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Abstract: 
      In this paper, new concepts which are called: left derivations and generalized left derivations in near-

rings have been defined. Furthermore, the commutativity of the 3-prime near-ring which involves some 

algebraic identities on generalized left derivation has been studied. 
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Introduction: 
     Let 𝒩 be a right near-ring dwith commutative 

center 𝒵(𝒩), recall that 𝒩 is 3₋prime whenever 

n𝒩m = {0} implies that either 𝑛 =  0 or 𝑚 = 0. 

Right distribute law of 𝒩 involves  0𝑛 = 0  for 

each  𝑛 ∈ 𝒩, but when 𝑛0 = 0 for each 𝑛 ∈ 𝒩, 

then 𝒩 will be named zero symmetric. If 𝒜 ⊆ 𝒩 

satisfies 𝒩𝒜 ⊆ 𝒜 and 𝐴 𝒩 ⊆ 𝒜, then  𝒜 will be 

called a semigroup ideal of 𝒩. The symbols 
[𝔫, 𝔪] = 𝔫𝔪 − 𝔪𝔫 and 𝑛 ⋄ 𝑚 = 𝔫𝔪 + 𝔪𝔫 stand for 

Lie product and Jordan product, respectively. For 

more about near ring, see Pilz1. 

   In 1994 Wang2 defined the concept of derivation 

in near-rings and studied the commutativity of 

the near-rings that satisfies certain algebraic 

identities involving derivation, from there authors 

began to study different types of derivations,3 in 

near-rings, such as semiderivation,4 generalized 

derivations,5-8 n-derivation,9  𝛼 − 𝑛derivation,10 

generalized n-derivation,11  homoderivation,12-14 

right n-derivation,15 generalized right n-derivation,16  

(where another reference can be found). Majeed15 

presented the notion of right derivation in near-

rings. Furthermore, the author16 defined the 

generalized right derivation in near-rings. 

  After revising the literature, you will find that 
Bresar17 started studying left derivations in rings. 

Moreover, Auday18 and Ikram19 investigated the 

study of left derivation and its generalization on the 

ring. But this type of mapping has not been 

defined and studied in the near- rings so far. So 

it is ordinary to study this kind of derivation which 

is named left derivation in near ring. 

   In fact, this work has been devoted to defining the 

notion of left derivation and generalized left 

derivation on near-ring, as well as to investigating 

the commutativity of near-ring with left 

derivations and generalized left derivations.  

Remark: In this article 𝒩 is 3-prime right near-ring 

and 𝒜 is semigroup ideal of 𝒩 unless otherwise 

noted. Also, the article refers to the “commutative 

ring” by 𝒞. ℛ.  

 

Definitions and Preliminaries:  

Definition 1: An additivℯ mapping 𝒹 from  𝒩 into 

itself is called left derivation if 𝒹(𝓃𝓂)  =
 𝓃𝒹(𝓂) + 𝓂𝒹(𝓃) for every 𝓃, 𝓂 ∈ 𝒩. 
Moreover, An additivℯ mapping G  from 𝒩 into 

itself is a generalized left derivation connected with 

𝒹 if G(𝓃𝓂)  =  𝓃𝒹(𝓂) + 𝓂G(𝓃) for 

each 𝓃, 𝓂 ∈ 𝒩. 
 

Example 1: Let  𝒦  be a zero symmetric right near-

ring and 

𝒩 = {(
0 0 0
𝓊 0 𝓋
𝓌 0 0

) ∶  𝓊, 𝓋, 𝓌, 0 ∈ 𝒦}, 

𝒹. G: 𝒩 ⟶ 𝒩 
 

𝒹 ((
0 0 0
𝓊 0 𝓋
𝓌 0 0

)) = (
0 0 0
0 0 𝓋
0 0 0

), 

G ((
0 0 0
𝓊 0 𝓋
𝓌 0 0

)) = (
0 0 0

𝓌 0 0
0 0 0

) 
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One can easily see that 𝒩 is an aright near-ring 

with matrix addition and multiplication and 𝒹 is a 

left derivation of 𝒩 which is neither right 

derivation nor derivation and 𝐺 is generalized left 

derivation connected with 𝒹. 

With the above notations, we have the following 

lemmas: 

Lemma 1: 4  

(i) If  𝑛 ∈  𝒵(𝒩) ∕ {0}, s.t  2𝑛 ∈  𝒵(𝒩), 
then 𝒩 is abelian. 

(ii) If  𝔞 ∈ 𝒩 and 𝑛 ∈   𝒵(𝒩) ∕ {0}, s.t 
𝔫𝔞 ∈   𝒵(𝒩) or 𝑎𝑛 ∈   𝒵(𝒩), then 

𝔞 ∈  𝒵(𝑁). 
Lemma 2:  4  

(i) If 𝒜 ≠ {0} s.t  𝒜𝔫 = {0} or 𝑛𝒜 =
{0}, then 𝑛 =  0.  

(ii) If  𝑛𝒜𝑚 = {0}, then 𝑛 =  0 or 𝑚 =
 0. 

(iii) If 𝑛 ∈  𝒩 which centralizes 𝒜, then 

𝑛 ∈  𝒵(𝒩). 

L𝓮mma 3: 4 If  𝒵(𝒩) includes a nonzℯro 

sℯmigro𝔲p idℯ𝒶l, then 𝒩 is a  𝒞. ℛ. 
L𝓮mma 4: If 𝐺 is a generalized left derivation on 

𝒩 connected with 𝒹 of 𝒩. If 𝐺(𝒜) = {0}, then 

𝐺(𝒩) = 𝒹(𝒩) = {0}. 

Proof: By assumption,  0 = 𝐺(𝑎𝑛) = 𝑎𝑑(𝑛) for 

each 𝑎 ∈ 𝒜, 𝑛 ∈ 𝒩. It follows that 𝒜𝑑(𝒩) = {0} 

and using Lemma 2(i) implies 𝑑(𝒩) = {0}. Now, 

0 = 𝐺(𝑛𝑎) = 𝑎𝐺(𝑛) for each 𝑎 ∈ 𝒜, 𝑛 ∈ 𝒩, and 

this means  𝒜𝐺(𝒩) = {0} and again Lemma 2(i) 

implies 𝐺(𝒩) = {0}. 

Corollary 1 is consequence of Lemma 4. 

Corollary 1: Let 𝒹 be a  left derivation on 𝒩. If 

𝒹(𝒜) = {0}, then 𝒹(𝒩) = {0}. 

Lemma 5: If 𝒩 admits a left derivation 𝒹 ≠ 0, then 

𝒩 is zero-symmetric. 

Proof: It is evident that 𝒹(0) = 𝒹(00) =
 0𝒹(0)  +  0𝒹(0) = 0, therefore 0 = 𝒹(0𝓃) =
0𝒹(𝓃)  + 𝓃𝒹(0) = 𝓃0, which means that 𝓃0 = 0 

for each 𝓃 ∈ 𝒩. 

The hypothesis that 𝒩 is zero symmetric 

has not be required in the remainder of this work, if 

𝒩 admits a left derivation, which shows the 

importance of Lemma 4. 

 

Results: 
Theorem 1: If  𝐺 is a generalized left derivation 

on 𝒩 connected with 𝑑 ≠ 0 such that 𝐺([𝔞, 𝔟]) = 0 

for each 𝔞, 𝔟 ∈ 𝒜, then 𝒩 is a  𝒞. ℛ. 

Proof: From assumption: 0 = 𝐺([𝔞, 𝔟𝔞]) =
𝐺([𝔞, 𝔟]𝔞) = [𝔞, 𝔟]𝑑(𝔞) + 𝔞𝐺([𝔞, 𝔟]) = [𝔞, 𝔟]𝑑(𝔞) 

for each 𝔞, 𝔟 ∈ 𝐴, which leads to 

 𝔞𝑏𝑑(𝔞) = 𝑏𝔞𝑑(𝔞) for each 𝔞, 𝔟 ∈ 𝐴.                       1 

        

Replacing 𝑏 by 𝑛𝑏, where 𝑛 ∈ 𝒩, in Eq.1 and using 

it to get 𝔞𝑛𝑏𝑑(𝔞) = 𝑛𝑏𝔞𝑑(𝔞) = 𝑛𝔞𝑏𝑑(𝔞) for each 

𝔞, 𝔟 ∈ 𝐴, 𝑛 ∈ 𝒩, that is, [𝑎, 𝑛]𝑏𝑑(𝑎) = 0 for each 

𝔞, 𝔟 ∈ 𝒜, 𝑛 ∈ 𝒩. Hence [𝑎, 𝑛]𝒜𝑑(𝑎) = {0} for 

each 𝑎 ∈ 𝒜, 𝑛 ∈ 𝒩, and using Lemma 2(ii) lastly 

getting 

𝑎 ∈ 𝒵(𝒩) or 𝒹(𝔞) = 0 for each 𝔞 ∈ 𝒜.                 2                                       

If there is 𝑎0 ∈ 𝒜 and 𝑎0 ∈ 𝒵(𝒩), by hypothesis, 

0 = 𝐺([𝑎, 𝑏𝑎0]) = 𝐺([𝔞, 𝔟]𝑎0) = [𝔞, 𝔟]𝒹(𝔞0) +
𝔞0𝐺([𝔞, 𝔟]) = [𝔞, 𝔟]𝒹(𝑎0) for each 𝔞, 𝔟 ∈ 𝒜. 

Therefore  

𝔞𝑏𝒹(𝔞0) = 𝑏𝑎𝒹(𝑎0) for each 𝔞, 𝔟 ∈ 𝒜.                  3 

             

Replacing 𝔟 by 𝔫𝔟, where 𝔫 ∈ 𝒩, in Eq.3 and using 

it, concluding that 𝔞𝔫𝔟𝒹(𝔞0) = 𝔫𝔟𝔞𝒹(𝔞0) =
𝔫𝔞𝔟𝒹(𝔞0) for each 𝔞, 𝔟 ∈ 𝐴,𝔫 ∈ 𝒩, that is, 
[𝔞, 𝔫]𝔟𝑑(𝔞0) = 0 for each 𝔞, 𝔟 ∈ 𝒜, 𝔫 ∈ 𝒩. Hence 
[𝔞, 𝔫]𝒜𝒹(𝔞0) = 0 for each 𝔞 ∈ 𝒜, 𝔫 ∈ 𝒩, and 

using Lemma 2(ii) forces 𝒜 ⊆ 𝒵(𝒩) or 𝒹(𝔞0) =
0, hence Eq.2  becomes 𝒜 ⊆ 𝑍(𝒩) or 𝑑(𝐴) = {0}, 

if 𝑑(𝐴) = {0}, so 𝒹 = 0 by Corollary 1: a 

contradiction. Hence  𝒜 ⊆ 𝒵(𝒩) and the required 

have been achieved by Lemma 3. 

Corollary 2: If 𝐺 is a generalized left derivation 

on 𝒩 connected with 𝒹 ≠ 0 and 𝐺([𝓃, 𝓂]) = 0 for 

each 𝓃, 𝓂 ∈ 𝒩, thℯn 𝒩 is a 𝒞. ℛ. 
Note that: if (𝒩, +) is abelian, then 𝒹[𝓃, 𝓂] = 0 

for each 𝓃, 𝓂 ∈ 𝒩 (according to the definition of 

𝒹)  therefore the next corollaries are direct results of 

Theorem 1. 

Corollary 3: If 𝒹 ≠ 0 is a left derivation on 𝒩, 

then the next affirmations are equivalence: 

(i) (𝒩, +) is 𝔞𝔟𝔢li𝔞n; 

(ii) 𝒹([𝔞, 𝔟]) = 0 for each 𝔞, 𝔟 ∈ 𝒜; 

(iii) 𝒩 is a  𝒞. ℛ. 

Corollary 4: If 𝒹 ≠ 0 is a left derivation on 𝒩, 

then the next affirmations are equivalence: 

(i) (𝒩, +) is abelian; 

(ii) 𝒹[𝓃, 𝓂] = 0 for each 𝓃, 𝓂 ∈ 𝒩; 

(iii) 𝒩 is a  𝒞. ℛ. 

Theorem 2: If 𝐺 is a generalized left derivation 

on 𝒩 connected with 𝒹 ≠ 0, then the next 

affirmations equivalence 

(i) 𝐺(𝔞 ⋄ 𝔟) = 0 for each 𝔞, 𝔟 ∈ 𝒜; 

(ii) 𝒩 is a  𝒞. ℛ and 𝒸ℎ𝔞𝔯(𝒩) =  2. 

Proof: Assume that: 𝐺(𝔞 ⋄ 𝔟) = 0 for each 𝔞, 𝔟 ∈
𝒜, so 0 = 𝐺(𝑎 ⋄ 𝔟𝔞) = 𝐺((𝔞 ⋄ 𝔟)𝔞) = (𝔞 ⋄
𝔟)𝒹(𝒶) + 𝔞𝐺(𝔞 ⋄ 𝔟) = (𝔞 ⋄ 𝔟)𝒹(𝔞) for each 𝔞, 𝔟 ∈
𝒜, which leads to 

 𝔞𝔟𝑑(𝔞) = −𝔟𝔞𝑑(𝔞) for each 𝔞, 𝔟 ∈ 𝒜                   4 

   

Replacing 𝔟 by 𝓃𝔟, where 𝓃 ∈ 𝒩, in Eq.4 and 

using it, concluding that [−𝔞, 𝓃]𝒜𝒹(𝔞) = {0} for 

each 𝔞 ∈ 𝒜, 𝓃 ∈ 𝒩, and using Lemma 2(ii) forces 

−𝔞 ∈ 𝒵(𝒩) or 𝒹(𝔞) = 0 for each 𝔞 ∈ 𝒜.            5  
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If there is 𝔞0 ∈ 𝒜 and  −𝔞0 ∈ 𝑍(𝒩), by hypothesis, 

0 = 𝐺(𝔞 ⋄ 𝔟(−𝔞0)) = 𝐺((𝔞 ⋄ 𝔟)(−𝔞0)) = (𝔞 ⋄
𝔟)𝒹(−𝔞0) + (−𝔞0)𝐺(𝔞 ⋄ 𝔟) = (𝔞 ⋄ 𝔟)𝒹(−𝔞0). 

Therefore  

 𝔞𝔟𝑑(−𝔞0) = −𝔟𝔞𝑑(−𝔞0) for each 𝔞, 𝔟 ∈ 𝒜.        6   

                 

Replacing 𝔟 by 𝑛𝔟, where 𝑛 ∈ 𝒩, in Eq.6 and using 

it, concluding that [−𝔞, 𝑛]𝒜𝒹(−𝔞0) = {0} for each 

𝔞 ∈ 𝒜, 𝑛 ∈ 𝒩, and using Lemma 2(ii) gets  −𝒜 ⊆
𝒵(𝒩) or 𝑑(𝔞0) = 0. Thus Eq.5 becomes −𝒜 ⊆
𝒵(𝒩) or 𝑑(𝒜) = {0}, if 𝑑(𝒜) = {0}, it follows 

that 𝒹 = 0  by Corollary 1: a contradiction which 

acquires that −𝒜 ⊆ 𝒵(𝒩) and using Lemma 3 

implies that 𝒩 is 𝒞. ℛ. Returning to the hypothesis, 

0 = 𝐺(𝔞 ⋄ 𝔟𝑐) = 𝐺((𝔞 ⋄ 𝔟)𝔠) = (𝔞 ∘ 𝔟)𝒹(𝔠) +
𝔠𝐺(𝔞 ∘ 𝔟) = (𝔞 ∘ 𝔟)𝒹(𝑐) = (2𝔞)𝔟𝒹(𝔠) for each 

𝔞, 𝔟, 𝔠 ∈ 𝒜, that is (2𝔞)𝒜𝒹(𝔠) = {0} for each 𝔞, 𝔠 ∈
𝐴, by Lemma 2(ii) and Corollary 1, getting  2𝒶 = 0 

for each 𝑎 ∈ 𝐴, which implies 2𝔫𝔞 = 0 for each 𝔞 ∈
𝒜, 𝑛 ∈ 𝒩. i.e. (2𝔫)𝒜 = {0} for each 𝔫 ∈ 𝒩 and 

thus 𝔠ℎ𝔞𝔯(𝒩) =  2 by Lemma 2(i). 

For ease, the opposite direction can be 

demonstrated. 

Corollary 5: If 𝐺 is a generalized left derivation 

on 𝒩 connected with 𝑑 ≠ 0, then the next 

affirmations are equivalence: 

(i)  𝐺(𝑛 ⋄ 𝑚) = 0 for ea𝔠h 𝑛, 𝑚 ∈ 𝒩; 

(ii) 𝒩 is a  𝒞. ℛ and 𝔠ℎ𝔞𝔯(𝒩) =  2. 

Corollary 6: Let   0 ≠ 𝑑  be a left derivation 𝒩, 

then the next affirmations are equivalence: 

(i) 𝑑(𝑎 ⋄ 𝑏) = 0 for each 𝑎, 𝑏 ∈ 𝒜; 

(ii) 𝒩 is a  𝒞. ℛ and 𝑐ℎ𝑎𝑟(𝒩) =  2. 

Corollary 7: If 𝑑 ≠ 0 is a left derivation on 𝒩, 

then the next affirmations are equivalence: 

(i) 𝑑(𝑛 ⋄ 𝑚) = 0 for each 𝑛, 𝑚 ∈ 𝒩; 

(ii) 𝒩 is a  𝒞. ℛ and 𝑐ℎ𝑎𝑟(𝒩) =  2. 

Theorem 3: If 𝐺 is a generalized left derivation 

on 𝒩 connected with 𝑑 ≠ 0 and 𝐺(𝒜) ⊆ 𝒵(𝒩), 

then 𝒩 is a 𝒞. ℛ. 

Proof. By assumption, 𝐺(𝑎) ∈ 𝒵(𝒩) for each 𝑎 ∈
𝒜. If  𝐺(𝔞) = 0 for each 𝔞 ∈ 𝒜, it follows 𝑑(𝒩) =
{0} by Lemma 4 and this is a contradiction. Hence, 

there is 𝔞0 ∈ 𝒜 and  0 ≠ 𝐺(𝔞0) ∈ 𝒵(𝒩), besides 

𝐺(𝔞0) + 𝐺(𝔞0) = 𝐺(𝔞0 + 𝔞0) ∈ 𝒵(𝒩). Thus 

(𝒩, +) is abelian by Lemma 1(i), so 𝒩 is a 𝒞. ℛ 

via Corollary 4. 

Corollary 8:  If 𝐺 is a generalized left derivation 

on 𝒩 connected with 𝑑 ≠ 0 and 𝐺(𝒩) ⊆ 𝒵(𝒩). 

Then 𝒩 is a 𝒞. ℛ. 

Corollary 9: If   𝑑 ≠ 0 is a left derivation on 𝒩 

and 𝒹(𝒜) ⊆ 𝑍(𝒩), then 𝒩 is a 𝒞. ℛ. 
Corollary 10: If   𝑑 ≠ 0 is a left derivation on 𝒩 

and 𝒹(𝒩) ⊆ 𝒵(𝒩), then 𝒩 is a 𝒞. ℛ. 

Theorem 4: If 𝐺 is a generalized left derivation 

on 𝒩 connected with 𝑑 ≠ 0, then the next 

affirmations are equivalence: 

(i) [𝐺(𝔞), 𝔟] ∈ 𝒵(𝒩) for each 𝔞, 𝔟 ∈ 𝒜; 
(ii) [𝔟, 𝐺(𝔞)] ∈  𝑍(𝒩) for each 𝔞, 𝔟 ∈ 𝒜; 

(iii) 𝒩 is 𝒶 𝒞. ℛ. 
Proof: It is evident that (iii)  ⟹ (i) and (iii) ⟹ (ii). 

(𝑖)  ⟹ (iii) Suppose that [𝐺(𝔞), 𝔟] ∈ 𝒵(𝒩) for 

each 𝔞, 𝔟 ∈ 𝒜, it follows [𝐺(𝔞), 𝔟𝐺(𝔞) ] =
[𝐺(𝔞), 𝔟]𝐺(𝔞) ∈ 𝒵(𝒩) for each 𝔞, 𝔟 ∈ 𝒜. Lemma 

1(ii) assures that either 𝐺(𝔞) ∈  𝒵(𝒩) 

or [𝐺(𝔞), 𝔟] = 0 for each 𝔞, 𝔟 ∈ 𝒜, and using 

Lemma 2(iii) implies that 𝐺(𝑎) ⊆  𝒵(𝒩), hence 𝒩 

is 𝒞. ℛ by Theorem 3. 

In the same way (ii) ⟹ (iii) can be proved. 

Corollary 11: If 𝐺 is a generalized left derivation 

on 𝒩 connected with 𝑑 ≠ 0, then the next 

affirmations are equivalence: 

(i) [𝐺(𝔫), 𝔪] ∈  𝒵(𝒩) for every 𝔫, 𝔪 ∈ 𝒩; 
(ii) [𝔪, 𝐺(𝔫)] ∈  𝒵(𝒩) for every 𝔫, 𝔪 ∈

𝒩; 
(iii) 𝒩 is a  𝒞. ℛ. 

Corollary 12:  If    𝑑 ≠ 0 is a  left derivation on 𝒩, 

then the next affirmations are equivalence: 

(i) [𝒹(𝔞), 𝔟] ∈  𝒵(𝒩) for any 𝔞, 𝔟 ∈ 𝒜; 
(ii) [𝔟, 𝒹(𝔞)] ∈  𝒵(𝒩) for any 𝔞, 𝔟 ∈ 𝒜; 
(iii) 𝒩 is a 𝒞. ℛ. 

Corollary 13:  If   𝒹 ≠ 0 is a  left derivation on 

𝒩, then the next affirmations are equivalence: 

(i) [𝒹(𝔫), 𝔪] ∈ 𝒵(𝒩) for each 𝔫, 𝔪 ∈ 𝒩; 
(ii) [𝔪, 𝒹(𝔫)] ∈ 𝒵(𝒩) for each 𝔫, 𝔪 ∈ 𝒩; 
(iii) 𝒩 is a 𝒞. ℛ. 

Theorem 5: If 𝒩 is two torsion-free and 𝐺 is a 

generalized left derivation on 𝒩 connected with 

𝑑 ≠ 0, then the next affirmations are equivalence: 

(i) 𝐺(𝔞) ⋄ 𝔟 ∈ 𝒵(𝒩)for all 𝔞, 𝔟 ∈ 𝒜; 
(ii) 𝔟 ⋄ 𝐺(𝔞) ∈ 𝒵(𝒩)for all 𝔞, 𝔟 ∈ 𝒜; 
(iii) 𝒩 is a 𝒞. ℛ. 

Proof: It is evident that (iii)  ⟹ (i) and (iii) ⟹ (ii). 

(ii) ⟹ (iii) Suppose that 𝐺(𝔞) ⋄ 𝔟 ∈ 𝒵(𝒩) for 

each 𝔞, 𝔟 ∈ 𝒜, it follows (𝐺(𝔞) ⋄ 𝔟𝐺(𝔞)) =
(𝐺(𝔞) ⋄ 𝔟)𝐺(𝔞) ∈  𝒵(𝒩) for each 𝔞, 𝔡 ∈ 𝒜. Lemma 

1(ii) assures that  

 

𝐺(𝒶) ∈ 𝒵(𝒩) or 𝐺(𝒶) ⋄ 𝔟 = 0 for each 𝔞, 𝔟 ∈ 𝒜. 7                 

If there is 𝒶0 ∈ 𝒜 such that 𝐺(𝒶0) ∈ 𝒵(𝒩), then 

our hypothesis forces 𝐺(𝒶0) ⋄ 𝒸 =  𝐺(𝒶0)(2𝒸) ∈
𝒵(𝒩), Lemma 1(ii) forces 𝐺(𝔞0) = 0 or 2𝒸 ∈
𝒵(𝒩) for each 𝔠 ∈ 𝒜. If 2𝔠 ∈ 𝒵(𝒩) for each 𝔠 ∈
𝒜, then 2𝒸𝓃 ∈ 𝑍(𝒩) for each 𝒸 ∈ 𝒜, 𝑛 ∈ 𝒩, and 

Lemma 1(ii) forces 2𝒸 = 0 or 𝓃 ∈ 𝒵(𝒩) 

for each 𝒸 ∈ 𝒜, 𝓃 ∈ 𝒩. Thus  𝒩 is a  𝒞. ℛ because 

it is two torsion free and 𝒜 ≠ {0}. 
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So Eq.7 becomes 𝐺(𝔞) ⋄ 𝔟 = 0 for each 𝒶, 𝔟 ∈ 𝒜 or 

𝒩 is a 𝒞. ℛ. If 𝐺(𝒶) ⋄ 𝔟 = 0 for each 𝔞, 𝔟 ∈ 𝒜, that 

is 

𝐺(𝒶)𝔟 = −𝔟𝐺(𝔞) for each 𝔞, 𝔟 ∈ 𝒜.                  8 

Replacing 𝔟 by 𝔫𝔟 in Eq.8 and using it to get [G(-

𝔞), 𝔫]𝒜 = {0} for each 𝔞 ∈ 𝒜, 𝔫 ∈ 𝒩. Therefore  

𝐺(−𝒜) ⊆ 𝒵(𝒩) by Lemma 2(i) and hence 𝒩 is a 

𝒞. ℛ by Theorem 3. 

In the same way (ii) ⟹ (iii) can be proved. 

Corollary 14: If  𝒩 is two torsion free and 𝐺 is a 

generalized left derivation on 𝒩 connected with 

𝑑 ≠ 0, then the next affirmations are equivalence”: 

(i) 𝐺(𝔫) ⋄ 𝔪 ∈ 𝒵(𝒩)for all 𝔫, 𝔪 ∈ 𝒩; 
(ii) 𝔪 ⋄ 𝐺(𝔫) ∈  𝒵(𝒩)for all 𝔫, 𝔪 ∈ 𝒩; 
(iii) 𝒩 is a 𝒞. ℛ. 

Corollary 15: If  𝒩 is two orsion free and  𝒹 ≠ 0 is 

a  left derivation on 𝒩, then the next affirmations 

are equivalence: 

(i) 𝒹(𝔞) ⋄ 𝔟 ∈ 𝒵(𝒩) for each 𝔞, 𝔟 ∈ 𝒜; 
(ii) 𝔟 ⋄ 𝒹(𝔞) ∈  𝒵(𝒩) for each 𝔞, 𝔟 ∈ 𝒜; 
(iii) 𝒩 is a 𝒞. ℛ. 

Corollary 16 If 𝒩 is two torsio𝔫 fre𝔢 and  𝒹 ≠ 0 

is a  left derivation on 𝒩, then the next affirmations 

are equivalence: 

(i) 𝒹(𝔫) ⋄ 𝔪 ∈  𝒵(𝒩)for each 𝔫, 𝔪 ∈ 𝒩; 
(ii) 𝔪 ⋄ 𝒹(𝔫) ∈  𝒵(𝒩)for each 𝔫, 𝔪 ∈ 𝒩; 
(iii) 𝒩 is a 𝒞. ℛ. 

Theorem 6: There is no generalized left derivation 

on  𝒩 which connected with 𝒹 ≠ 0 and satisfies 

one of the next identities: 

(i)  𝐺([𝔞, 𝔟]) =  𝑑(𝔞)𝑏 for each 𝔞, 𝔟 ∈ 𝒜. 
(ii) 𝐺([𝔞, 𝔟]) =  𝑑(𝑏)𝔞 for each 𝔞, 𝔟 ∈ 𝒜. 

Proof: Suppose th𝔞t  
𝐺([𝔞, 𝑏]) =  𝑑(𝔞)𝑏  for each 𝔞, 𝔟 ∈ 𝒜.                  9 

                 

Putting𝔞 𝔞 for 𝔟 in Eq.9 to get   

𝑑(𝔞)𝔞 = 0 for each 𝔞 ∈ 𝒜.                                   10 

                                                      

 Replace 𝔞 by 𝔞𝑏 in Eq.9 to get  

𝐺([𝔞, 𝔟]𝔟) =  𝑑(𝔞𝔟)𝔟 for all 𝔞, 𝔟 ∈ 𝒜.                  11   

                           

Develop Eq.11 to get [𝔞, 𝔟]𝒹(𝔟) + 𝔟𝐺([𝔞, 𝔟]) =
𝔞𝒹(𝔟)𝔟 + 𝑏𝑑(𝔞)𝔟 for each 𝔞, 𝔟 ∈ 𝒜,  then using 

hypothesis and Eq.10 implies [𝔞, 𝔟]𝑑(𝑏) = 0 for 

all 𝔞, 𝔟 ∈ 𝒜. That is  

𝔞𝔟𝒹(𝔞) = 𝔟𝔞𝒹(𝔞) for each 𝔞, 𝔟 ∈ 𝒜.                   12 

                             

Replacing 𝔟 by 𝔫𝔟, where 𝔫 ∈ 𝒩 in Eq.12 and using 

it concluding that [𝔞, 𝔫]𝒜𝒹(𝔞) = {0} for each 𝔞 ∈
𝒜, 𝑛 ∈ 𝒩, and using Lemma 2(ii) implies  

 𝔞 ∈ 𝒵(𝒩) or 𝒹(𝑎) = 0 for each 𝔞 ∈ 𝒜.              13 

                                     

If there is 𝔞0 ∈ 𝒜 such that 𝔞0 ∈ 𝑍(𝒩), replacing 𝔞 

by 𝔞0 in Eq9 to get 𝑑(𝔞0)𝔟 = 0 for each 𝔟 ∈ 𝒜. 

Therefore 𝒹(𝔞0) = 0 according to Lemma 2(i), so 

Eq.13 becomes 𝒹(𝐴) = {0} and hence 𝒹 = 0 by 

Corollary 2, a contradiction. 

In the same way, (ii) can be proved. 

Corollary 17: There is no generalized left 

derivation on  𝒩 which is connected with 𝒹 ≠ 0  

and satisfies one of the next identities: 

(i)  𝐺([𝔫, 𝔪]) = 𝒹(𝔫)𝔪 for each 𝔫, 𝔪 ∈ 𝒩. 
(ii) 𝐺([𝔫, 𝔪]) =  𝒹(𝔪)𝔫 for each  𝔫, 𝔪 ∈

𝒩. 
Corollary 18:  There is no left derivation 𝒹 ≠ 0 on 

𝒩 which satisfies one of the next identities: 

(i)  𝒹([𝔞, 𝑏]) =  𝒹(𝑎)𝑏 for each 𝔞, 𝑏 ∈ 𝒜. 
(ii) 𝒹([𝔞, 𝑏]) =  𝒹(𝑏)𝑎 for each 𝔞, 𝑏 ∈ 𝒜. 

Corollary 19:  𝒩 consents no  left derivation 𝑑 ≠
0, which satisfies one of the next identities: 

(i)  𝒹([𝔫, 𝔪]) =  𝒹(𝑛)𝔪 for each  𝔫, 𝔪 ∈
𝒩. 

(ii) 𝒹([𝔫, 𝔪]) =  𝒹(𝔪)𝑛 for each  𝔫, 𝔪 ∈
𝒩. 

Theorem 7: If 𝑑 ≠ 0 is a  left derivation on 𝒩, 

then the next affirmations are equivalence: 

(i)      𝑑([𝔫, 𝔞]) = [𝔫, 𝔞] for each 𝔞 ∈ 𝒜, 𝔫 ∈
𝒩; 

(ii)      𝑑([𝔞, 𝔫]) = [𝔞, 𝔫] for each 𝔞 ∈ 𝒜, 𝔫 ∈
𝒩; 

(iii)       𝒩 is a 𝒞. ℛ. 
Proof: Just need to prove that (i)  ⇒ (iii) and (ii)  ⇒ 

(iii). 

(ii) ⇒ (iii) It is obvious that [𝑛, 𝔞𝑛] = 𝑑([𝑛, 𝑎𝑛]) =
𝑑([𝑛, 𝑎]𝑛) = [𝑛, 𝑎]𝑑(𝑛) + 𝑛𝑑([𝑛, 𝑎]) =
[𝑛, 𝑎]𝑑(𝑛) + 𝑛[𝑛, 𝑎] for each 𝑎 ∈ 𝐴, 𝑛 ∈ 𝒩, which 

leads to [𝑛, 𝔞]𝑛 = [𝑛, 𝑎]𝑑(𝑛) + 𝑛[𝑛, 𝔞] for each 𝔞 ∈
𝒜, 𝑛 ∈ 𝒩. Putting [𝑛, 𝑏] in place of 𝑛 in the last 

equation and using the hypothesis getting 

[𝑛, 𝑏][[𝑛, 𝑏], 𝔞] = 0 for each 𝔞, 𝑏 ∈ 𝒜, 𝑛 ∈ 𝒩, 

which implies that   0 = 𝑑([𝑛, 𝑏][[𝑛, 𝑏], 𝔞])  

      = [𝑛, 𝑏]𝑑([[𝑛, 𝑏], 𝔞]) + [[𝑛, 𝑏], 𝔞]𝑑([𝑛, 𝑏]) 

      = [𝑛, 𝑏][[𝑛, 𝑏], 𝔞] + [[𝑛, 𝑏], 𝔞][𝑛, 𝑏] 

      = [[𝑛, 𝑏], 𝔞][𝑛, 𝑏]  for each 𝔞, 𝑏 ∈ 𝒜, 𝑛 ∈ 𝒩. 

Therefore,  

                
[𝑛, 𝑏]𝔞[𝑛, 𝑏] = 𝔞[𝑛, 𝑏][𝑛, 𝑏] 

          for each 𝔞, 𝑏 ∈ 𝒜, 𝑛 ∈ 𝒩.                           14 

Replace 𝔞 by 𝔪𝔞, where 𝔪 ∈ 𝒩, in Eq.14, and use 

it,  to get  [𝑛, 𝑏]𝔪𝔞[𝔫, 𝑏] = 𝔪𝔞[𝔫, 𝑏][𝔫, 𝑏] =
𝔪[𝔫, 𝑏]𝔞[𝔫, 𝑏] for each 𝔞, 𝑏 ∈ 𝒜, 𝔫, 𝔪 ∈ 𝒩. It 

follows that [[𝔫, 𝑏], 𝔪]𝒜[𝔫, 𝑏] = {0} for each 𝑏 ∈

𝒜, 𝔫, 𝔪 ∈ 𝒩. So [𝔫, 𝑏] ∈ 𝑍(𝒩)  for each 𝑏 ∈ 𝐴, 

𝑛 ∈ 𝒩 by Lemma 2(ii). Now, [𝑛, 𝑏𝑛] = [𝑛, 𝑏]𝑛 ∈
𝑍(𝒩)  for each 𝑏 ∈ 𝒜, 𝑥 ∈ 𝒩 and use Lemma 

1(ii), to obtain  𝒜 ⊆ 𝒵(𝒩), hence 𝒩 is a  𝒞. ℛ by 

Lemma 4. 

 (ii)  ⇒ (iii) can be proved in the same way above. 
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Corollary 20: If 𝒹 ≠ 0 is a left derivation on 

𝒩 and 𝒹([𝔫, 𝔪]) = [𝔫, 𝔪] for each 𝔫, 𝔪 ∈ 𝒩, 

then 𝒩 is a 𝒞. ℛ. 

Theorem 8: If 𝒩 is two torsion-free and 𝒹 ≠ 0 is a 

left derivation on 𝒩, then 𝒩 is a 𝒞. ℛ if it has one 

of the next conditions: 

(i) 𝒹(𝔫 ⋄ 𝔞) = 𝔫 ⋄ 𝔞 for each 𝔞 ∈ 𝒜, 𝔫 ∈ 𝒩. 

(ii) 𝒹(𝔞 ⋄ 𝔫 ) = 𝔞 ⋄ 𝔫  for each 𝔞 ∈ 𝒜, 𝔫 ∈ 𝒩. 

Proof: Suppose that 𝒹(𝔫 ⋄ 𝔞) = 𝓃 ⋄ 𝔞 for each 𝔞 ∈
𝒜, 𝔫 ∈ 𝒩. Thus 𝒹(𝔫 ⋄ 𝔞𝔫) = 𝔫 ⋄ 𝔞𝔫 for each 𝔞 ∈
𝒜, 𝔫 ∈ 𝒩, which can be reduced to (𝔫 ⋄ 𝔞)𝒹(𝔫) +
𝔫(𝔫 ⋄ 𝔞) = (𝔫 ⋄ 𝔞)𝔫 for each 𝔞 ∈ 𝒜, 𝓃 ∈ 𝒩. Now, 

putting 𝔫 ⋄ 𝔟  instead of  𝓃 in the last equation 

implies (𝓃 ⋄ 𝔟)((𝓃 ⋄ 𝔟) ⋄ 𝔞) = 0 for each 𝔞, 𝔟 ∈
𝒜, 𝓃 ∈ 𝒩. 
Therefore,  

0 = 𝒹 ((𝔫 ⋄ 𝔟)((𝔫 ⋄ 𝔟) ⋄ 𝔞))  

= (𝔫 ⋄ 𝔟)𝒹((𝔫 ⋄ 𝔟) ⋄ 𝔞) + ((𝔫 ⋄ 𝔟) ⋄ 𝔞)𝒹(𝔫 ⋄ 𝔟) 

   = (𝔫 ⋄ 𝔟)((𝔫 ⋄ 𝔟) ⋄ 𝒶) + ((𝔫 ⋄ 𝔟) ⋄ 𝔞)(𝔫 ⋄ 𝔟) 

   = ((𝔫 ⋄ 𝔟) ⋄ 𝔞)(𝔫 ⋄ 𝔟) for each 𝔞, 𝔟 ∈ 𝒜, 𝔫 ∈ 𝒩. 
Hence,  

(𝔫 ⋄ 𝔟)𝔞(𝔫 ⋄ 𝔟) = −𝔞(𝔫 ⋄ 𝔟)(𝔫 ⋄ 𝑏)  

                    for each 𝔞, 𝔟 ∈ 𝒜, 𝔫 ∈ 𝒩.                  15  

Replacing 𝔞 by 𝔪𝔞, where 𝔪 ∈ 𝒩, in Eq.15 and 

using it, to arrive at  [−(𝔫 ⋄ 𝔟), 𝔪]𝒜(−(𝔫 ⋄ 𝔟)) =
{0} for each 𝔟 ∈ 𝒜, 𝔪, 𝔫 ∈ 𝒩, thus using Lemma 

2(ii) to get 

−(𝓃 ⋄ 𝔟) ∈ 𝒵(𝒩) for each 𝔟 ∈ 𝒜, 𝓃 ∈ 𝒩.          16 

 

Now, replacing 𝔟 by 𝑏𝑛 in Eq.16 to get −(𝑛 ⋄
𝔟𝑛) = −(𝑛 ⋄ 𝔟)𝑛 ∈ 𝑍(𝒩) for each 𝔟 ∈ 𝒜, 𝑛 ∈ 𝒩, 

then Lemma 1(ii) assures that 

𝑛 ⋄ 𝔟 = 0 or 𝑛 ∈ 𝒵(𝒩) for each 𝔟 ∈ 𝒜, 𝔫 ∈ 𝒩.   17 

If there exists 𝓃0 ∈ 𝒩 such that 𝔫0 ⋄ 𝔟 = 0 for each 

𝔟 ∈ 𝒜, it follows that 𝔫0𝔟 = −𝔟𝔫0 for each 𝔟 ∈ 𝒜, 

so 𝔫0𝔫𝔟 = −𝔫𝔟𝔫0 for each 𝔟 ∈ 𝒜, 𝔫 ∈ 𝒩 that is 

[−𝔫0, 𝔫]𝒜 = {0} for each 𝔫 ∈ 𝒩, it follows that 

−𝔫0 ∈ 𝒵(𝒩) by Lemma 2(i), substituting −𝔫0 for 

𝔫 in Eq.16 forces (−2𝔟)(−𝔫0) ∈ 𝒵(𝒩) for each 

𝔟 ∈ 𝒜 and using Lemma 1(ii) getting  𝔫0 = 0 or  
−2𝔟 ∈ 𝒵(𝒩) for each 𝔟 ∈ 𝒜. Hence Eq.17 

becomes 

−2𝔟 ∈ 𝒵(𝒩) for each 𝔟 ∈ 𝒜 or 𝒩 is a 𝒞. ℛ.   

If  −2𝔟 ∈ 𝒵(𝒩) for each 𝔟 ∈ 𝒜, then  −2𝔟𝔫 ∈
𝒵(𝒩) for each 𝔟 ∈ 𝒜, 𝔫 ∈ 𝒩, two torsion freeness 

of 𝒩 and Lemma 1(ii) forces that 𝒩 is a 𝒞. ℛ.   

Similarly (ii) can be proved. 

Corollary 21: If 𝒩 is two torsion-free and  𝒹 ≠ 0 

is a  left derivation on 𝒩, then 𝒩 is a 𝒞. ℛ if 
𝒹(𝔫 ∘ 𝔪) = 𝔫 ∘ 𝔪 for each 𝔫, 𝔪 ∈ 𝒩. 

 

Conclusion:  
The author arrives at very interesting results 

about the commutativity of near-ring by using 

semigroup ideals and generalized left derivations 

involving some algebraic identities. Our results 

generalize many results on left derivations.  
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  مع متطابقات عل الحلقات المقتربة الاشتقاقات اليسارية تعميم

 
 انعام فرحان 

 
 .العراق ،القادسية ة،الكلية التربوية المفتوح

  

 الخلاصة:
لية في هذا العمل  قدمنا تعاريف لمفاهيم جديدة والتي تسمى : الاشتقاقات اليسارية وتعميم الاشتقاقات اليسارية في الحلقات المقتربة الاو

الثلاثية عند وجود بعض المتطابقات الجبرية على تعميم الاشتقاقات الثلاثية. اضافة الى  ذلك قمنا بدراسة ابدالية الحلقات المقتربة الاولية 

 .اليسارية
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