031
0.5000 0.7500 0.2500 0.2194 0.2042 0.1982 0.0211 0.0060
0.7500 0.7500 0.2500 0.3119 0.2904 0.2818 0.0301 0.0086
0.2500 0.2500 0.5000 0.0432 0.0306 0.0225 0.0206 0.0081
0.5000 0.2500 0.5000 0.0836 0.0593 0.0436 0.0400 0.0157
0.7500 0.2500 0.5000 0.1189 0.0843 0.0620 0.0569 0.0223
0.2500 0.5000 0.5000 0.0836 0.0593 0.0436 0.0400 0.0157
0.5000 0.5000 0.5000 0.1620 0.1149 0.0846 0.0775 0.0304
0.7500 0.5000 0.5000 0.2304 0.1634 0.1202 0.1102 0.0432
0.2500 0.7500 0.5000 0.1189 0.0843 0.0620 0.0569 0.0223
0.5000 0.7500 0.5000 0.2304 0.1634 0.1202 0.1102 0.0432
0.7500 0.7500 0.5000 0.3276 0.2323 0.1709 0.1566 0.0614
0.2500 0.2500 0.7500 0.0576 0.0383 0.0137 0.0440 0.0246
0.5000 0.2500 0.7500 0.1116 0.0741 0.0265 0.0852 0.0477
0.7500 0.2500 0.7500 0.1587 0.1054 0.0376 0.1211 0.0678
0.2500 0.5000 0.7500 0.1116 0.0741 0.0265 0.0852 0.0477
0.5000 0.5000 0.7500 0.2163 0.1437 0.0513 0.1651 0.0924
0.7500 0.5000 0.7500 0.3076 0.2042 0.0729 0.2347 0.1313
0.2500 0.7500 0.7500 0.1587 0.1054 0.0376 0.1211 0.0678
0.5000 0.7500 0.7500 0.3076 0.2042 0.0729 0.2347 0.1313
0.7500 0.7500 0.7500 0.4373 0.2904 0.1037 0.3337 0.1867
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Figure 2. The graphs of the approximate and the exact solutions of heat-like equation among different
values of x and t when y is fixed in case (3D) and x, y are fixed in case (2D) when a =0.9,1 for
nonlinear Burger’s equation in the CF fractional operator ,(A) is the app. sol. of uat a = 0.9 ,(B) is
the app. sol. of uat a = 1, (C) is the exact sol. of u.

Example 3: Consider the Caputo-Fabrizio operator's 4 (x, %) = sin(x)

nonlinear system of time-fractional differential \
equations: axz
-1 (1—&+fyw)E +24y—
CPDEu(x, t) — Uy, — 20, + (urr), = 0, L |
l )
CODEv(x,2) = Vyp — 200, + (uv), =0, 36 the solution is now represented as an infinite series

_ . as seen below
where 0 < a, 4 < 1 and the initial conditions are

w(x,0) = sin(x), w(x,t) = T g ttn (2, 1),
v (x,0) = sin(x). 37 v(x,t) =Y ovn(x, 1), 40
) ) ) and the nonlinear terms may be broken down into
Taking the Elzaki transform on both sides of Eq.36, i, =Y oAy
E{“}D¢u(x, 1)} = w? sin(x) v, =Y B,
+(1—a+ aw)E{ +out-2 (w)} (u), = Yoo Cn, 41
0x where
A = 2u 0u0
E{*Df v (x,t)} = w? sin(x) 0= U5
2 ou ou
+(1 —a+aw)E{Ss + 2025 - 2 (uv)}, 38 Ay = 2o 1+2 g 50
By = 2 0% ,

when taking the inverse of the Elzaki transform to

both sides of Eq.38, ax
w(x,t) = sin(x) Co = a(’“o"’o) ,
]
( a_;: ‘ Cl = a (’l/bo’v'l + ul’lfo). 42
FE (1 - a+ aw)E { +2u_ } ’ Substituting Eq.41 and Eq.40 in Eq.39,
\— 55 (we)
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YiN=oUn = sin(x)

2 oo )
_1! 77 (i tn) L
+E (1-a+aw)E + 30 A,
_2?10=0 cn J
Yn=0Vn = sin(x)
2 oo )
! 7oz (o vm) L
+E (1 -4+ 6w)E +Y% 0By . 43
_2?10=0 Cn J
When both sides of the Eq.43 are compared,
uo = sin(x),
vy = sin(x),
azuo \
_p-1 _ 0x? L
uw, =E7*{(1—a+aw)E +oy ([
\ —Co J
= —sin(x) (1 —a + at),
62’0’0 )
_p-1 _ 0x?
vy =E7'{(1 -4+ b6w)E +B, ([
\ —Co/)
= —sin(x) (1 — & + 61),
-1 azuO
’LLZ:E (1_az+a/W)E ax2+c/q,1_cl )

1
=sin(x) [(1 —a)? + (a — 2a®)t + §a2¢2
+2(a—B)cosx [(1—a)+ (2a — 1)t

1
__aztz ,
—a2?))

{ 01 1

_p-1 _ 0x?
v, =E {(1 4 + bw)E +B, },

\ —6/)

1
= sin(x) [(1 — )2 + 26 — 262t + E&th
+2(& —a)cos(x) [ —6)+ (26 —1) —
S62¢7]).
Therefore, the approximate solution of Eq.36 is
given by

1
w =sin(x)[(1—a+a?®) + (a — 2a*)t+ Eaztz

+2(a — ) cos(x) [(1 —a)+ Qa—- 1t

—%aztz] + ]’
v =sin(x) [(1 — & + 62) + (6 — 26)t

+247t7 + 2(6 — a) cos(x) [(1 — )+ (26 —
Dt— 2622 + -] 44

If puta — 1 and &— 1 in Eq.44, the problem
solution will be re-created as follows:

2
w(x,t) = sin(x) (1 —t +%— > ,
2
v (x, %) = sin(x) (1—t+%—---). 45
This is the closed form equivalent of the precise
solution:
wu(x,t) = sin(x) e 7%,
v(x,t) = sin(x) e . 46
Table 3 displays the values of the exact and
approximate solutions of system 36 at the different a
and & values, also includes the absolute error of the
approximate solutions for the exact solutions. Fig. 3
shows graphs of the exact and approximate solutions
of system 36 at the different « and & values between
O0and 1.

Table 3. The approximate and exact solution of system 36 with fractional operator CF, u, is app. sol.
ofu,vata= 0.9, u, isapp.sol. ofu,vata = 1, uq isexact sol. of u,v .

x t uy Uy |[eeg —us|  |uy; —us|
0.2500 0.2500 0.1869 0.1933 0.1927 0.0058 0.0006
0.5000 0.2500 0.3621 0.3746 0.3734 0.0113 0.0012
0.7500 0.2500 0.5149 0.5325 0.5309 0.0160 0.0017
0.2500 0.5000 0.1611 0.1546 0.1501 0.0111 0.0046
0.5000 0.5000 0.3122 0.2996 0.2908 0.0214 0.0089
0.7500 0.5000 0.4439 0.4260 0.4134 0.0305 0.0126
0.2500 0.7500 0.1479 0.1314 0.1169 0.0310 0.0146
0.5000 0.7500 0.2866 0.2547 0.2265 0.0601 0.0282
0.7500 0.7500 0.4075 0.3621 0.3220 0.0855 0.0401

Page | 1051


https://dx.doi.org/10.21123/bsj.2023.7310

2024, 21(3): 1044-1054
https://dx.doi.org/10.21123/bsj.2023.7310
P-ISSN: 2078-8665 - E-ISSN: 2411-7986

S
=S
S

==

==

S S SN “‘ S

S ST S S S SOUS
S

=S
S

Figure 3. The graphs of the approximate and the exact solutions of nonlinear system 36 among
different values of x and t in case (3D) and x is fixed in case (2D) when a = 0.9,1 for nonlinear system
in the CF fractional operator, (A) is the app. sol. of w,v at a = 0.9 ,(B) is the app. sol. of u,vata = 1,

(C) is the exact sol. of u, v.

Remark. By comparing the results of this method
with Yang decomposition method it appears that the
results are similar to both methods %.

Conclusion

In this article, the Elzaki decomposition method has
been presented in terms of its derivation and
convergence and its application to fractional
differential equations (FDEs). The method was
convergent and efficient to solve fractional
differential equations with the Caputo-Fabrizio
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