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Abstract

In this paper, the effective computational method (ECM) based on the standard monomial polynomial
has been implemented to solve the nonlinear Jeffery-Hamel flow problem. Moreover, novel effective
computational methods have been developed and suggested in this study by suitable base functions, namely
Chebyshev, Bernstein, Legendre, and Hermite polynomials. The utilization of the base functions converts the
nonlinear problem to a nonlinear algebraic system of equations, which is then resolved using the
Mathematica®12 program. The development of effective computational methods (D-ECM) has been applied
to solve the nonlinear Jeffery-Hamel flow problem, then a comparison between the methods has been shown.
Furthermore, the maximum error remainder (MER,,) has been calculated to exhibit the reliability of the
suggested methods. The results persuasively prove that ECM and D-ECM are accurate, effective, and
reliable in getting approximate solutions to the problem.

Keywords: Approximate solution, Bernstein polynomials, Chebyshev polynomials, Hermite polynomials,
Legendre polynomials.

Introduction: equations with multiple variable orders and non-
In several fields of engineering and applied  local and non-singular kernels. Also, Singha et al. *2
sciences, nonlinear ordinary differential equations used Boubaker polynomials to solve a class of
(NODE) play a significant role in simulating many  fractional optimal control problems. Yuttanan et al.
real-life issues. Many phenomena, including ' solved the non-linear distributed fractional
engineering, fluid mechanics, physics, chemical differential equations using the Legendre wavelets
matters, biology, and electrostatics, have been method and some other approximation methods, see
mathematically formulated using these types of  **'°.
equations. The exact solution for nonlinear One of the most important applications in
problems is difficult or sometimes cannot be  fluid mechanics and biomechanical engineering is
obtainable. Therefore authors want to develop  the flow between two nonparallel plates *'. Jeffery'®
efficient either numerical or approximate methods ~ and Hamel® introduced incompressible viscous

to solve these types of problems 4, fluid movement in convergent and divergent
Several analytical and approximate methods  channels, and this is known as Jeffery-Hamel flow.
have been proposed by researchers to solve Many researchers have attempted to develop

nonlinear differential equations, such as the  analytical approximations methods to solve the
Adomian decomposition method (ADM) and Direct ~ Jeffery-Hamel flow: such as optimal iterative
Homotopy Analysis Method (DHAM) 3, the perturbation technique 2°, Bernstein collocation
Bernoulli collocation method ¢, the Hemite  method (BCM) 2,  modified Adomian
polynomial method 7, the Taylor collocation method ~ decomposition method (MADM) %2, Homotopy
8 and the Gegenbauer wavelet method ° In  analysis method (HAM) 2%, Homotopy perturbation
particular, Singh ° has used the Jacobi collocation =~ method (HPM) %, Bernoulli collocation method 2,
method to solve the fractional advection-dispersion ~ Hermite wavelet method %, differential transform
equation. Ganji et al. * have used the fifth-kind ~ method (DTM) 8. More recently, AL-Jawary et al.
Chebyshev polynomials to solve differential %, has implemented three semi-analytical iterative
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methods namely the Daftardar-Jafari method
(DIM), Temimi-Ansari method (TAM), and Banach
contraction method (BCM) to obtain the solution
for this problem. In addition, AL-Jawary et al. ¥,
has employed two operational matrices techniques
(OMM) based on Bernstein and Chebyshev
polynomials to solve a similar problem.

More recently, the Turkyilmazoglu has
proposed an analytic approximate method namely
the effective computational method (ECM), and
implemented it to solve various types of problems.

For example, Lane-Emden-Fowler  singular
nonlinear equations 3!, high-order Fredholm
integro-differential equations 32 high-
order Volterra-Fredholm-Hammerstein integro-

differential equations %, heat transfer of fin
problems 3%, and initial and boundary value
problems for linear differential equations of any
order with difficult exact solutions®. The approach
was based on well-chosen general-type basis
functions, such as classical polynomials, and that
exact solution is obtained under particular
conditions. A nonlinear equation’s solution is also
converted into a nonlinear algebraic equations
system that can be solved numerically.

Recently,  orthogonal  functions  and
polynomials have received a lot of attention from
researchers since they are very useful tools and
techniques in dealing with many different problems
in approximation theory as well as numerical
analysis %. On the other hand, these techniques are
mainly characterized by simplifying the required
solution effectively by transforming the problem
into a system of algebraic equations, where it can be
solved simply by wusing any computational
program®-3°_  Accordingly, the problems are
simplified substantially and the unknown function
is approximated using a series of powers of
polynomials. Thus, all integrals and differentials are
eliminated by using the operational matrices
procedure. Furthermore, the literature is full of the
applications that have been discussed by OMM of
orthogonal polynomials, for instance, see 4043,

The maotivation for this research work is our
great interest in finding the approximate solutions
of the nonlinear ordinary differential equations, in
particular the Jeffery-Hamel flow problem, which is
one of the most important applications in fluid
mechanics and biomechanics. Moreover, this study
aims to implement the ECM based on the standard
polynomial to solve the Jeffrey-Hamel problem, and
another aim is to develop and suggest a novel ECM
based on various orthogonal polynomials such as
Chebyshev, Bernstein, Legendre, and Hermite
polynomials, and then D-ECM has been applied to
solve the Jeffery-Hamel flow problem.
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This paper is organized as follows: The
mathematical description of the Jeffery-Hamel flow
problem is presented in section two. Section three
explains the basic concepts of the proposed
methods. Solving the Jeffery-Hamel flow problem
by the proposed methods will be given in section
four. In section five, the numerical results will be
displayed and explained. Finally, in section six, a
conclusion will be presented.

The Mathematical Formulation of Jeffrey
Hamel’s Flow Problem

The Jeffrey-Hamel flow problem represented by the
NODE is the steady flow of a viscous, conductive,
incompressible fluid in two dimensions at the
intersection of two plane rigid and non-parallel
walls that get together at an angle 20 2% It is
assumed that the flow is perfectly radial and
symmetric. Therefore, the velocity field is only
along the radial direction and depends on r and 6,
S0 it can be given by V(u(r, 8),0), as illustrated in
(Fig. 1) .

Rigid plane wall 7

/-
low source,
Sa

~
Sa N

Figure 1. Jeffry-Hamel flow's geometry .

The continuity equations and the Navier-Stokes
equations can be expressed in polar coordinates as
follows:

PO _
- (ru(r,H)) =0, 2 1
ou(r,@) _  10P [6 u(r,8) . 10u(r0)

u(r, ) ar  paor v ar2 r or

1 0%u(r,0) u(r,Q)] oB3

rz2 962 r2 pr2 u(r, 6), 2
1 0P 2v ou(r,0

_10p 2voulnf) =0, 3
prdd  rz 960

where u(r, 8) is the radial velocity, B, is denoted
by the electromagnetic induction and o is a fluid’s
conductivity, P is the pressure of the fluid, p is the
fluid density constant, and v is the kinematic
viscosity parameter.

Eq.1 can be written as:

9(6) = ru(r,0), 4
By using dimensionless parameters %, so
9(6) 6
w(x) = , where, x =—. 5
max ¢4
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By eliminating P term from Eqg.2 and Eq.3, and
using the formulas given in Eg.4 and Eq.5, a
nonlinear third-order ODE is obtained:

w”'(x) + 2a Re w(x) w'(x) + (4—Ha) a? w'(x)

=0, 6
with the boundary conditions as follows:
w() =1 w'(0)=0, w(l) =0, 7

U B?
where, Rez%, and HaZ:‘;—lf, are the

Reynolds number and the Hartmann number’s
square, respectively.

The Basic Concepts of the Proposed Methods

A description of the suggested methods will
be presented in this section. Also, orthogonal
polynomials and the operational matrices will be
offered, which are used in the development of the
ECM algorithm to get the approximate solution to
the problem.

The Basic Concepts of ECM
Consider mt"-order
follows 3,
f(x,y,y’,y”, ...,y(m)) =h(x), a<x<p.8
with either the I.C:
yP(a) = w,
or the following B.C:
yO@ =, yO(B) = 3,0 <i <2~ 1, 10
where h(x) is a function that is known and w;, y;,
§;, are constants. The essential assumption is that
Eg.8 has a unique solution with the initial or
boundary conditions given in EQ.9 or Eq.10.
Moreover, a function y(x) € L?[0,1] can be
expressed by a linear combination of mt"-order

non-linear ODE as

0<is=sm-—1, 9

function series based on the classical standard
monomial polynomials as:
m
ORI 1

i=0
where c;, are the coefficients whose values will be
found by giving the following definitions

X =[po 1 P2 om],C=[coci ¢y ...cm]T

where ¢,, represents the base functions from the
classical polynomials 3. By using the dot product,
the m*" order approximation of the series solution
provided in Eqg.11 is as follows:

m

Yy =) o =X,

=0
Assume that the derivative of vector X will be
defined as below

12

D[X] =X B,
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where B (mi1)xm+1) 1S the operational auxiliary

matrix with the given entries in classical
monomials:
0 1 0 0
[0 0 2 0]
=100 0 . %
[0 0 0 mJ
0 0 0 0o+ nyx(m+1)

Also, the higher derivatives can be written as,
D™[X]=XB™ where m=1,2,... 13
Therefore, Eq.13 can be used to write the

derivatives in the following format:
y™Mx)=XB™C m=>1. 14
Now, substituting the Egs.12, and 14 in Egs.8-10,
the matrix equation with the restrictions %, can be
obtained:
f(x, XC, XBC, XB?*C(,..,XB™()

=h(x), m=1.2,..
XO0B'C=w;, 0<i<m-—1, 15
and
X(0) B C = y;, X()BiC=6. 0<i<
o_q, 16

2
Consider the Hilbert space H = L?[0,1], which has
the inner product as follows:

1
(fufo) = [ fi6) foGax, 17
0
Assume a set of functions that are
independent in H

Y= {Yo, Y1, ¥

where 1, be the base function of a standard
monomial polynomials x%,V i = 0,1,2, ..., m or any
other type of polynomial 132, Then, by applying the
inner product given in Eq.17 with the elements of ¥
defined in Eq.18, the following matrix equation 33
will be shown:
G =E, 19
The i'" row of G and E, respectively, is made up of:

linearly

18

(Wi f(x, XC, XBC, XB*C,..,XB™C) ),
(Yi,h(x)), 0<i=<m. 20

In addition, by applying the initial or boundary
conditions in Egs.15, and 16, some entries of Eq.19
are modified from the left-hand side G and the
corresponding right-hand side E *°. Thus, a system
of (m + 1) nonlinear algebraic equations for
unknown € will be obtained. By solving the
resulting system numerically or sometimes
analytically, unique values can be obtained for
unknown elements cg,cq,Cy, ... Cp, this will Dbe
substituted in Eq.12 to obtain an approximate
solution to Eq.8.
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First Kind Chebyshev Polynomials
The first kind of Chebyshev polynomials T;(x) of
degree i is defined by:

i

Ti (0 = z(‘”""'z AT

j=0 ,
+1). 21
The unknown function y(x) can be represented as:

y() = ) 6Ty,

i=0

S G+j=1)

where,

c=(T)=Qi+1) [, y(x) P(x)dx; i > 0.

In general, only the first (m + 1) terms of the

Chebyshev polynomials have been expressed ¥, so
m

B(x) =
the

where, €T =[coc;¢p...c,,] and
[To(x),T1(x), ..., T, )]T. Moreover,
derivatives of @(x) can be considered as:
D[@(x)] = DrB(x), D*[@(x)]

= DTZQ)(x)' ,Dm[Q)(x)]

=D™o(x), 23
where Dt (4 1)x (m + 1), 1S the operational matrix
of the provided derivative, which is defined as
follows:

2i
.. —, orj=1i—k,
Dy = (di,)) = {pj forj )
0 otherwise,

where, k=1,3,5,..,m—1if m is even, or k =
1,3,5,....,m if m is odd, py, =2, and p; =
1forallk > 1.

y(x) = z ¢ T;(x) = €T B(x), 22 Zsc)]rcoteﬁ(g\,rcsr?le, if m is even then the Dy is expressed
i=0
0 0 0 0 0 0 0 o0
1 0 0 0 0 0 0 0
0 4 0 0 0 0 0 O
3 0 6 0 0 0 0 o0
Dy = 0 8 0 8 0 0 0 o 24
5 0 10 0 10 0 0 0
: : : : : 0 0 o0
m—-1 0 2(m-1) 0 2(m-1) 2(m—1) 0 0
0 2m 0 2m 0 0 2m 0
In addition, if m is odd then the matrix Dy is defined as follows:
0 0 0 0 0 0 o0
1 0 0 0 0 0 o0
0 4 0 0 0 0 O
3 0 6 0 0 0 O
Dr=1 8 0 8 0 0 0 25
: : : : 0 0 o0
0 2m—-1) 0 2(m-1) 2m—1) 0 0
m 0 2m 0 0 2m 0
Hence, the derivatives can be written by using Eqg.23 in the following form:
d—y—cTD 1) @—CTDZQ) ﬂ—(:Tl)mcz) 26
dx - T (X), dxz - T (.X'), L] dx™m - T (x)

Bernstein Polynomials
The degree n Bernstein polynomials in [0, 1] are
defined by **:

B;,(x) = (;‘) W (A-x)"I, 0<j<n 27
There is (n + 1) degree of the Bernstein
Polynomials. Also, these polynomials have two
most significant properties *°:

i) Property of unity partition,
1, 0<x<1

i) Positivity property, B;,(x) =0, for 0<j<
n and Bj,(x) =0if j<Oorn<j.

;’l=0 Bj,n(x) =

856

In general, the y(x) can be approximated by the
linear combination of Bernstein polynomial shown
in the following formula below:

n

y() = ) ¢ Bin() = €700,

Jj=0

28

where C" =[cycqCy.cyl, and B(x) =

[Bow B Bans s Bun) -

Moreover, the vector @(x) can be decomposed as a

square matrix multiplication Ag41)xm+1) and a

vector X (y41)x1 as:
O(x) = AX,

Define the

X =[1xx?..,x"],

vector A;

30.
j as=.

+1
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=000 =0 (™Y (= (MY _n—jn(n_]) .

A1 =(0,0,-.0,(=1) (j),( 1) (])( ) )( 1) (]) n_j)| forosjsn

Also, if Agy 4 1)x (n+ 1) SUCh that A = [A4, A, ..., Ap,41]" the following matrix will be exposed *:

[ o (T a1 (M (n—O) im0 (M (n—O)'
(1) (0) (-1) (0) L) - D (O) e
n _om\ m-—j
| o -0 (%) . com () (00)
A= U7 AV =
: : s
—-1)°
0 0 D (n) “(n+1)x (n+ 1)
Therefore, the derivatives of @(x) can be defined by:
D[@(x)] = Dg @(x), x€[0,1], and Dp =AUB* 29
[0 0 0 .. 0 A7’
100 ..0 Az
where, U=10 2 0 - 0 ,and B* = A3t
o 0 0 - nluiin Lazt ] i
and the higher derivatives can be defined as UL o (m+))!
follows: Pn(@) = ) (- TR RS
DMP(x)] = Dp"B(x), n=1,2,... 7= AT
Therefore, the derivatives can be expressed as + 1)/. 31
follows: Furthermore, the(m + 1) —terms of polynomials
aty ., P,,(x) can be used to approximate the function
PP S | y(x) as:
=CT(AUB""®(x) where n m
=1,2,... 30 y(x) = Z ¢j Pi(x) = CTo(x), 32
j=0
Legendre Polynomials where, CT =[cycicp.cy]  and  @(x) =
The Legendre polynomials, P,,(x), on [=1,1] of  [Py(x),P1(x), ..., P, ()] .
mt"-order are defined as *42: The derivatives of @(x) can be defined by:
l;o (x) =1 1, Pi(x)=x D[@(x)] = Dp (), 2DZ[(Z>(X)]
_sem+ __m = Dp“B(x), ..., D'[B(x)]
Pm+1(X) - m+1 X Pm(x) m+1 Pm—l(x)' — me(Z)(x),
mz=1 where Dp (m + 1)x (m + 1), 1S the operational matrix

Also, the Legendre polynomials Py, (x) can be  of the given derivative and is defined as follows:
obtained in the analytical formula by the following:

k=13, ... m, if modd,

(2] _ 1)’ j=i— k, Where; {k — 1,3, v, M — 1, lf meven 33

Dp:

0 Otherwise.

Therefore, the derivatives can be expressed as K (=1)/ '
foclily?lWS: Hm(X) =m! ZW (2 x)m—Z]. 35
dit A C" D, ¢(x), where, m=>1 34 j=0

dx where K === if m is odd and K =2 if m is
even. Also, the Hermite polynomials H,,,(x) can be
Hermite Polynomials written as fOHOVIV(S: ,
The Hermite polynomials, H,,(x), on (—oo, ) of B z (1) B .
mth-order are defined as *: Hn () = L ! m(m=1)...(m =2

j=0 _
+ D@ x)m 2

857
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The function y(x) is defined by a truncated Hermite
polynomials H,, (x), as:
K
y(x)= ) ¢;H;j(x) = 0(x)C, 36
j=0
where, @(x) = [Hy(x), H;(x), ..., Hx(x)] and, C =
[cocqcy.nck]T. On the other hand, Hermite
polynomials H,,(x) and the powers x™ are related
to the following relation °,

ym_ 2m)! Ham () .
22m (s—m)'@2m)!’ -
m=0
<1, 37
and,
1 0 0 0
1
0 > 0 0
1 0 1 0
DM = 2 4 1
2 1
z 8
I
0 K! 0 K!
_ZK(E)H! 2K(X2-1)13
2

!

x2m+1
S
_(@m+1) Z Hymeq(x) <y
22m+1 0(s—m)!(2m+1)!' -
m=
<1 38

Therefore, when using the expressions in the
Egs.37, 38, and by taking m =0,1,...,K, the
corresponding matrix relationship can be achieved
as follows:

(X)) =Dy (8(x))" and X(x)

= @(x) (Dy)",
where X(x) = [1, x, ..., xX], and for odd K, then the
matrix D, defined as follows *:

0
0

39

and for even K, then the matrix D, is defined as follows *°:

1 0 0
0 1 0
2
1 0 1
D, = 2 4
0 3 0
. 4 .
K! : K!
2K(§)!0! 0 2K(§—1)12!

From above, the expression of @(x) will be written
as follows:

B(x) = X()((Dpy)™ D"
and,

(0() = XD )((Dy)™HT n=12, ..
Furthermore, the below relation can be applied to
obtain the X(™ (x) by using terms of the X (x) %:

XD =X(x)6, XPx)=X(x)6?
XM (x) = X(x) G™

(n)

0 10 01
[0 0 2 0|
WhereG—IO 0 0 OI
0 00 K
l0 0 0 0J

(K+1)x(K+1)
Similarly, the derivatives y™ (x) can be expressed
as:

(e}

858

0RO

40

o © o o

K!
2K(0)!K!

d*y B
dx™

e = X0 6" (P C,

41

(2())

where n=1,2,....

Solving the Jeffery-Hamel Flow Problem by the
ECM and D-ECM

The proposed methods from section three
will be implemented in this section to provide
accurate approximation solutions to the Jeffery-
Hamel flow problem.

The D-ECM depends on the base functions of
different  polynomials such as Chebyshev,
Bernstein, Legendre, and Hermite polynomials that
are given in the Egs.21, 27, 31, 35, respectively, and
applying the operational matrices corresponding to
these polynomials represented on Eqgs.24, 25, 29,
33, 39, 40, respectively. To increase the accuracy
and efficiency of ECM, these polynomials are used
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in two steps of the suggested approach procedure.
Firstly, to describe the unknown function y(x) and
its derivatives; secondly, to process of calculating
the inner product to solve the left and right sides of
the matrix equation, which are given in Eq.19.

By substituting the initial or boundary
conditions in Eqgs.15, and 16, some entries of Eq.19
are modified. Thereafter, (m + 1) nonlinear
algebraic equations for unknown C can be obtained
by solving this system numerically by
Mathematica®12, where unique values are given for
unknown elements ¢, ¢y, C5, ... Gy, 10 achieve the
approximate solution to the problem.

The ECM and D-ECM procedures can be
used to solve Eq.6 with boundary conditions Eq.7,
by using Egs.12, 14, replacing unknown function
w(x) with its derivatives as matrices, for ECM:

XB3C+2aRe(XC)(XBC)
+(4—-Ha)a?(XBC) =0,
XO0)=1 XBO(0)=0, (XO(1)
=0 42
Then, the process has been used as presented in
EQgs.19, 20, so:
(x!, XB3C+2aRe(XC)(XBC)

+ (4 — Ha) a? (X B C)) = (x},0),
vi=012,..,m 43
Applying Egs.22, 26 for D-ECM based on the first

kind of Chebyshev polynomials, it follows:
CT DT3 @(X)
+2a Re (€T 9(x))(C" Dy 9(x))
+ (4 —Ha)a? (€T Dy 0(x)) = 0,
CTp(0)=1, C" D+ ¥(0) =0, CT (1)
=0 44
Using the procedures as given in the Egs.19, and
20, hence:
(T;(x), €" Dr’* B(x)
+ 2a Re(C" ¢(x))(C" Dy B(x))
+ (4 — Ha) a?(C" Dy §(x)))
= (T;(x),0),
vVO<i<m 45
By setting the Egs.28, and 30 for D-ECM based on
the Bernstein polynomials, the following is
obtained:
C"Dg*B(x) + 2a Re (€T B(x))(C"Dp B(x))
+ (4 —Ha)a? (C"Dp 0(x)) =0,
C"p0)=1, C"Dpe(0)=0, C" ¥(1)
=0 46
By implementing the processes as presented in
Egs.19, 20, Eq.47 will be shown

(Bjn(x), C"Dp°®(x)

+ 2a Re (€T 9(x))(C™Dp B(x))

+ (4 — Ha) a? (CTDB @(x))) = (Bj,n(x)' 0>)
Vj=012,..,n 47

859

Substituting the Egs.32, and 34 for D-ECM based
on the Legendre polynomials, it follows that:
CT Dp> @(x) + 2a Re (€T @(x))(CT Dp B(x))
+ (4 —Ha) a? (C" Dp B(x)) =0,
C"9(0) =1, €"Dp@(0) =0, C" B(1)
=0 48
Moreover, using the techniques given in the Egs.19,
and 20, the following equation will be obtained:
(Pi(x), C" Dp®P(x)
+2a Re (CT 9(x))(C" Dp B(x))
+ (4—Ha) a? (C" Dp 9(x)))
= (Pl'(X),O),
VO<i<m 49
Furthermore, applying Egs.36, 41 for D-ECM based
on the Hermite polynomials, it follows:
X(x)6* (Dy)™H)"C
+2a Re (B(x) €) (X(x)G (D) HT0)
+(4—Ha)a? (X(x) 6 (Dy)™)"C) =0

P0)C=1, X(0)G (D) HICc=0, ¢(1)C
=0 50

Then, using the procedures as given in Egs.19, 20,
S0:

(Hi(x), X(0)G* (D)™ HC

+2a Re (@(x) €) (X(x) G (Dy)"H)TO)

+ (4 —Ha) a® (X(x) 6 (Dy)™1)"0))

=(H;(x),0),vi=01,..,K. 51
Then, the wvalues of € ={[cycqcy...cn]Tare
calculated by solving the algebraic system obtained
by the inner product for the left and right sides,
from Eqs.43, 45, 47, 49, and 51, respectively.
Subsequently, applying the boundary conditions on
the Eqs.42, 44, 46, 48, and 50 leads to obtaining the
approximate solution.

The approximate polynomials for the Jeffery-
Hamel flow problem when the parameter values are
as follows: @ = 5°,Re = 10,Ha = 0 as in %, with
n=12, will be:

By using ECM based on the standard monomial
polynomial,

w(x) = 1.—1.12597 x? + 8.4681 x 1077 x3
+0.166615 x*
+0.0000643873 x°
—0.0470176 x°
+0.000792892 x”
+0.00575024 x8
+0.00218839 x°
—0.0035073 x1°
+0.00126349 x'!
—0.000175929 x12

By using D-ECM based on the first kind of the
Chebyshev polynomials,



Open Access
Published Online First: November 2022

Baghdad Science Journal
2023, 20(3): 853-866

P-1SSN: 2078-8665
E-ISSN: 2411-7986

w(x) = 1.—1.12597 x% + 8.79819 = 107 8x3
+0.166622 x*
+0.000024296 x°
—0.046882 x°
+ 0.000494395 x”

+ 0.00618549 x8
+0.00177057 x°
—0.00325326 x1°
+0.00117476 x'*
—0.000162363 x12
By using D-ECM based on the Bernstein
polynomials,

w(x) = 1.—1.12597 x% + 5.81122 x 1077 x3

+0.166618 x*
+ 0.0000498819 x>
—0.0469669 x°
+ 0.000676843 x7
+0.00592638 x8
+0.00201225 x°
—0.00339574 x1°
+0.00122292 x'1
—0.000169476 x12.
By using D-ECM based on the Legendre
polynomials,

w(x) =~ 1.—1.12597 x? + 8.93943 * 10783
+0.166622 x*
+0.0000245082 x>
—0.0468829 x°
+ 0.000496724 x7
+0.00618166 x8
+0.0017746 x°
—0.0032559 x1°
+0.00117574 x'?
—0.000162521 x12

w'(x)=XBC=[py ¢1 ¢,

and,

w'"(x)=XB3C =

Now, substituting the w'(x), w'"’'(x) in EQs.6, 7,
and applying the inner product to solve the left and
right sides of the matrix equation given in Eq.43,
with boundary conditions EQ.42, four nonlinear
algebraic equations for unknown cg, ¢y, 5, c3, CaN
be obtained as:

®3]

[P0 ®1 P2 @3]

860

e By using D-ECM based on the Hermite
polynomials,

w(x) = 1.—1.12597 x? + 6.8438 * 10~ 8x3
+0.166623 x*
+0.0000209462 x>
—0.0468671 x°
+ 0.000454542 x”

+ 0.00625298 x8
+0.00169763 x°
—0.00320442 x1°
+0.00115627 x11
—0.000159336 x12.

The Numerical Results and Discussion:

In this section, an example is presented when
the value of n = 3, a = 5°,Re = 10,and Ha = 0,
to illustrate the approach of the proposed methods
to solve the Jeffery-Hamel flow problem.

To explain the technique of ECM, by using
the EQs.12, and 14, it follows:

wlx)=XC

= @oCo T @1C1 + P20,
+ @33,
where, o = 1, @1 = x, @, = x2, @5 = x3, and the
derivatives of w(x) as matrices, expressed as:

[co ¢1 o C3

)

S O OO
S OO
S o N O
S W oo

[co €1 ¢z C3] .

6
0
0
0

S O OO
S O OO
S O OO

—_
wl o
o

, 100
°Z ¢, +TO Co €1 + 25°¢;% +50°% ¢,

+ 50° cocy + 60° ¢y ¢y + ﬁn c
+ 2 ¢c3 + 60°% ¢5 + 60° oy
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cot ¢+ cy+ c3=0. Using the Egs.22, and 26, the following is a
By solving this system numerically by  description of D-ECM based on the first kind of the

Mathematica®12, unique values of cg, ¢y, ¢y, c5 are
given as follows:
co=1,¢,=0, c; =—1.14626, c3 = 0.146262.
Hence, the values of ¢, ¢q, ¢, c3, Will be substituted
in Eq.52 to obtain an approximate solution to the
Eq.6, as:

w(x) ~ 1.—1.14626 x2 + 0.146262 x5.

0 0
' _ T _ 1 0
w'(x) = C"Dy @(x) = [co ¢q ¢; 3] 0 4
3 0
Also,
0
w''(x) = CTDT3 B(x) = [co 1 ¢z €3] 8
24

Therefore, substituting the w'(x), w'"'(x) in Egs.6,
7, and employing the inner product of the matrix
equation given in Eqg.45, with boundary conditions
Eqg.44, four nonlinear algebraic equations for
unknown cy, ¢4, ¢, c3, are achieved as:

100 , 100 220 o . 2
—T Cl—T C0C1+T C1C2—200 Cy
40 ) )
+ﬁncz —8c3 +180° c3
+ 180° ¢coc3 — 400° ¢cqc5
80 .
+ ﬁna c1c3 — 1100° ¢, ¢3
400 o . 2
+ ET[ CZ C3 + 1200 C3
20 )
TGt = 0,
Co—Cr = 1,
C1— 3C3 = 0,
C0+ C1+ C2+ C3:O.
-3
' 3
w'(x) = C"Dp B(x) = [cq ¢1 ¢; C5] 0
0
and,
—6
1 _ T 3 — 18
w"'(x) = C"Dp” B(x) = [cq ¢; €3 3] —18

6
Thus, if the w'(x), w'"’(x) substituting into Egs.6,

7, and using the inner product of the matrix
equation from Eq.47 with the boundary conditions

861

Chebyshev polynomials technique:

w(x) = €T ¢(x)
= coTo(x) + 1T (%) + c2T,(x)
+ c3T5(x), 53
where, To(x) =1, T, (x) = x, T,(x) = =1 + 2x?,
T;(x) = —3x + 4x3, and the derivatives w’(x),
w'""(x) as matrices, can be given as:

0 0
0 0
0 0 [To(X), Tl(X), TZ(x)'T3(x)]Tp
6 0
0 0O
0 0O
0 0 0
Solving this system numerically by

Mathematica®12, the following unique values of
Co, C1, C2, 3 Will be obtained:
co = 0.419839, ¢; =0.120242, c,

= —0.580161, c3 = 0.0400806.
Hence, the values of ¢y, ¢4, ¢,, c3, Will be substituted
in EQ.53 to obtain an approximate solution to the
Eq.6, as:

w(x) = 1.— 1.16032 x2 + 0.160322 x3.

By implementing the Eqgs.28, 30, for D-ECM based
on the Bernstein polynomials, the following is
obtained:

w(x) = CT ¢(x)

=CoBoz +c1B13+ ;B3

+ c3B33, 54
where, Byz=1-3x+3x*—x3 B;3=3x-—

6x2+3x3, B,3=3x*>-3x3 B33;=x3 as
matrices, the derivatives w'(x), w''(x) may be
written as:

-1 0 0

-1 -2 0 T

2 1 -3 [30,3'31,3132,3,33,3] ,

0 1 3

-6 -6 -6

18 18 18 T

18 —18 —1g |[BosBi3 B2z, B3] .

6 6 6

from EQ.46, four nonlinear algebraic equations for
unknown cg, ¢4, ¢,, c3, are attained as follows:
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3c 9c
—70—15°Zco——°coz 71—15"201
75 45, 9
T T A T
15 45 3c;
—7 COCZ—ﬁ C1C2+T
02 o 750
+ 30 C3_ﬁ coc3+ﬁ Cy C3
+250 2_
2 BT
C0:1,
_3C0+3C1=0,
C3:0.

The following unique values of ¢y, ¢y, ¢z, c3 Will be
found by numerically solving this system with
Mathematica®12:

Cop = 1, 1 = 1, Cy = 0.604‘97, C3 = 0.

w'(x) = C"Dp B(x) = [co ¢1 ¢; €3]
and,

0

1244 0
w'(x) = CTDp3 B(x) = [cg ¢1 €5 €3] 0
15

In addition, four nonlinear algebraic equations with
unknowns cy, ¢4, C,, C3, are obtained by substituting
w'(x)and w'’(x) in Egs. 6, 7, and applying the
inner product of the matrix equation from Eq.49
with the boundary conditions from Eq.48:

25, , 75, 75, .
7 C]_ +7 C2+7 COC2+6O C1C2
75, )
+7°C2 +100° C3+1000C0C3
175 520
+T C1C3+T C2C3
575
e 70
2
Co 2—1,
3c3
(o5} 2 =0,

o+ i+ e+ c3=0.
Then, using Mathematica®12, to solve this system
numerically, the following unique values of
Co, C1, C2, €3, Will be obtained:

w'(x) = [Ho(x) Hy(x) Hy(x) H3(x)]

Also,

862

S W oo

To achieve an approximate solution to EQ.6, the
values of ¢y, ¢y, ¢y, c3 Will be substituted in Eq.54,
as follows:

w(x) ~ 1.—1.18509 x? + 0.185091 x3

By applying the Eqs.32, and 34, for D-ECM based
on the Legendre polynomials, the following is
achieved:

w(x) = €T 9(x)
= coPo(x) + ¢;P1(x) + ¢ P5(x)

+ c3P3(x), 55
2
where, Py(x) = 1, Py (x) = x, Po(x) = — 2 + =,
3
P;(x) = —37x+5%, and the derivatives of w(x),
can be written as matrices:
0 O
0 O
0 0
50

) [Po(), P1(3), P, (), P5 ()T,
0

0 | Po@), Py (), P (), P3O
0

O O OO

co = 0.648645, ¢, = 0.0324384, c,
—0.702709, c¢3 = 0.0216256.

As a result, the wvalues c,cq,cy,c3, Will be
substituted in EQ.55 to give an approximate solution
to Eq.6, as follows:

w(x) = 1.—1.05406 x? + 0.0540639 x3

Moreover, by using the Egs. 36, 41, a description of
the D-ECM based on the Hermite polynomials
procedure follows:

w(x) =0(x)C

= Hy(x)co + Hi(x)c; + Hy(x)c,

+ H3(x)c3, 56
where, Hy(x) =1, Hi(x) =2x, Hy,(x) = -2+
4x2, Hz(x) = —12x + 8x3, and the derivatives
w'(x), w'"" (x) as matrices can be obtained as:

[co €1 o C3]T:

S O OO
S OoOON
S O B O
O OO O
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w'"'(x) = [Ho(x) Hy(x) Hy(x) H3(x)]

Substituting w' (x), w""’' (x) into Egs. 6, 7, and using
the inner product of the matrix equation from Eq.
51 with the boundary conditions from Eqg. 50, yields
four nonlinear algebraic equations with unknowns
Cp,C1,C2,C3.

400 5 400 1760
——% g ——°cyc1 + °cq €y
3 3
16000

€32 —32¢c3 + 1120°% ¢4
3200

+ 1120° Cog C3 +
9920

7°Q@—%M%£=Q
Co — 2 Cy = 1,
2C1 - 12C3 = 0,
Co+2¢1 +2¢; —4c3 = 0.

°acq Cc3

Then, using Mathematica®12, solve this system
numerically to acquire the following unique values
of ¢y, ¢1, €3, C3:
co = 0.419839, ¢; =0.120242, c,
—0.290081, c¢3 = 0.0200403.
As a consequence, the values ¢y, ¢y, ¢y, 3, Will be
swapped in Eq.56 to get the following approximate
solution to Eq.6:

w(x) = 1.—1.16032 x? + 0.160322 x3.

Furthermore, the maximal error remainder
MER, has been introduced in this section because
there is no exact solution available to the problem,
as well as to verify the accuracy and reliability of
the approximate solution obtained by ECM and D-
ECM. The MER,, is calculated by:

MER,, = ggg(xllw’”(x) + 2a Rew(x) w'(x)

+ (4—Ha) a? w'(x)|
Fig. 2 presents the logarithmic plots for the MER,,
values, obtained by the ECM based on the standard
monomial polynomial, as well as, by the D-ECM
based on the Chebyshev, Bernstein, Legendre, and
Hermite polynomials, for parameters Re = 10,
Ha =0 and a = 5° according to previous studies
%, which showed the efficiency of these methods by
observing the error values for n = 4to 12, the

48

S O OO
S O OO
S O OO

0
0 [co €1 €2 C3]T
0

error was observed to be lower when the value of n
increased.

a=5°, Re=1 0, Ha=0

0.100 -@- MERecw standard

i MERp-£cM Chebyshes
& 0.001
=0~ MERp_gcMBemstein

A~ MERp_gcmLegendre
¥ MERp_gcMHemite

10°5

1077
4

Figure 2. Logarithmic plots for MER, by
proposed methods.

A comparison of the approximate solutions
obtained using the proposed techniques is also
shown in Fig. 3 for n = 12, Re =10, Ha =0,
and a =5°, as is evident from the figure, good
agreements have been obtained for all proposed
methods.

a=5°, Re=10, Ha=0

1.0y
N

0.8 l\x @ ECM Standard
<06 = D-ECM Chebyshev
FY 0.4 K D-ECM Bernstein

0.2 \x — D-ECM Legendre

\ el o
0.0 7 W= D-ECM Hermite
00 02 04 06 08 1.0

X
Figure 3. Solutions of the Jeffery—-Hamel by
proposed methods for n = 12.

Moreover, in Table 1 the values of MER,, for the
approximate solution is given by using ECM and D-
ECM with n = 12 and parameters Re = 10, Ha =
0 and versus the value of a, which appears the
efficiency of these methods. In addition, it can be
noted that D-ECM based on the Hermite
polynomials method produces better accuracy with
the lowest errors compared to the other methods.

Table 1. The MER{,when Re = 10, Ha = 0 and versus the value of «a, for Jeffery— Hamel flow

a ECM D-ECM D-ECM D-ECM D-ECM
Standard Chebyshev Bernstein Legendre Hermite
3° 1.78573 x 107 1.55044 % 1077 1.07042 * 107 1.57835 * 1077 1.16736 * 1077
—3°  3.09536 % 107° 2.15838 % 1077 1.55861 % 107 2.20333 1077 1.60927 * 1077
—5° 0.0000152937 1.01151 = 107 7.35397 * 107° 1.03335  10°° 8.15967 * 1077

863
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Furthermore, in Table 2 the comparisons of MER,, matrices methods according to previous studies *.
values are presented when Re = 10,Ha = 0,a = Better accuracy can be realized by using the
5°, for the solutions by proposed methods and by  suggested methods.

the Chebyshev and the Bernstein operational

Table 2. The comparison between the MER{, when Re = 10, Ha = 0, a = 5° by proposed methods
and by Chebyshev and Bernstein ¥,

ECM D-ECM D-ECM D-ECM D-ECM Chebyshev 3 Bernstein %
Standard Chebyshev Bernstein Legendre Hermite
5.08086 5.27892 3.48673 5.36366 4.10628 3.3003 9.68873
* 1076 * 1077 * 1076 * 1077 * 1077 *107° * 1076
Also, Figs.4-7 illustrate the velocity profiles for the ~a=-5°, Re=50, Ha=2000
Jeffery—Hamel problem in the cases @ = 5°,a = 1o ,
—5° with fixed Re = 50 and increasing values of 0.8 N | @ ECM Standard
Ha, as chosen in . The velocity is noted to be <06 l\l D-ECM Chebyshev
increased by increasing Ha values in all the figures. T 04 \’ | D-ECM Bermstein
The curvature of the curves also increases with 0 \ A D-ECM Legendre
increasing Ha values. ! ¥ D-ECM Hermite

a=5°, Re=50, Ha=0 L
00 02 04 06 08 1.0

4 ECM Standard
D-ECM Chebyshev
D-ECM Bemstein

X
Figure 7. The velocity plot for Jeffery—Hamel by
proposed methods for Ha = 2000.

- D-ECM Legendre Conclusion:
-¥- D-ECM Hermite The effective computational method and
novel computational methods with suitable base
x functions, namely Chebyshev, Bernstein, Legendre,
Figure 4. The velocity plot for Jeffery-Hamel by ~ and Hermite polynomials, have been presented in
proposed methods for Ha = 0. this paper for solving the Jeffery-Hamel problem.
The nonlinear problems are reduced to the solution
a=5°, Re=50, Ha=500 of a nonlinear algebraic system of equations, which
1'0"'11 | is processed using Mathematica®12. The
0.8 AN | @ ECM Standard approximate solution is accurate and efficient even
<06 ! D-ECM Chebyshev within a few orders of polynomials. In addition, the
204 D-ECM Bernstein MER, has been calculated for the proposed
02 A D-ECM Legendre method; and compared With_the Chebyshev and the
0o Ny ¥ D-ECMHemite Bernstein operational matrices methods that are
available in the literature, the results obtained

00 02 04 06 08 1.0
x

Figure 5. The velocity plot for Jeffery—Hamel by
proposed methods for Ha = 500.

showed that the proposed methods have produced
better accuracy with less errors. Moreover, it can be
concluded that the results of the MER, by the
proposed methods D-ECM decreased significantly

a=-5°, Re=50, Ha=1000 compared to ECM, which gives higher accuracy
1.0i—l~x-.1 ) and efficiency. Furthermore, it was found that the
0.8 “l\l\ | @ ECM Standard results of D-ECM based on the Hermite

06 l\, | D-ECM Chebyshev polynomials are better than the other methods.

% ' \ D_ECM Bernstein _ The present methods can also be extend(_ed to
0.4 w | ' partial  differential equations and fractional
0.2 \ i D-ECM Lagendre differential equations, which certainly require
0.0 iy ¥ D-ECMHemite extensive further analysis.

00 02 04 06 08 1.0

X
Figure 6. The velocity plot for Jeffery—Hamel by
proposed methods for Ha = 1000.
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