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Abstract 
In this paper, the effective computational method (ECM) based on the standard monomial polynomial 

has been implemented to solve the nonlinear Jeffery-Hamel flow problem. Moreover, novel effective 

computational methods have been developed and suggested in this study by suitable base functions, namely 

Chebyshev, Bernstein, Legendre, and Hermite polynomials. The utilization of the base functions converts the 

nonlinear problem to a nonlinear algebraic system of equations, which is then resolved using the 

Mathematica®12 program. The development of effective computational methods (D-ECM) has been applied 

to solve the nonlinear Jeffery-Hamel flow problem, then a comparison between the methods has been shown. 

Furthermore, the maximum error remainder (𝑀𝐸𝑅𝑛) has been calculated to exhibit the reliability of the 

suggested methods. The results persuasively prove that ECM and D-ECM are accurate, effective, and 

reliable in getting approximate solutions to the problem. 

 

Keywords: Approximate solution, Bernstein polynomials, Chebyshev polynomials, Hermite polynomials, 

Legendre polynomials. 

Introduction: 
In several fields of engineering and applied 

sciences, nonlinear ordinary differential equations 

(NODE) play a significant role in simulating many 

real-life issues. Many phenomena, including 

engineering, fluid mechanics, physics, chemical 

matters, biology, and electrostatics, have been 

mathematically formulated using these types of 

equations. The exact solution for nonlinear 

problems is difficult or sometimes cannot be 

obtainable. Therefore authors want to develop 

efficient either numerical or approximate methods 

to solve these types of problems 1-4. 

Several analytical and approximate methods 

have been proposed by researchers to solve 

nonlinear differential equations, such as the 

Adomian decomposition method (ADM) and Direct 

Homotopy Analysis Method (DHAM) 5, the 

Bernoulli collocation method 6, the Hemite 

polynomial method 7, the Taylor collocation method 
8, and the Gegenbauer wavelet method 9. In 

particular, Singh 10 has used the Jacobi collocation 

method to solve the fractional advection-dispersion 

equation. Ganji et al. 11 have used the fifth-kind 

Chebyshev polynomials to solve differential 

equations with multiple variable orders and non-

local and non-singular kernels. Also, Singha et al. 12 

used Boubaker polynomials to solve a class of 

fractional optimal control problems. Yuttanan et al. 
13 solved the non-linear distributed fractional 

differential equations using the Legendre wavelets 

method and some other approximation methods, see 
14-16. 

One of the most important applications in 

fluid mechanics and biomechanical engineering is 

the flow between two nonparallel plates 17. Jeffery18  

and Hamel19 introduced incompressible viscous 

fluid movement in convergent and divergent 

channels, and this is known as Jeffery-Hamel flow. 

Many researchers have attempted to develop 

analytical approximations methods to solve the 

Jeffery-Hamel flow: such as optimal iterative 

perturbation technique 20, Bernstein collocation 

method (BCM) 21, modified Adomian 

decomposition method (MADM) 22,23, Homotopy 

analysis method (HAM) 24, Homotopy perturbation 

method (HPM) 25, Bernoulli collocation method 26, 

Hermite wavelet method 27, differential transform 

method (DTM) 28. More recently, AL-Jawary et al. 
29, has implemented three semi-analytical iterative 
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methods namely the Daftardar-Jafari method 

(DJM), Temimi-Ansari method (TAM), and Banach 

contraction method (BCM) to obtain the solution 

for this problem. In addition, AL-Jawary et al. 30, 

has employed two operational matrices techniques 

(OMM) based on Bernstein and Chebyshev 

polynomials to solve a similar problem. 

More recently, the Turkyilmazoglu has 

proposed an analytic approximate method namely 

the effective computational method (ECM), and 

implemented it to solve various types of problems. 

For example, Lane-Emden-Fowler singular 

nonlinear equations 31, high-order Fredholm 

integro-differential equations 32, high-

order Volterra-Fredholm-Hammerstein integro-

differential equations 33, heat transfer of fin 

problems 34, and initial and boundary value 

problems for linear differential equations of any 

order with difficult exact solutions35. The approach 

was based on well-chosen general-type basis 

functions, such as classical polynomials, and that 

exact solution is obtained under particular 

conditions. A nonlinear equation’s solution is also 

converted into a nonlinear algebraic equations 

system that can be solved numerically. 

Recently, orthogonal functions and 

polynomials have received a lot of attention from 

researchers since they are very useful tools and 

techniques in dealing with many different problems 

in approximation theory as well as numerical 

analysis 30. On the other hand, these techniques are 

mainly characterized by simplifying the required 

solution effectively by transforming the problem 

into a system of algebraic equations, where it can be 

solved simply by using any computational 

program36-39. Accordingly, the problems are 

simplified substantially and the unknown function 

is approximated using a series of powers of 

polynomials. Thus, all integrals and differentials are 

eliminated by using the operational matrices 

procedure. Furthermore, the literature is full of the 

applications that have been discussed by OMM of 

orthogonal polynomials, for instance, see 40-43. 

The motivation for this research work is our 

great interest in finding the approximate solutions 

of the nonlinear ordinary differential equations, in 

particular the Jeffery-Hamel flow problem, which is 

one of the most important applications in fluid 

mechanics and biomechanics. Moreover, this study 

aims to implement the ECM based on the standard 

polynomial to solve the Jeffrey-Hamel problem, and 

another aim is to develop and suggest a novel ECM 

based on various orthogonal polynomials such as 

Chebyshev, Bernstein, Legendre, and Hermite 

polynomials, and then D-ECM has been applied to 

solve the Jeffery-Hamel flow problem. 

This paper is organized as follows: The 

mathematical description of the Jeffery-Hamel flow 

problem is presented in section two. Section three 

explains the basic concepts of the proposed 

methods. Solving the Jeffery-Hamel flow problem 

by the proposed methods will be given in section 

four. In section five, the numerical results will be 

displayed and explained. Finally, in section six, a 

conclusion will be presented. 

 

The Mathematical Formulation of Jeffrey 

Hamel’s Flow Problem 

The Jeffrey-Hamel flow problem represented by the 

NODE is the steady flow of a viscous, conductive, 

incompressible fluid in two dimensions at the 

intersection of two plane rigid and non-parallel 

walls that get together at an angle 2α 21. It is 

assumed that the flow is perfectly radial and 

symmetric. Therefore, the velocity field is only 

along the radial direction and depends on 𝑟 and 𝜃, 

so it can be given by 𝑉(𝑢(𝑟, 𝜃), 0), as illustrated in 

(Fig. 1) 30. 

 

 
 

Figure 1. Jeffry-Hamel flow's geometry 30. 

 

The continuity equations and the Navier-Stokes 

equations can be expressed in polar coordinates as 

follows: 
𝜌

𝑟

𝜕

𝜕𝑟
(𝑟𝑢(𝑟, 𝜃)) = 0,                                    1 

𝑢(𝑟, 𝜃)
𝜕𝑢(𝑟,𝜃)

𝜕𝑟
= −

1

𝜌

𝜕𝑃

𝜕𝑟
+ 𝑣 [

𝜕2𝑢(𝑟,𝜃)

𝜕𝑟2
+
1

𝑟

𝜕𝑢(𝑟,𝜃)

𝜕𝑟
+

1

𝑟2
𝜕2𝑢(𝑟,𝜃)

𝜕𝜃2
−
𝑢(𝑟,𝜃)

𝑟2
] −

𝜎𝐵0
2

𝜌𝑟2
𝑢(𝑟, 𝜃),                        2  

  

−
1

𝜌𝑟

𝜕𝑃

𝜕𝜃
+
2𝑣

𝑟2
𝜕𝑢(𝑟,𝜃)

𝜕𝜃
= 0,                                       3 

 

where 𝑢(𝑟, 𝜃) is the radial velocity, 𝐵0 is denoted 

by the electromagnetic induction and 𝜎 is a fluid’s 

conductivity, 𝑃 is the pressure of the fluid, 𝜌 is the 

fluid density constant, and 𝑣 is the kinematic 

viscosity parameter. 

Eq.1 can be written as: 

𝑔(𝜃) = 𝑟𝑢(𝑟, 𝜃),                                                        4 
By using dimensionless parameters 29, so 

𝑤(𝑥) =
𝑔(𝜃)

𝑔𝑚𝑎𝑥
, where,   𝑥 =

𝜃

𝛼
.                       5 
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By eliminating 𝑃 term from Eq.2 and Eq.3, and 

using the formulas given in Eq.4 and Eq.5, a 

nonlinear third-order ODE is obtained: 

𝑤′′′(𝑥) + 2𝛼 𝑅𝑒 𝑤(𝑥) 𝑤′(𝑥) + (4−𝐻𝑎) 𝛼2 𝑤′(𝑥)
= 0,                              6 

with the boundary conditions as follows: 

 𝑤(0) = 1,     𝑤′(0) = 0, 𝑤(1) = 0,             7 

where, 𝑅𝑒 =
𝛼 𝑈𝑚𝑎𝑥

𝑣
, and 𝐻𝑎2 =

𝜎 𝐵0
2

𝜌 𝑣
, are the 

Reynolds number and the Hartmann number’s 

square, respectively. 

 

The Basic Concepts of the Proposed Methods 

A description of the suggested methods will 

be presented in this section. Also, orthogonal 

polynomials and the operational matrices will be 

offered, which are used in the development of the 

ECM algorithm to get the approximate solution to 

the problem. 

 

The Basic Concepts of ECM 

Consider 𝑚𝑡ℎ-order non-linear ODE as 

follows 34, 

𝑓(𝑥, 𝑦, 𝑦′, 𝑦′′, … , 𝑦(𝑚)) = ℎ(𝑥),    𝛼 ≤ 𝑥 ≤ 𝛽.  8 

with either the I.C: 

  𝑦(𝑖)(𝛼) = 𝜔𝑖,       0 ≤ 𝑖 ≤ 𝑚 − 1,              9 
or the following B.C:  

𝑦(𝑖)(𝛼) = 𝜇𝑖 , 𝑦
(𝑖)(𝛽) = 𝛿𝑖 , 0 ≤ 𝑖 ≤

𝑚

2
− 1,   10 

where ℎ(𝑥) is a function that is known and 𝜔𝑖, 𝜇𝑖, 
𝛿𝑖, are constants. The essential assumption is that 

Eq.8 has a unique solution with the initial or 

boundary conditions given in Eq.9 or Eq.10. 

Moreover, a function 𝑦(𝑥) ∈  𝐿2[0, 1] can be 

expressed by a linear combination of 𝑚𝑡ℎ-order 

function series based on the classical standard 

monomial polynomials as: 

𝑦(𝑥) =∑𝑐𝑖 φ𝑖(𝑥),

𝑚

𝑖=0

                                11 

where 𝑐𝑖 , are the coefficients whose values will be 

found by giving the following definitions 

 

 𝑿 = [𝜑0  𝜑1  𝜑2… 𝜑𝑚], 𝑪 = [𝑐0 𝑐1 𝑐2…𝑐𝑚]
𝑇 

 

where 𝜑𝑚 represents the base functions from the 

classical polynomials 31. By using the dot product, 

the 𝑚𝑡ℎ order approximation of the series solution 

provided in Eq.11 is as follows: 

𝑦(𝑥) =∑𝑐𝑖 𝜑𝑖(𝑥) = 𝑿 𝑪,                 12

𝑚

𝑖=0

 

Assume that the derivative of vector 𝑿 will be 

defined as below 

𝐷[𝑿] = 𝑿 𝑩, 

where 𝑩(𝑚+1)×(𝑚+1) is the operational auxiliary 

matrix with the given entries in classical 

monomials: 

𝑩 =

[
 
 
 
 
 
0 1 0
0 0 2
0 0 0

⋯
0
0
0

⋮ ⋱ ⋮
0 0 0
0 0 0

⋯
𝑚
0 ]
 
 
 
 
 

(𝑚+1)×(𝑚+1)

 

Also, the higher derivatives can be written as, 

𝐷𝑚[𝑿] = 𝑿 𝑩𝑚    where    𝑚 = 1,2,…          13 
Therefore, Eq.13 can be used to write the 

derivatives in the following format: 

𝑦(𝑚)(𝑥) = 𝑿 𝑩𝑚 𝑪        𝑚 ≥ 1.                             14 
Now, substituting the Eqs.12, and 14 in Eqs.8-10, 

the matrix equation with the restrictions 31, can be 

obtained: 

𝑓(𝑥,   𝑿 𝑪,   𝑿 𝑩 𝑪,   𝑿 𝑩2 𝑪,… , 𝑿 𝑩𝑚 𝑪)
= ℎ(𝑥),       𝑚 = 1,2,….  

𝑿(0) 𝑩𝑖 𝑪 = 𝜔𝑖,    0 ≤ 𝑖 ≤ 𝑚 − 1,                    15 
and 

𝑿(0) 𝑩𝑖 𝑪 = 𝜇𝑖 ,       𝑿(1) 𝑩𝑖 𝑪 = 𝛿𝑖 .       0 ≤ 𝑖 ≤
𝑚

2
− 1,                        16 

Consider the Hilbert space 𝐻 = 𝐿2[0,1], which has 

the inner product as follows: 

〈𝑓1, 𝑓2〉 = ∫𝑓1(𝑥) 𝑓2(𝑥)𝑑𝑥

1

0

,                                17  

Assume a set of functions that are linearly 

independent in 𝐻 

𝝍 = {𝜓0, 𝜓1, … , 𝜓𝑚},                        18 
 

where 𝜓𝑚 be the base function of a standard 

monomial polynomials 𝑥𝑖, ∀ 𝑖 = 0,1,2,… ,𝑚 or any 

other type of polynomial 31,32. Then, by applying the 

inner product given in Eq.17 with the elements of 𝝍 

defined in Eq.18, the following matrix equation 33 

will be shown: 

𝑮 = 𝑬,                                                       19 

The ith row of 𝑮 and E, respectively, is made up of: 

 

〈𝜓𝒊, 𝑓(𝑥,   𝑿 𝑪,   𝑿 𝑩 𝑪,   𝑿 𝑩
2 𝑪,… , 𝑿 𝑩𝑚 𝑪)  〉,   

   〈𝜓𝒊, ℎ(𝑥)〉,   0 ≤ 𝑖 ≤ 𝑚.                    20   
 

In addition, by applying the initial or boundary 

conditions in Eqs.15, and 16, some entries of Eq.19 

are modified from the left-hand side 𝑮 and the 

corresponding right-hand side 𝑬 35. Thus, a system 

of (𝑚 +  1) nonlinear algebraic equations for 

unknown 𝑪 will be obtained. By solving the 

resulting system numerically or sometimes 

analytically, unique values can be obtained for 

unknown elements 𝑐0, 𝑐1, 𝑐2, … 𝑐𝑚, this will be 

substituted in Eq.12 to obtain an approximate 

solution to Eq.8. 
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First Kind Chebyshev Polynomials 

The first kind of Chebyshev polynomials 𝑻𝑖(𝑥) of 

degree i is defined by: 

𝑻𝑖  (𝑥) =∑(−1)𝑖−𝑗 2𝑗
(𝑖 + 𝑗 − 1)!

(𝑖 − 𝑗)! (2𝑗)!
(𝑥

𝑖

𝑗=0

+ 1)𝑗.        21 

The unknown function 𝑦(𝑥) can be represented as: 

𝑦(𝑥) =∑𝑐𝑖 𝑻𝑖(𝑥),

∞

𝑖=0

  

where, 

𝑐𝑖 = 〈𝑦, 𝑻𝑖〉 = (2 𝑖 + 1) ∫ 𝑦(𝑥)
1

0
𝑃𝑖(𝑥)𝑑𝑥;  𝑖 ≥ 0.  

In general, only the first (𝑚 +  1) terms of the 

Chebyshev polynomials have been expressed 39, so 

𝑦(𝑥) =∑𝑐𝑖 𝑻𝑖(𝑥) = 𝑪
𝑇 ∅(𝑥),                  22

𝑚

𝑖=0

 

where, 𝑪𝑇 = [𝑐0 𝑐1 𝑐2…𝑐𝑚] and ∅(𝑥) =
[𝑻0(𝑥), 𝑻1(𝑥), … , 𝑻𝑚(𝑥)]

𝑇. Moreover, the 

derivatives of ∅(𝑥) can be considered as: 

𝐷[∅(𝑥)] = 𝑫𝑻∅(𝑥),   𝐷
2[∅(𝑥)]

= 𝑫𝑻
2∅(𝑥),… , 𝐷𝑚[∅(𝑥)]

= 𝑫𝑻
𝑚∅(𝑥),                               23 

where 𝑫𝑻 (𝑚 + 1)× (𝑚 + 1), is the operational matrix 

of the provided derivative, which is defined as 

follows: 

𝑫𝑻 = (𝑑𝑖, 𝑗) = {

2𝑖

𝜌𝑗
,       𝑓𝑜𝑟 𝑗 = 𝑖 − 𝑘,

0             otherwise,

, 

 

where, 𝑘 = 1, 3, 5, … ,𝑚 − 1 if 𝑚 is even, or 𝑘 =
1, 3, 5,… ,𝑚 if 𝑚 is odd, 𝜌0 = 2, and 𝜌𝑘 =
1 for all 𝑘 ≥ 1. 

For example, if 𝑚 is even then the 𝑫𝑻 is expressed 

as follows: 

 

𝑫𝑻 =

(

 
 
 
 
 
 

0 0 0 0 0 … 0 0 0
1 0 0 0 0 … 0 0 0
0 4 0 0 0 … 0 0 0
3 0 6 0 0 … 0 0 0
0 8 0 8 0 … 0 0 0
5 0 10 0 10 … 0 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋱ 0 0 0

𝑚 − 1 0 2(𝑚 − 1) 0 2(𝑚 − 1) … 2(𝑚 − 1) 0 0
0 2𝑚 0 2𝑚 0 … 0 2𝑚 0)

 
 
 
 
 
 

             24 

In addition, if 𝑚 is odd then the matrix 𝑫𝑻 is defined as follows: 

𝑫𝑻 =

(

 
 
 
 
 

0 0 0 0 … 0 0 0
1 0 0 0 … 0 0 0
0 4 0 0 … 0 0 0
3 0 6 0 … 0 0 0
0 8 0 8 … 0 0 0
⋮ ⋮ ⋮ ⋮ ⋱ 0 0 0
0 2(𝑚 − 1) 0 2(𝑚 − 1) … 2(𝑚 − 1) 0 0
𝑚 0 2𝑚 0 … 0 2𝑚 0)

 
 
 
 
 

                               25 

Hence, the derivatives can be written by using Eq.23 in the following form: 

 
𝑑𝑦

𝑑𝑥
= 𝑪𝑇𝑫𝑻 ∅(𝑥),   

𝑑2𝑦

𝑑𝑥2
= 𝑪𝑇𝑫𝑻

2 ∅(𝑥),… ,
𝑑𝑚𝑦

𝑑𝑥𝑚
= 𝑪𝑇𝑫𝑻

𝑚∅(𝑥).                                         26 

 

Bernstein Polynomials 

The degree 𝑛 Bernstein polynomials in [0, 1] are 

defined by 44: 

𝑩𝑗,𝑛(𝑥) = (
𝑛
𝑗) 𝑥

𝑗 (1 − 𝑥)𝑛−𝑗,   0 ≤ 𝑗 ≤ 𝑛     27 

There is (𝑛 +  1) degree of the Bernstein 

Polynomials. Also, these polynomials have two 

most significant properties 30: 

i) Property of unity partition,  ∑ 𝑩𝑗,𝑛(𝑥) =
𝑛
𝑗=0

1,           0 ≤ 𝑥 ≤ 1 

ii) Positivity property,   𝑩𝑗,𝑛(𝑥) ≥ 0, 𝑓𝑜𝑟   0 ≤ 𝑗 ≤

𝑛  and 𝑩𝑗,𝑛(𝑥) = 0 𝑖𝑓  𝑗 < 0 𝑜𝑟 𝑛 < 𝑗. 

In general, the 𝑦(𝑥) can be approximated by the 

linear combination of Bernstein polynomial shown 

in the following formula below: 

𝑦(𝑥) =∑𝑐𝑗 𝑩𝑗,𝑛(𝑥)

𝑛

𝑗=0

= 𝑪𝑇∅(𝑥),                             28 

where 𝑪𝑇 = [𝑐0 𝑐1 𝑐2…𝑐𝑛], and ∅(𝑥) =

[𝑩0,𝑛, 𝑩1,𝑛, 𝑩2,𝑛, … , 𝑩𝑛,𝑛]
𝑇
. 

Moreover, the vector ∅(𝑥) can be decomposed as a 

square matrix multiplication 𝑨(𝑛+1)𝑥(𝑛+1) and a 

vector 𝑿(𝑛+1)𝑥1  as: 

∅(𝑥) = 𝑨 𝑿,       𝑿 = [1, 𝑥, 𝑥2, … , 𝑥𝑛]𝑇, 
Define the vector 𝑨𝑗+1 as30:
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𝑨𝑗+1 = [0,0,… ,0⏞    
𝑗−𝑡𝑖𝑚𝑒𝑠

, (−1)0  (
𝑛
𝑗 ) , (−1)

1  (
𝑛
𝑗) (

𝑛 − 𝑗
1
) ,… , (−1)𝑛−𝑗  (

𝑛
𝑗) (

𝑛 − 𝑗
𝑛 − 𝑗

) ] , for, 0 ≤ 𝑗 ≤ 𝑛. 

Also, if 𝑨(𝑛 + 1)× (𝑛+ 1) such that 𝑨 = [𝑨1, 𝑨2, … , 𝑨𝑛+1]
𝑇the following matrix will be exposed 44: 

𝑨 =

[
 
 
 
 
 
 

 

(−1)0  (
𝑛

0
) (−1)1  (

𝑛

0
) (
𝑛 − 0

1
) … (−1)𝑛−0  (

𝑛

0
) (
𝑛 − 0

𝑛 − 0
)

0 (−1)0  (
𝑛

𝑗
) … (−1)𝑚−𝑗  (

𝑛

𝑗
) (
𝑛 − 𝑗

𝑛 − 𝑗
)

⋮
0

⋮
0

⋱
…
                  

⋮

(−1)0  (
𝑛

𝑛
) ]
 
 
 
 
 
 

(𝑛 + 1)× (𝑛+ 1)

 

 

Therefore, the derivatives of ∅(𝑥) can be defined by: 

𝐷[∅(𝑥)] = 𝑫𝑩 ∅(𝑥),            𝑥𝜖[0,1], and     𝑫𝑩 = 𝑨 𝑼 𝑩
⋇                                                  29 

where,  𝑼 =

[
 
 
 
 
0 0 0 … 0
1 0 0 … 0
0
⋮
0

2
⋮
0

0
⋮
0

⋯
⋱
…

0
⋮
𝑛]
 
 
 
 

(𝑛+1)×𝑛

, and  𝑩⋇ =

[
 
 
 
 
 

 

𝐴1
−1

𝐴2
−1

𝐴3
−1

⋮
𝐴𝑛
−1

 

]
 
 
 
 
 

𝑛×(𝑛+1)

 

 

and the higher derivatives can be defined as 

follows: 

𝐷𝑛[∅(𝑥)] = 𝑫𝑩
𝑛∅(𝑥),    𝑛 = 1, 2, …. 

Therefore, the derivatives can be expressed as 

follows: 
𝑑𝑛𝑦

𝑑𝑥𝑛
= 𝑪𝑇 𝑫𝑩

𝑛∅(𝑥)

= 𝑪𝑇(𝑨 𝑼 𝑩⋇)𝑛 ∅(𝑥)      where    𝑛
= 1, 2, … .                       30 

 

Legendre Polynomials 

The Legendre polynomials, 𝑷𝑚(𝑥), on [−1,1] of 

𝑚𝑡ℎ-order are defined as 41,42: 

  𝑷0(𝑥) = 1, 𝑷1(𝑥) = 𝑥, 

𝑷𝑚+1(𝑥) =
2 𝑚 + 1

𝑚 + 1
𝑥 𝑷𝑚(𝑥) −

𝑚

𝑚 + 1
 𝑷𝑚−1(𝑥),

𝑚 ≥ 1  
Also, the Legendre polynomials 𝑷𝑚(𝑥) can be 

obtained in the analytical formula by the following: 

 

𝑷𝑚(𝑥) =∑(−1)𝑚+𝑗
 (𝑚 + 𝑗)!

2𝑗(𝑚 − 𝑗)! (𝑗!)2
 (𝑥

𝑚

𝑗=0

+ 1)𝑗.            31 

Furthermore, the(𝑚 + 1) −terms of polynomials 

𝑷𝑚(𝑥) can be used to approximate the function 

𝑦(𝑥) as: 

𝑦(𝑥) =∑𝑐𝑗 𝑷𝑗(𝑥)

𝑚

𝑗=0

= 𝑪𝑇∅(𝑥) ,                            32 

where, 𝑪𝑇 = [𝑐0 𝑐1 𝑐2…𝑐𝑚] and ∅(𝑥) =
[𝑷0(𝑥), 𝑷1(𝑥),… , 𝑷𝑚(𝑥)]

𝑇. 

The derivatives of ∅(𝑥) can be defined by: 

𝐷[∅(𝑥)] = 𝑫𝑷 ∅(𝑥),   𝐷
2[∅(𝑥)]

= 𝑫𝑷
2∅(𝑥),… , 𝐷𝑚[∅(𝑥)]

= 𝑫𝑷
𝑚∅(𝑥),  

where 𝑫𝑷 (𝑚 + 1)× (𝑚 + 1), is the operational matrix 

of the given derivative and is defined as follows: 

𝑫𝑷 = {
(2𝑗 − 1), 𝑗 = 𝑖 − 𝑘,   where, {

𝑘 = 1,3, … ,𝑚,       𝑖𝑓 𝑚 𝑜𝑑𝑑,
𝑘 = 1,3,… ,𝑚 − 1, 𝑖𝑓 𝑚 𝑒𝑣𝑒𝑛

   
0 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.               

                          33 

 

Therefore, the derivatives can be expressed as 

follows: 
𝑑𝑚𝑦

𝑑𝑥𝑚
= 𝑪𝑇 𝑫𝒑

𝑚 ∅(𝑥),      where,   𝑚 ≥ 1         34 

 

 

Hermite Polynomials 

The Hermite polynomials, 𝑯𝑚(𝑥), on (−∞,∞) of 

𝑚𝑡ℎ-order are defined as 36: 

𝑯𝑚(𝑥) = 𝑚!∑
 (−1)𝑗

𝑗!  (𝑚 − 2 𝑗)! 
(2 𝑥)𝑚−2𝑗.

𝐾

𝑗=0

 35 

where 𝐾 =
 𝑚−1

2 
 if m is odd and 𝐾 =

 𝑚

2 
 if m is 

even. Also, the Hermite polynomials 𝑯𝑚(𝑥) can be 

written as follows: 

𝑯𝑚(𝑥) =∑
(−1)𝑗 

𝑗!
𝑚(𝑚 − 1)… (𝑚 − 2 𝑗

𝐾

𝑗=0

+ 1)(2 𝑥)𝑚−2𝑗 
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The function 𝑦(𝑥) is defined by a truncated Hermite 

polynomials 𝑯𝑚(𝑥), as: 

𝑦(𝑥) =∑𝑐𝑗 𝑯𝑗(𝑥)

𝐾

𝑗=0

= ∅(𝑥) 𝑪,                      36 

where, ∅(𝑥) = [𝑯0(𝑥),𝑯1(𝑥),… ,𝑯𝐾(𝑥)] and, 𝑪 =
[𝑐0 𝑐1 𝑐2…𝑐𝐾]

𝑇. On the other hand, Hermite 

polynomials 𝑯𝑚(𝑥) and the powers 𝑥𝑚 are related 

to the following relation 45, 

𝑥2𝑚 =
(2𝑚 )! 

22𝑚
∑

𝑯2𝑚(𝑥) 

(𝑠 − 𝑚)! (2𝑚 )!
,

𝑠

𝑚=0

     0 ≤ 𝑥

≤ 1,      37 
and, 

𝑥2𝑚+1

=
(2𝑚 + 1 )! 

22𝑚+1
∑

𝑯2𝑚+1(𝑥) 

(𝑠 − 𝑚)! (2𝑚 + 1 )!
,

𝑠

𝑚=0

        0 ≤ 𝑥

≤ 1                           38 
Therefore, when using the expressions in the 

Eqs.37, 38, and by taking 𝑚 = 0,1,… , 𝐾, the 

corresponding matrix relationship can be achieved 

as follows: 

(𝑿(𝑥))
𝑇
= 𝑫𝑴 (∅(𝑥))

𝑇
   𝑎𝑛𝑑    𝑿(𝑥)

= ∅(𝑥) (𝑫𝑴)
𝑇 , 

where 𝑿(𝑥) = [1, 𝑥, … , 𝑥𝐾], and for odd 𝐾, then the 

matrix 𝑫𝑴 defined as follows 45: 

𝑫𝑴 =

(

 
 
 
 
 
 
 
 

1 0 0          0         … 0
 
0

 
1

2

 
0          

 
0         …

 
0

1

2
 
0
⋮
0

  

 

   
0
  
3

4

⋮
𝐾!

2𝐾(
𝐾−1

2
)!1!

1

4
  
0
⋮
0

 

   
0
  
1

8 
⋮
𝐾!

2𝐾(
𝐾−1

2
−1)!3!

…
…
⋱
…

0
 
0 
⋮ 
0

  

)

 
 
 
 
 
 
 
 

                                                39 

 

and for even 𝐾, then the matrix 𝑫𝑴 is defined as follows 45: 

 

𝑫𝑴 =

(

 
 
 
 
 
 

1     0 0              0 … 0

0    
 
1

2
0              0 … 0

1

2 
0 
⋮
𝐾!

2𝐾(
𝐾

2
)!0!

    

0   
3

4

 
 
⋮
0

1

4
              0 … 0

0              
1

8
 … 0

⋮              ⋮  ⋱ ⋮

 
𝐾!

2𝐾(
𝐾

2
−1)!2!  0 …

𝐾!

2𝐾(0)!𝐾!
 

  

)

 
 
 
 
 
 

                                40 

 

From above, the expression of ∅(𝑥) will be written 

as follows: 

∅(𝑥) = 𝑿(𝑥)((𝑫𝑴)
−1)𝑇 

and, 

(∅(𝑥))
(𝑛)
= 𝑿(𝑛)(𝑥)((𝑫𝑴)

−1)𝑇           𝑛 = 1,2,….  
Furthermore, the below relation can be applied to 

obtain the 𝑿(𝑛)(𝑥) by using terms of the 𝑿(𝑥) 36: 

𝑿(1)(𝑥) = 𝑿(𝑥) 𝑮, 𝑿(2)(𝑥) = 𝑿(𝑥) 𝑮2,

𝑿(𝑛)(𝑥) = 𝑿(𝑥) 𝑮𝑛 

where 𝑮 =

[
 
 
 
 
 
0 1 0
0 0 2
0 0 0

⋯
0
0
0

⋮ ⋱ ⋮
0 0 0
0 0 0

⋯
𝐾
0]
 
 
 
 
 

(𝐾+1)×(𝐾+1)

 

Similarly, the derivatives 𝑦(𝑛)(𝑥) can be expressed 

as: 

𝑑𝑛𝑦

𝑑𝑥𝑛
= (∅(𝑥))

(𝑛)
𝑪 = 𝑿(𝑥) 𝑮𝑛 ((𝑫𝑴)

−1)𝑇𝑪 ,       

where   𝑛 = 1, 2,… .                41 

 

Solving the Jeffery-Hamel Flow Problem by the 

ECM and D-ECM 
The proposed methods from section three 

will be implemented in this section to provide 

accurate approximation solutions to the Jeffery-

Hamel flow problem.  

The D-ECM depends on the base functions of 

different polynomials such as Chebyshev, 

Bernstein, Legendre, and Hermite polynomials that 

are given in the Eqs.21, 27, 31, 35, respectively, and 

applying the operational matrices corresponding to 

these polynomials represented on Eqs.24, 25, 29, 

33, 39, 40, respectively. To increase the accuracy 

and efficiency of ECM, these polynomials are used 
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in two steps of the suggested approach procedure. 

Firstly, to describe the unknown function 𝑦(𝑥) and 

its derivatives; secondly, to process of calculating 

the inner product to solve the left and right sides of 

the matrix equation, which are given in Eq.19.  

By substituting the initial or boundary 

conditions in Eqs.15, and 16, some entries of Eq.19 

are modified. Thereafter, (𝑚 +  1) nonlinear 

algebraic equations for unknown C can be obtained 

by solving this system numerically by 

Mathematica®12, where unique values are given for 

unknown elements 𝑐0, 𝑐1, 𝑐2, … 𝑐𝑚, to achieve the 

approximate solution to the problem. 

The ECM and D-ECM procedures can be 

used to solve Eq.6 with boundary conditions Eq.7, 

by using Eqs.12, 14, replacing unknown function 

𝑤(𝑥) with its derivatives as matrices, for ECM: 

      𝑿 𝑩3 𝑪 + 2𝛼 𝑅𝑒 (𝑿 𝑪)(𝑿 𝑩 𝑪)
+ (4 − 𝐻𝑎) 𝛼2 (𝑿 𝑩 𝑪) = 0, 

(𝑿 𝑪)(0) = 1,   (𝑿 𝑩 𝑪)(0) = 0,   (𝑿 𝑪)(1)
= 0                                                                          42 

Then, the process has been used as presented in 

Eqs.19, 20, so: 

      〈𝑥𝑖,   𝑿 𝑩3 𝑪 + 2𝛼 𝑅𝑒 (𝑿 𝑪)(𝑿 𝑩 𝑪)

+ (4 − 𝐻𝑎) 𝛼2 (𝑿 𝑩 𝑪)〉 = 〈𝑥𝑖 , 0〉,  
∀ 𝑖 = 0,1,2,… ,𝑚.                                                  43 

Applying Eqs.22, 26 for D-ECM based on the first 

kind of Chebyshev polynomials, it follows: 

        𝑪𝑇 𝑫𝑻
3 ∅(𝑥)

+ 2𝛼 𝑅𝑒 (𝑪𝑇 ∅(𝑥))(𝑪𝑇 𝑫𝑻 ∅(𝑥))

+ (4 − 𝐻𝑎) 𝛼2 (𝑪𝑇 𝑫𝑻 ∅(𝑥)) = 0, 

𝑪𝑇 ∅(0) = 1,   𝑪𝑇 𝑫𝑻 ∅(0) = 0,   𝑪
𝑇 ∅(1)

= 0                                                      44 
Using the procedures as given in the Eqs.19, and 

20, hence: 

〈𝑻𝑖(𝑥), 𝑪
𝑇 𝑫𝑻

3 ∅(𝑥)

+ 2𝛼 𝑅𝑒(𝑪𝑇 ∅(𝑥))(𝑪𝑇 𝑫𝑻 ∅(𝑥))

+ (4 − 𝐻𝑎) 𝛼2(𝑪𝑇 𝑫𝑻 ∅(𝑥))〉

= 〈𝑻𝑖(𝑥), 0〉,
∀ 0 ≤ 𝑖 ≤ 𝑚             45 

By setting the Eqs.28, and 30 for D-ECM based on 

the Bernstein polynomials, the following is 

obtained: 

       𝑪𝑇𝑫𝑩
3∅(𝑥) + 2𝛼 𝑅𝑒 (𝑪𝑇 ∅(𝑥))(𝑪𝑇𝑫𝑩 ∅(𝑥))

+ (4 − 𝐻𝑎) 𝛼2 (𝑪𝑇𝑫𝑩 ∅(𝑥)) = 0, 

𝑪𝑇 ∅(0) = 1,   𝑪𝑇 𝑫𝑩 ∅(0) = 0,   𝑪
𝑇 ∅(1)

= 0                        46 
By implementing the processes as presented in 

Eqs.19, 20, Eq.47 will be shown 

〈𝑩𝑗,𝑛(𝑥),   𝑪
𝑇𝑫𝑩

3∅(𝑥)

+ 2𝛼 𝑅𝑒 (𝑪𝑇 ∅(𝑥))(𝑪𝑇𝑫𝑩 ∅(𝑥))

+ (4 − 𝐻𝑎) 𝛼2 (𝑪𝑇𝑫𝑩 ∅(𝑥))〉 = 〈𝑩𝑗,𝑛(𝑥), 0〉,

∀ 𝑗 = 0,1,2,… , 𝑛.                                            47 

Substituting the Eqs.32, and 34 for D-ECM based 

on the Legendre polynomials, it follows that: 

       𝑪𝑇 𝑫𝑷
3 ∅(𝑥) + 2𝛼 𝑅𝑒 (𝑪𝑇 ∅(𝑥))(𝑪𝑇 𝑫𝑷 ∅(𝑥))

+ (4 − 𝐻𝑎) 𝛼2 (𝑪𝑇 𝑫𝑷 ∅(𝑥)) = 0, 

𝑪𝑇 ∅(0) = 1,   𝑪𝑇 𝑫𝑷 ∅(0) = 0,   𝑪
𝑇 ∅(1)

= 0                                                                            48 
Moreover, using the techniques given in the Eqs.19, 

and 20, the following equation will be obtained: 

〈𝑷𝑖(𝑥),   𝑪
𝑇 𝑫𝑷

3 ∅(𝑥)

+ 2𝛼 𝑅𝑒 (𝑪𝑇 ∅(𝑥))(𝑪𝑇 𝑫𝑷 ∅(𝑥))

+ (4 − 𝐻𝑎) 𝛼2 (𝑪𝑇 𝑫𝑷 ∅(𝑥))〉

= 〈𝑷𝑖(𝑥), 0〉,
∀ 0 ≤ 𝑖 ≤ 𝑚             49 

Furthermore, applying Eqs.36, 41 for D-ECM based 

on the Hermite polynomials, it follows: 

𝑿(𝑥)𝑮3 ((𝑫𝑴)
−1)𝑇𝑪

+ 2𝛼 𝑅𝑒 (∅(𝑥) 𝑪) (𝑿(𝑥)𝑮 ((𝑫𝑴)
−1)𝑇𝑪)

+ (4 − 𝐻𝑎) 𝛼2 (𝑿(𝑥) 𝑮 ((𝑫𝑴)
−1)𝑇𝑪) = 0 

∅(0) 𝑪 = 1,   𝑿(0) 𝑮 ((𝑫𝑴)
−1)𝑇𝑪 = 0,   ∅(1) 𝑪

= 0                                               50 
Then, using the procedures as given in Eqs.19, 20, 

so: 

〈𝑯𝑖(𝑥),   𝑿(𝑥)𝑮
3 ((𝑫𝑴)

−1)𝑇𝑪
+ 2𝛼 𝑅𝑒 (∅(𝑥) 𝑪) (𝑿(𝑥) 𝑮 ((𝑫𝑴)

−1)𝑇𝑪)
+ (4 − 𝐻𝑎) 𝛼2 (𝑿(𝑥) 𝑮 ((𝑫𝑴)

−1)𝑇𝑪)〉
= 〈𝑯𝑖(𝑥), 0〉, ∀ 𝑖 = 0,1,… , 𝐾.      51 

Then, the values of 𝑪 = [𝑐0 𝑐1 𝑐2…𝑐𝑚]
𝑇are 

calculated by solving the algebraic system obtained 

by the inner product for the left and right sides, 

from Eqs.43, 45, 47, 49, and 51, respectively. 

Subsequently, applying the boundary conditions on 

the Eqs.42, 44, 46, 48, and 50 leads to obtaining the 

approximate solution. 

The approximate polynomials for the Jeffery-

Hamel flow problem when the parameter values are 

as follows: 𝛼 = 5°, 𝑅𝑒 = 10,𝐻𝑎 = 0 as in 30, with 

𝑛=12, will be: 

 By using ECM based on the standard monomial 

polynomial, 

𝑤(𝑥) ≈ 1.−1.12597 𝑥2 + 8.4681 ∗ 10−7𝑥3

+ 0.166615 𝑥4

+ 0.0000643873 𝑥5

− 0.0470176 𝑥6

+ 0.000792892 𝑥7

+ 0.00575024 𝑥8

+ 0.00218839 𝑥9

− 0.0035073 𝑥10

+ 0.00126349 𝑥11

− 0.000175929 𝑥12. 
 By using D-ECM based on the first kind of the 

Chebyshev polynomials, 
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𝑤(𝑥) ≈ 1.−1.12597 𝑥2 + 8.79819 ∗ 10−8𝑥3

+ 0.166622 𝑥4

+ 0.000024296 𝑥5

− 0.046882 𝑥6

+ 0.000494395 𝑥7

+ 0.00618549 𝑥8

+ 0.00177057 𝑥9

− 0.00325326 𝑥10

+ 0.00117476 𝑥11

− 0.000162363 𝑥12. 
 By using D-ECM based on the Bernstein 

polynomials, 

𝑤(𝑥) ≈ 1.−1.12597 𝑥2 + 5.81122 ∗ 10−7𝑥3

+ 0.166618 𝑥4

+ 0.0000498819 𝑥5

− 0.0469669 𝑥6

+ 0.000676843 𝑥7

+ 0.00592638 𝑥8

+ 0.00201225 𝑥9

− 0.00339574 𝑥10

+ 0.00122292 𝑥11

− 0.000169476 𝑥12. 
 By using D-ECM based on the Legendre 

polynomials, 

𝑤(𝑥) ≈ 1.−1.12597 𝑥2 + 8.93943 ∗ 10−8𝑥3

+ 0.166622 𝑥4

+ 0.0000245082 𝑥5

− 0.0468829 𝑥6

+ 0.000496724 𝑥7

+ 0.00618166 𝑥8

+ 0.0017746 𝑥9

− 0.0032559 𝑥10

+ 0.00117574 𝑥11

− 0.000162521 𝑥12. 

 By using D-ECM based on the Hermite 

polynomials, 

𝑤(𝑥) ≈ 1.−1.12597 𝑥2 + 6.8438 ∗ 10−8𝑥3

+ 0.166623 𝑥4

+ 0.0000209462 𝑥5

− 0.0468671 𝑥6

+ 0.000454542 𝑥7

+ 0.00625298 𝑥8

+ 0.00169763 𝑥9

− 0.00320442 𝑥10

+ 0.00115627 𝑥11

− 0.000159336 𝑥12. 
 
The Numerical Results and Discussion: 

In this section, an example is presented when 

the value of 𝑛 =  3, 𝛼 = 5°, 𝑅𝑒 = 10, and 𝐻𝑎 = 0, 
to illustrate the approach of the proposed methods 

to solve the Jeffery-Hamel flow problem. 

To explain the technique of ECM, by using 

the Eqs.12, and 14, it follows: 

𝑤(𝑥) = 𝑿 𝑪
= 𝜑0𝑐0 + 𝜑1𝑐1 + 𝜑2𝑐2
+ 𝜑3𝑐3,                                                                                 52 

where, 𝜑0 = 1, 𝜑1 = 𝑥, 𝜑2 = 𝑥
2, 𝜑3 = 𝑥

3, and the 

derivatives of 𝑤(𝑥) as matrices, expressed as: 

𝑤′(𝑥) = 𝑿 𝑩 𝑪 = [𝜑0  𝜑1  𝜑2  𝜑3](

0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0

) [𝑐0 𝑐1 𝑐2 𝑐3]
𝑇 , 

and, 

𝑤′′′(𝑥) = 𝑿 𝑩3 𝑪 = [𝜑0  𝜑1  𝜑2  𝜑3](

0 0 0 6
0 0 0 0
0 0 0 0
0 0 0 0

) [𝑐0 𝑐1 𝑐2 𝑐3]
𝑇 . 

 

Now, substituting the 𝑤′(𝑥), 𝑤′′′(𝑥) in Eqs.6, 7, 

and applying the inner product to solve the left and 

right sides of the matrix equation given in Eq.43, 

with boundary conditions Eq.42, four nonlinear 

algebraic equations for unknown 𝑐0, 𝑐1, 𝑐2, 𝑐3, can 

be obtained as: 

100

3
°2 𝑐1 +

100

3
° 𝑐0 𝑐1 + 25° 𝑐1

2 + 50°2 𝑐2

+ 50° 𝑐0𝑐2 + 60° 𝑐1 𝑐2 +
5

27
𝜋 𝑐2

2

+ 2 𝑐3 + 60°
2 𝑐3 + 60° 𝑐0𝑐3

+
10

27
𝜋 𝑐1 𝑐3 +

25

63
𝜋 𝑐2 𝑐3

+
5

24
𝜋 𝑐3

2 = 0, 

𝑐0 = 1, 
𝑐1 = 0, 
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𝑐0 + 𝑐1 + 𝑐2 + 𝑐3 = 0. 
By solving this system numerically by 

Mathematica®12, unique values of 𝑐0, 𝑐1, 𝑐2, 𝑐3 are 

given as follows: 

𝑐0 = 1, 𝑐1 = 0,  𝑐2 = −1.14626,  𝑐3 = 0.146262. 
Hence, the values of 𝑐0, 𝑐1, 𝑐2, 𝑐3, will be substituted 

in Eq.52 to obtain an approximate solution to the 

Eq.6, as: 

𝑤(𝑥) ≈ 1.−1.14626 𝑥2 + 0.146262 𝑥3. 

Using the Eqs.22, and 26, the following is a 

description of D-ECM based on the first kind of the 

Chebyshev polynomials technique: 

𝑤(𝑥) = 𝑪𝑇 ∅(𝑥)
= 𝑐0𝑻0(𝑥) + 𝑐1𝑻1(𝑥) + 𝑐2𝑻2(𝑥)
+ 𝑐3𝑻3(𝑥),                                                53 

where, 𝑻0(𝑥) = 1, 𝑻1(𝑥) = 𝑥, 𝑻2(𝑥) = −1 + 2𝑥
2, 

𝑻3(𝑥) = −3𝑥 + 4𝑥
3, and the derivatives 𝑤′(𝑥), 

𝑤′′′(𝑥) as matrices, can be given as: 

 

𝑤′(𝑥) = 𝑪𝑇𝑫𝑻 ∅(𝑥) = [𝑐0 𝑐1 𝑐2 𝑐3](

0 0 0 0
1 0 0 0
0 4 0 0
3 0 6 0

) [𝑻0(𝑥), 𝑻1(𝑥), 𝑻2(𝑥), 𝑻3(𝑥)]
𝑇 , 

Also, 

𝑤′′′(𝑥) = 𝑪𝑇𝑫𝑻
3 ∅(𝑥) = [𝑐0 𝑐1 𝑐2 𝑐3](

0 0 0 0
0 0 0 0
0 0 0 0
24 0 0 0

) [𝑻0(𝑥), 𝑻1(𝑥), 𝑻2(𝑥), 𝑻3(𝑥)]
𝑇 . 

 

Therefore, substituting the 𝑤′(𝑥), 𝑤′′′(𝑥) in Eqs.6, 

7, and employing the inner product of the matrix 

equation given in Eq.45, with boundary conditions 

Eq.44, four nonlinear algebraic equations for 

unknown 𝑐0, 𝑐1, 𝑐2, 𝑐3, are achieved as: 

−
100

3
°2 𝑐1 −

100

3
° 𝑐0 𝑐1 +

220

3
° 𝑐1 𝑐2 − 200° 𝑐2

2

+
40

27
𝜋 𝑐2

2 − 8 𝑐3 + 180°
2 𝑐3

+ 180° 𝑐0𝑐3 − 400° 𝑐1𝑐3

+
80

27
𝜋𝑎 𝑐1𝑐3 − 1100° 𝑐2 𝑐3

+
400

63
𝜋 𝑐2 𝑐3 + 1200° 𝑐3

2

−
20

3
𝜋 𝑐3

2 = 0, 

𝑐0 − 𝑐2 = 1, 
𝑐1 − 3𝑐3 = 0, 

𝑐0 + 𝑐1 + 𝑐2 + 𝑐3 = 0. 

Solving this system numerically by 

Mathematica®12, the following unique values of 

𝑐0, 𝑐1, 𝑐2, 𝑐3 will be obtained: 

𝑐0 = 0.419839,   𝑐1 = 0.120242,   𝑐2
= −0.580161,    𝑐3 = 0.0400806. 

 

Hence, the values of 𝑐0, 𝑐1, 𝑐2, 𝑐3, will be substituted 

in Eq.53 to obtain an approximate solution to the 

Eq.6, as: 

𝑤(𝑥) ≈ 1.− 1.16032 𝑥2 +  0.160322 𝑥3. 
By implementing the Eqs.28, 30, for D-ECM based 

on the Bernstein polynomials, the following is 

obtained: 

𝑤(𝑥) = 𝑪𝑇 ∅(𝑥)
= 𝑐0𝑩0,3 + 𝑐1𝑩1,3 + 𝑐2𝑩2,3
+ 𝑐3𝑩3,3,            54 

where, 𝑩0,3 = 1 − 3𝑥 + 3𝑥
2 − 𝑥3, 𝑩1,3 = 3𝑥 −

6𝑥2 + 3𝑥3, 𝑩2,3 = 3𝑥
2 − 3𝑥3, 𝑩3,3 = 𝑥

3, as 

matrices, the derivatives 𝑤′(𝑥), 𝑤′′′(𝑥) may be 

written as: 

 

𝑤′(𝑥) = 𝑪𝑇𝑫𝑩 ∅(𝑥) = [𝑐0 𝑐1 𝑐2 𝑐3](

−3 −1 0 0
3 −1 −2 0
0 2 1 −3
0 0 1 3

) [𝑩0,3, 𝑩1,3, 𝑩2,3, 𝑩3,3]
𝑇
, 

 

and, 

𝑤′′′(𝑥) = 𝑪𝑇𝑫𝑩
3 ∅(𝑥) = [𝑐0 𝑐1 𝑐2 𝑐3](

−6 −6 −6 −6
18 18 18 18
−18 −18 −18 −18
6 6 6 6

)[𝑩0,3, 𝑩1,3, 𝑩2,3, 𝑩3,3]
𝑇
. 

 

Thus, if the 𝑤′(𝑥), 𝑤′′′(𝑥) substituting into Eqs.6, 

7, and using the inner product of the matrix 

equation from Eq.47 with the boundary conditions 

from Eq.46, four nonlinear algebraic equations for 

unknown 𝑐0, 𝑐1, 𝑐2, 𝑐3, are attained as follows: 
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−
3𝑐0
2
− 15°2 𝑐0 −

25

7
° 𝑐0

2 +
9𝑐1
2
− 15°2 𝑐1

−
75

14
° 𝑐0 𝑐1 −

45

14
° 𝑐1

2 −
9𝑐2
2

−
15

7
° 𝑐0 𝑐2 −

45

14
° 𝑐1 𝑐2 +

3𝑐3
2

+ 30°2 𝑐3 −
5

14
° 𝑐0 𝑐3 +

75

14
° 𝑐2 𝑐3

+
25

2
° 𝑐3

2 = 0, 

𝑐0 = 1, 
−3𝑐0 + 3𝑐1 = 0, 

𝑐3 = 0. 
The following unique values of 𝑐0, 𝑐1, 𝑐2, 𝑐3 will be 

found by numerically solving this system with 

Mathematica®12: 

𝑐0 = 1,   𝑐1 = 1,   𝑐2 = 0.60497,    𝑐3 = 0. 
 

To achieve an approximate solution to Eq.6, the 

values of 𝑐0, 𝑐1, 𝑐2, 𝑐3 will be substituted in Eq.54, 

as follows: 

 

𝑤(𝑥) ≈ 1.−1.18509 𝑥2 + 0.185091 𝑥3 
 

By applying the Eqs.32, and 34, for D-ECM based 

on the Legendre polynomials, the following is 

achieved: 

𝑤(𝑥) = 𝑪𝑇 ∅(𝑥)
= 𝑐0𝑷0(𝑥) + 𝑐1𝑷1(𝑥) + 𝑐2𝑷2(𝑥)
+ 𝑐3𝑷3(𝑥),                                               55 

where, 𝑷0(𝑥) = 1, 𝑷1(𝑥) = 𝑥, 𝑷2(𝑥) = −
1

2
+
3𝑥2

2
, 

𝑷3(𝑥) = −
3𝑥

2
+
5𝑥3

2
, and the derivatives of 𝑤(𝑥), 

can be written as matrices: 

 

𝑤′(𝑥) = 𝑪𝑇𝑫𝑷 ∅(𝑥) = [𝑐0 𝑐1 𝑐2 𝑐3](

0 0 0 0
1 0 0 0
0 3 0 0
1 0 5 0

) [𝑷0(𝑥), 𝑷1(𝑥), 𝑷2(𝑥), 𝑷3(𝑥)]
𝑇 , 

and, 

𝑤′′′(𝑥) = 𝑪𝑇𝑫𝒑
3 ∅(𝑥) = [𝑐0 𝑐1 𝑐2 𝑐3](

0 0 0 0
0 0 0 0
0 0 0 0
15 0 0 0

) [𝑷0(𝑥), 𝑷1(𝑥), 𝑷2(𝑥), 𝑷3(𝑥)]
𝑇 . 

 

In addition, four nonlinear algebraic equations with 

unknowns 𝑐0, 𝑐1, 𝑐2, 𝑐3, are obtained by substituting 

𝑤′(𝑥) and 𝑤′′′(𝑥) in Eqs. 6, 7, and applying the 

inner product of the matrix equation from Eq.49 

with the boundary conditions from Eq.48: 
25

2
° 𝑐1

2 +
75

2
°2 𝑐2 +

75

2
° 𝑐0 𝑐2 + 60° 𝑐1 𝑐2

+
75

2
° 𝑐2

2 + 100°2 𝑐3 + 100° 𝑐0𝑐3

+
175

2
° 𝑐1𝑐3 +

520

7
° 𝑐2 𝑐3

+
575

16
° 𝑐3

2 = 0, 

𝑐0 −
𝑐2
2
= 1, 

𝑐1 −
3 𝑐3
2
= 0, 

𝑐0 + 𝑐1 + 𝑐2 + 𝑐3 = 0. 
Then, using Mathematica®12, to solve this system 

numerically, the following unique values of 

𝑐0, 𝑐1, 𝑐2, 𝑐3,  will be obtained: 

𝑐0 = 0.648645,   𝑐1 = 0.0324384,   𝑐2
= −0.702709,    𝑐3 = 0.0216256. 

 

As a result, the values 𝑐0, 𝑐1, 𝑐2, 𝑐3, will be 

substituted in Eq.55 to give an approximate solution 

to Eq.6, as follows: 

𝑤(𝑥) ≈ 1.−1.05406 𝑥2 + 0.0540639 𝑥3 
 

Moreover, by using the Eqs. 36, 41, a description of 

the D-ECM based on the Hermite polynomials 

procedure follows:  

𝑤(𝑥) = ∅(𝑥) 𝑪
= 𝑯0(𝑥)𝑐0 +𝑯1(𝑥)𝑐1 +𝑯2(𝑥)𝑐2
+𝑯3(𝑥)𝑐3,                                               56 

where, 𝑯0(𝑥) = 1, 𝑯1(𝑥) = 2 𝑥, 𝑯2(𝑥) = −2 +
4𝑥2, 𝑯3(𝑥) = −12𝑥 + 8𝑥

3, and the derivatives 

𝑤′(𝑥), 𝑤′′′(𝑥) as matrices can be obtained as: 

 

𝑤′(𝑥) = [𝑯0(𝑥) 𝑯1(𝑥) 𝑯2(𝑥) 𝑯3(𝑥)](

0 2 0 0
0 0 4 0
0 0 0 6
0 0 0 0

) [𝑐0 𝑐1 𝑐2 𝑐3]
𝑇 , 

Also, 
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𝑤′′′(𝑥) = [𝑯0(𝑥) 𝑯1(𝑥) 𝑯2(𝑥) 𝑯3(𝑥)](

0 0 0 48
0 0 0 0
0 0 0 0
0 0 0 0

) [𝑐0 𝑐1 𝑐2 𝑐3]
𝑇 

 

Substituting 𝑤′(𝑥), 𝑤′′′(𝑥) into Eqs. 6, 7, and using 

the inner product of the matrix equation from Eq. 

51 with the boundary conditions from Eq. 50, yields 

four nonlinear algebraic equations with unknowns 

𝑐0, 𝑐1, 𝑐2, 𝑐3: 

−
400

3
°2  𝑐1 −

400

3
° 𝑐0 𝑐1 +

1760

3
° 𝑐1 𝑐2

+
1600

3
° 𝑐2

2 − 32𝑐3 + 1120°
2 𝑐3

+ 1120° 𝑐0 𝑐3 +
3200

3
°𝑎 𝑐1 𝑐3

−
9920

7
°  𝑐2 𝑐3 − 3200° 𝑐3

2 = 0, 

𝑐0 − 2 𝑐2 = 1, 
2𝑐1 − 12𝑐3 = 0, 

𝑐0 + 2𝑐1 + 2𝑐2 − 4𝑐3 = 0. 
 

Then, using Mathematica®12, solve this system 

numerically to acquire the following unique values 

of 𝑐0, 𝑐1, 𝑐2, 𝑐3: 

𝑐0 = 0.419839,   𝑐1 = 0.120242,   𝑐2
= −0.290081,    𝑐3 = 0.0200403. 

As a consequence, the values 𝑐0, 𝑐1, 𝑐2, 𝑐3, will be 

swapped in Eq.56 to get the following approximate 

solution to Eq.6: 

𝑤(𝑥) ≈ 1.−1.16032 𝑥2 + 0.160322 𝑥3. 
 

Furthermore, the maximal error remainder 

𝑀𝐸𝑅𝑛 has been introduced in this section because 

there is no exact solution available to the problem, 

as well as to verify the accuracy and reliability of 

the approximate solution obtained by ECM and D-

ECM. The 𝑀𝐸𝑅𝑛 is calculated by: 

𝑀𝐸𝑅𝑛 = 𝑚𝑎𝑥
0≤𝑥≤1

|𝑤′′′(𝑥) + 2𝛼 𝑅𝑒 𝑤(𝑥) 𝑤′(𝑥)

+ (4−𝐻𝑎) 𝛼2 𝑤′(𝑥)| 
Fig. 2 presents the logarithmic plots for the 𝑀𝐸𝑅𝑛 

values, obtained by the ECM based on the standard 

monomial polynomial, as well as, by the D-ECM 

based on the Chebyshev, Bernstein, Legendre, and 

Hermite polynomials, for parameters 𝑅𝑒 = 10,
𝐻𝑎 = 0 and 𝛼 = 5∘ according to previous studies 
30, which showed the efficiency of these methods by 

observing the error values for  𝑛 =  4 to 12, the 

error was observed to be lower when the value of 𝑛 

increased. 

 

 
Figure 2. Logarithmic plots for 𝑴𝑬𝑹𝒏 by 

proposed methods. 
 

A comparison of the approximate solutions 

obtained using the proposed techniques is also 

shown in Fig. 3 for 𝑛 =  12, 𝑅𝑒 = 10, 𝐻𝑎 = 0, 

and 𝛼 = 5∘, as is evident from the figure, good 

agreements have been obtained for all proposed 

methods. 

 

Figure 3. Solutions of the Jeffery–Hamel by 

proposed methods for 𝒏 = 𝟏𝟐. 

 

Moreover, in Table 1 the values of 𝑀𝐸𝑅𝑛 for the 

approximate solution is given by using ECM and D-

ECM with 𝑛 = 12 and parameters 𝑅𝑒 = 10,𝐻𝑎 =
0 and versus the value of 𝛼, which appears the 

efficiency of these methods. In addition, it can be 

noted that D-ECM based on the Hermite 

polynomials method produces better accuracy with 

the lowest errors compared to the other methods. 

 

Table 1. The 𝑴𝑬𝑹𝟏𝟐when 𝑹𝒆 = 𝟏𝟎,𝑯𝒂 = 𝟎 and versus the value of 𝜶, for Jeffery– Hamel flow 

𝜶 ECM  

Standard 

D-ECM 

Chebyshev 

D-ECM 

Bernstein 

D-ECM 

Legendre 

D-ECM 

Hermite 

𝟑∘ 1.78573 ∗ 10−6 1.55044 ∗ 10−7 1.07042 ∗ 10−6 1.57835 ∗ 10−7 1.16736 ∗ 10−7 

−𝟑∘ 3.09536 ∗ 10−6 2.15838 ∗ 10−7 1.55861 ∗ 10−6 2.20333 ∗ 10−7 1.60927 ∗ 10−7 

−𝟓∘ 0.0000152937 1.01151 ∗ 10−6 7.35397 ∗ 10−6 1.03335 ∗ 10−6 8.15967 ∗ 10−7 
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Furthermore, in Table 2 the comparisons of 𝑀𝐸𝑅12 

values are presented when 𝑅𝑒 = 10,𝐻𝑎 = 0, 𝛼 =
5∘, for the solutions by proposed methods and by 

the Chebyshev and the Bernstein operational 

matrices methods according to previous studies 30. 

Better accuracy can be realized by using the 

suggested methods. 

 

Table 2. The comparison between the 𝑴𝑬𝑹𝟏𝟐 when 𝑹𝒆 = 𝟏𝟎,𝑯𝒂 = 𝟎,𝜶 = 𝟓∘ by proposed methods 

and by Chebyshev and Bernstein 30. 

ECM 

Standard 

D-ECM 

Chebyshev 

D-ECM 

Bernstein 

D-ECM 

Legendre 

D-ECM 

Hermite 

Chebyshev 30 Bernstein 30 

𝟓. 𝟎𝟖𝟎𝟖𝟔
∗ 𝟏𝟎−𝟔 

5.27892
∗ 10−7 

3.48673
∗ 10−6 

5.36366
∗ 10−7 

4.10628
∗ 10−7 

3.3003
∗ 10−5 

9.68873
∗ 10−6 

 

Also, Figs.4-7 illustrate the velocity profiles for the 

Jeffery–Hamel problem in the cases 𝛼 = 5∘, 𝛼 =
−5∘ with fixed 𝑅𝑒 = 50 and increasing values of 

𝐻𝑎, as chosen in 17. The velocity is noted to be 

increased by increasing 𝐻𝑎 values in all the figures. 

The curvature of the curves also increases with 

increasing 𝐻𝑎 values. 

Figure 4. The velocity plot for Jeffery–Hamel by 

proposed methods for 𝑯𝒂 = 𝟎. 

 

 
Figure 5. The velocity plot for Jeffery–Hamel by 

proposed methods for 𝑯𝒂 = 𝟓𝟎𝟎. 

 

 
Figure 6. The velocity plot for Jeffery–Hamel by 

proposed methods for 𝑯𝒂 = 𝟏𝟎𝟎𝟎. 

 
Figure 7. The velocity plot for Jeffery–Hamel by 

proposed methods for 𝑯𝒂 = 𝟐𝟎𝟎𝟎. 

 

Conclusion: 
The effective computational method and 

novel computational methods with suitable base 

functions, namely Chebyshev, Bernstein, Legendre, 

and Hermite polynomials, have been presented in 

this paper for solving the Jeffery-Hamel problem. 

The nonlinear problems are reduced to the solution 

of a nonlinear algebraic system of equations, which 

is processed using Mathematica®12. The 

approximate solution is accurate and efficient even 

within a few orders of polynomials. In addition, the 

𝑀𝐸𝑅𝑛 has been calculated for the proposed 

methods and compared with the Chebyshev and the 

Bernstein operational matrices methods that are 

available in the literature, the results obtained 

showed that the proposed methods have produced 

better accuracy with less errors. Moreover, it can be 

concluded that the results of the 𝑀𝐸𝑅𝑛 by the 

proposed methods D-ECM decreased significantly 

compared to ECM, which gives higher accuracy 

and efficiency. Furthermore, it was found that the 

results of D-ECM based on the Hermite 

polynomials are better than the other methods. 

The present methods can also be extended to 

partial differential equations and fractional 

differential equations, which certainly require 

extensive further analysis. 
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 هامل-لحل مشكلة تدفق جيفريطرق حسابية فعالة 
 

 عثمان مهدي صالح          مجيد احمد الجواري
 

 .ابن الهيثم، جامعة بغداد، بغداد، العراق -قسم الرياضيات، كلية التربية للعلوم الصرفة 

 

 الخلاصة:
هامل -الأحادية لحل مشكلة تدفق جيفري( المستندة إلى متعددة الحدود القياسية ECMفي هذا البحث، تم تنفيذ الطريقة الحسابية الفعالة )

غير الخطية. علاوة على ذلك، تم تطوير واقتراح الطرق الحسابية الفعالة الجديدة في هذه الدراسة من خلال وظائف أساسية مناسبة وهي 

ر الخطية إلى نظام جبري غير متعددات الحدود تشيبشيف، بيرنشتاين، ليجندر، هيرمت. يؤدي استخدام الدوال الأساسية إلى تحويل المسألة غي

( لحل مشكلة ECM-D. تم تطبيق تطوير طرق حسابية فعالة )٢١®خطي من المعادلات، والذي يتم حله بعد ذلك باستخدام برنامج ماثماتيكا

، لإظهار (𝑀𝐸𝑅𝑛)هامل غير الخطية، ثم تم عرض مقارنة بين الطرق. علاوة على ذلك، تم حساب الحد الأقصى للخطأ المتبقي -تدفق جيفري

 دقيقة وفعالة وموثوقة للحصول على حلول تقريبية للمشكلة. D-ECMو  ECMموثوقية الطرق المقترحة. تثبت النتائج بشكل مقنع أن 

 

 الحل التقريبي، متعددات حدود بيرنشتاين، متعددات حدود تشيبشيف، متعددات حدود هيرمت، متعددات حدود ليجندر.كلمات المفتاحية: ال

 


