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Abstract: 
The investigation of determining solutions for the Diophantine equation 𝑥4 + 𝑦4 = 𝑧3 over the 

Gaussian integer ring for the specific case of 𝑥 ≠ 𝑦 is discussed. The discussion includes various 

preliminary results later used to build the resolvent theory of the Diophantine equation studied. Our findings 

show the existence of infinitely many solutions. Since the analytical method used here is based on simple 

algebraic properties, it can be easily generalized to study the behavior and the conditions for the existence 

of solutions to other Diophantine equations, allowing a deeper understanding, even when no general 

solution is known. 
 

Keywords: Algebraic properties, Diophantine equation, Gaussian integer, quartic equation, nontrivial 

solutions, symmetrical solutions. 

 

Introduction:  

The field of Diophantine equations (DEs) is 

ancient and vast, where no general method exists to 

decide whether a given DE has any solution or how 

many. Many studies were conducted in the past on 

solving equations in the ring of Gaussian integers. 

For example, Szabó1 investigated some fourth-

degree DEs in Gaussian integers, stating that for 

certain choices of the coefficients 𝑎, 𝑏, 𝑐, the 

solutions of the equation 𝑎𝑥4 + 𝑏𝑦4 = 𝑐𝑧2 in 

Gaussian integers satisfy 𝑥𝑦 = 0. Apart from that, 

Najman2 showed that  the equation 𝑥4 ± 𝑦4 = 𝑖𝑧2 

has only trivial solutions in Gaussian integers. Then, 

Emory3 showed that nontrivial quadratic solutions 

exist for 𝑥4 + 𝑦4 = 𝑑2𝑧4 when either 𝑑 = 1 or 𝑑 

is a congruent number. Apart from that, Ismail and 

Mohd Atan4 investigated the integral solutions of x4 

+ y4 = z3 and discovered the existence of infinitely 

many solutions to this type of DE in the ring of 

integers for both cases, 𝑥 = 𝑦 and 𝑥 ≠ 𝑦. Moreover, 

Izadi et al.5 examined solutions in the Gaussian 

integers for different choices of 𝑎, 𝑏 and 𝑐 for the 

Diophantine equation 𝑎𝑥4 + 𝑏𝑦4 = 𝑐𝑧2. 

Similarly, Izadi et al.6 examined a class of fourth-

power DEs of the form 𝑥4 + 𝑘𝑥2𝑦2 + 𝑦4 = 𝑧2 and 

𝑎𝑥4 + 𝑏𝑦4 = 𝑐𝑧2 in the Gaussian integers, where 𝑎 

and 𝑏 are prime integers. In recent years, Söderlund7 

discovered that the only primitive non-zero integer 

solutions to the Fermat quartic 34𝑥4 + 𝑦4 = 𝑧4 are 

(𝑥, 𝑦, 𝑧)  =  (±2,±3,±5). The proofs are based on a 

previous complete solution given to another Fermat 

quartic, namely 𝑥4 + 𝑦4 = 17𝑧4. Moreover, 

Jakimczuk8 investigated the equation 𝑥4 − 𝑦4 = 𝑧𝑠, 
and showed that if 𝑠 is an odd prime, then the 

equation has infinitely many solutions (𝑥, 𝑦, 𝑧) 
where 𝑥 > 𝑦 > 0 and 𝑧 > 0. Besides, Ismail et al9 

determined the gaussian integer zeroes of 
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𝐹(𝑥, 𝑧)  =  2𝑥4 –  𝑧3 and show the existence of 

infinitely many non-trivial zeroes for 𝐹(𝑥, 𝑧) =
 2𝑥4 –  𝑧3 under the general form 𝑥 =  (1 +  𝑖)𝛾3 

and 𝑐 =  −2𝛾4 for 𝛾 ∈ 𝑍[𝑖]. In recent years, Li10 

studied the Diophantine equation 𝑥4 + 2𝑛𝑦4 = 1 

in quadratic number fields. The author showed that 

nontrivial quadratic solutions to this equation arise 

from integer solutions to the equations  𝑋4 ±
2𝑛𝑌4 = 𝑍2 investigated in 1853 by Lebesgue. 

Apart from that, Somanath et al. 11 studied the 

quadratic Diophantine equation with two 

unknowns 65𝐽2 + 225𝐾2 –  230𝐽𝐾 = 1600 and 

determined its non-zero separate solutions in 𝑍[𝑖]. 
The authors gained a few formulae and recurrence 

relations on the Gaussian integer solutions 

(𝐽𝑛, 𝐾𝑛) of the DE. Moreover, Ahmadi and 

Janfada12 showed that the quartic Diophantine 

equations 𝑎𝑥4  + 𝑏𝑦4  =  𝑐𝑧2 has only trivial 

solution in the Gaussian integers for some 

particular choices of 𝑎, 𝑏 and 𝑐, using a method 

based on elliptic curves. In fact, the authors exhibit 

two null-rank related families of elliptic curves 

over the Gaussian field as well as determine the 

torsion groups of both families. Moreover, Tho13 

showed that if the equation 𝑥4 + 2𝑛𝑦4 = 𝑧4, for 𝑛 

a positive integer, has a solution (𝑥, 𝑦, 𝑧) in a cubic 

number field 𝐾 with 𝑥𝑦𝑧 ≠ 0, then the Galois 

group of the field 𝐾 is the symmetric group 𝑆3. In 

addition, for every positive integer 𝑑 > 1, there 

exists a number field 𝐾𝑑 of degree 𝑑 such that this 

equation has a solution (𝑥, 𝑦, 𝑧) in 𝐾𝑑 with 𝑥𝑦𝑧 ≠
0. Finally, Tho (2022)14 investigated the solutions 

to 𝑥4 + 𝑝𝑦4 = 𝑧4 in cubic number fields and show 

that if 𝑝 is a prime congruent to 11 𝑚𝑜𝑑 16, the 

DE only has solutions 𝑥 = ±𝑧, 𝑦 = 0 in any cyclic 

cubic number field. 

In this paper, an investigation is performed to 

determine solutions for the DE 𝑥4 + 𝑦4 = 𝑧3 over 

the Gaussian integer ring for the specific case of 𝑥 ≠
𝑦, which has remained unsolved. Note that the case 

𝑥 = 𝑦 has been solved by Ismail et al.9. 

 
Results and Discussion:  

In this section, elementary algebraic methods 

are used to study the behavior of the Diophantine 

equation 𝑥4 + 𝑦4 = 𝑧3 when 𝑥 ≠ 𝑦. Our interest is 

to determine which conditions give rise to nontrivial 

solutions and which ones produce no solutions or 

only trivial ones. 

The following analysis supports the ensuing 

discussion. Suppose that (𝑎, 𝑏, 𝑐) is a solution of 

𝑥4 + 𝑦4 = 𝑧3 1 

such that 𝑎 ≠ 𝑏, and 𝑎, 𝑏, 𝑐 ∈ ℤ[𝑖]. Let 

𝑎 =  𝑟 +  𝑠𝑖,          𝑏 =  𝑡 +  𝑚𝑖,         and        

 𝑐 =  𝑔 +  ℎ𝑖, 2 

where 𝑟, 𝑠, 𝑡,𝑚, 𝑔, ℎ ∈ ℤ, and 𝑟 ≠ 𝑡 or 𝑠 ≠ 𝑚. 

Then, replacing Eq.1 

yields

  
(𝑟4 + 𝑡4 − 6(𝑟2𝑠2 + 𝑡2𝑚2) + 𝑠4 +𝑚4)

+ 4(𝑟3𝑠 − 𝑟𝑠3 + 𝑡3𝑚− 𝑡𝑚3)𝑖
= (𝑔3 − 3𝑔ℎ2) + (3𝑔2ℎ − ℎ3)𝑖, 

which in turn implies that 
𝑟4 + 𝑡4 − 6(𝑟2𝑠2 + 𝑡2𝑚2) + 𝑠4 +𝑚4 = 𝑔3 −
3𝑔ℎ2,                                                                     3 

4(𝑟3𝑠 − 𝑟𝑠3 + 𝑡3𝑚− 𝑡𝑚3) = 3𝑔2ℎ − ℎ3.             4 

Starting from Eq.3 and Eq.4, the paper is 

divided into four main cases based on possible values 

for 𝑟 and 𝑠. Each of these cases will then be 

subdivided into four subcases based on possible 

values for 𝑡 and 𝑚. Finally, it will be further 

subdivided into four possibilities based on values for 

𝑔 and ℎ. 

 

Case 1. Table. 1 shows all possible 

combinations of values studied under this case. 

 

Table 1. All possible combinations of values under 

Case 1. 

Case 1: 

𝑟 = 0, 𝑠 =
0 

Case 

1.1: 𝑡 =
0,𝑚 = 0 

Case 1.1.1: 𝑔 = 0, ℎ = 0 

Case 1.1.2: 𝑔 = 0, ℎ ≠ 0 

Case 1.1.3: 𝑔 ≠ 0, ℎ = 0 

Case 1.1.4: 𝑔 ≠ 0, ℎ ≠ 0 

Case 1.2: 

𝑡 = 0,𝑚 ≠ 0 

Case 1.2.1: 𝑔 = 0, ℎ = 0 

Case 1.2.2: 𝑔 = 0, ℎ ≠ 0 

Case 1.2.3: 𝑔 ≠ 0, ℎ = 0 

Case 1.2.4: 𝑔 ≠ 0, ℎ ≠ 0 

Case 1.3: 

𝑡 ≠ 0,𝑚 = 0 

Case 1.3.1: 𝑔 = 0, ℎ = 0 

Case 1.3.2: 𝑔 = 0, ℎ ≠ 0 

Case 1.3.3: 𝑔 ≠ 0, ℎ = 0 

Case 1.3.4: 𝑔 ≠ 0, ℎ ≠ 0 

Case 1.4: 

𝑡 ≠ 0,𝑚 ≠ 0 

Case 1.4.1: 𝑔 =  0, ℎ = 0 

Case 1.4.2: 𝑔 = 0, ℎ ≠ 0 

Case 1.4.3: 𝑔 ≠ 0, ℎ = 0 

Case 1.4.4: 𝑔 ≠ 0, ℎ ≠ 0 

 

Case 1.1.1: (𝑟 = 0, 𝑠 = 0, 𝑡 = 0, 𝑚 = 0,
𝑔 = 0, ℎ = 0) 

Under these conditions, 𝑎 = 𝑏, which is 

outside of our current study. (Notice that these 

conditions trivially satisfy the equation.) Therefore, 

the equation under this case is not considered. 

Remark 1: Due to the same reason, Case 1.1.2, 

Case 1.1.3, and Case 1.1.4 are discarded. Moreover, 

these lead to inconsistencies. 

 

Case 1.2.1: (𝑟 = 0, 𝑠 = 0, 𝑡 = 0, 𝑚 ≠ 0,
𝑔 = 0, ℎ = 0) 
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From Eq.3, 𝑚4 = 0, which is a contradiction 

since 𝑚4 > 0 provided that 𝑚 ≠ 0. (Notice that 

Eq.4 is automatically satisfied under this case.) 

Therefore, the equation, in this case, is not 

considered. 

Remark 2: A similar inconsistency arises in 

Case 1.3.1, Case 2.1.1, and Case 3.1.1. 

Remark 3: A similar inconsistency arises in 

Case 1.2.2, Case 1.3.2, Case 2.1.2, and Case 3.1.2. 

Moreover, from Eq.4, these cases will lead to ℎ3 =
0, which is also a contradiction since ℎ3 > 0. 

  

Case 1.2.3: (𝑟 = 0, 𝑠 = 0, 𝑡 = 0, 𝑚 ≠ 0,
𝑔 ≠ 0, ℎ = 0) 

From Eq.3, 𝑚4 = 𝑔3. (Notice that Eq.4 is 

automatically satisfied under this case.) It follows 

that |𝑚| = 𝑔
3

4, with 𝑚 an integer. This implies that 

𝑔 = 𝑢4 for some integer 𝑢. Thus, |𝑚| = |𝑢|3, or 

equivalently, 𝑚 = 𝑢3. Hence, (𝑚, 𝑔)  =  (𝑢3, 𝑢4). 
By letting 𝑢 = ±1,±2,±3,… , ±𝑘,…, where 𝑘 is 

an integer, infinitely many solutions for (𝑚, 𝑔) are 

obtained. In turn, this leads to infinitely many 

solutions for (𝑎, 𝑏, 𝑐) of the form 

(𝑎, 𝑏, 𝑐) = (0, 𝑛3𝑖, 𝑛4), 
where 𝑛 ∈  ℤ. 

          Remark 4: Case 1.3.3 yields symmetrical 

solutions with (𝑡, 𝑔) = (𝑢3, 𝑢4) for 𝑢 ∈ ℤ. This 

leads to 

(𝑎, 𝑏, 𝑐) = (0, 𝑛3, 𝑛4). 
Remark 5: Case 2.1.3 yields symmetrical 

solutions with (𝑠, 𝑔) = (𝑢3, 𝑢4) for 𝑢 ∈ ℤ. This 

leads to 

(𝑎, 𝑏, 𝑐) = (𝑛3𝑖, 0, 𝑛4). 
Remark 6: Case 3.1.3 yields symmetrical 

solutions with (𝑟, 𝑔) = (𝑢3, 𝑢4) for 𝑢 ∈ ℤ. This 

leads to 

(𝑎, 𝑏, 𝑐) = (𝑛3, 0, 𝑛4). 
 

Case 1.2.4: (𝑟 = 0, 𝑠 = 0, 𝑡 = 0, 𝑚 ≠ 0,
𝑔 ≠ 0, ℎ ≠ 0) 

An inconsistency arises under this case as 

follows. From Eq.4, 3𝑔2ℎ − ℎ3= 0, from which 

ℎ(3𝑔2−ℎ2) = 0.  Since ℎ ≠ 0, then ± √3 =
ℎ

𝑔
, 

which gives rise to a contradiction since 
ℎ

𝑔
 is a 

rational while √3 is not. Therefore, the equation 

under this case is not considered. 

Remark 7: A similar inconsistency arises in 

Case 2.2.4, Case 2.3.4, and Case 3.3.4. 

Remark 8: A similar inconsistency arises in 

Case 1.3.4, Case 2.1.4, and Case 3.1.4, the 

only difference being that Eq.3 is not 

automatically satisfied. 

 

Case 1.4.1: (𝑟 = 0, 𝑠 = 0, 𝑡 ≠ 0, 𝑚 ≠ 0,
𝑔 = 0, ℎ = 0) 

From Eq.3, 𝑡4 − 6𝑡2𝑚2 +𝑚4 = 0, which 

can be rewritten as (𝑡2 −𝑚2)2 = 4𝑡2𝑚2.  Thus, 

|𝑡2 −𝑚2| = 2|𝑡𝑚|, which implies 𝑡2 −𝑚2 =
±2𝑡𝑚. Dividing both sides by 𝑡2 yields 

(
𝑚

𝑡
)
2

± 2(
𝑚

𝑡
) − 1 = 0, 

which represents two quadratic equations on 
𝑚

𝑡
. 

Upon solving them, 
𝑚

𝑡
= ±√2 ± 1 or 

𝑚

𝑡
= ±√2 ∓ 1, 

both of which represent a contradiction since 
𝑚

𝑡
 is 

rational while ±√2 ± 1 and ±√2 ∓ 1 are not. 

Remark 9: A similar inconsistency arises in 

Case 1.4.2, Case 4.1.1, and Case 4.1.2. 

 

Case 1.4.3: (𝑟 = 0, 𝑠 = 0, 𝑡 ≠ 0, 𝑚 ≠ 0,
𝑔 ≠ 0, ℎ = 0) 

From Eq.4, 4(𝑡3𝑚 − 𝑡𝑚3) = 0, which can be 

rewritten as 4𝑡𝑚(𝑡2 −𝑚2) = 0. Since 𝑡,𝑚 ≠ 0, 

then 𝑡2 −𝑚2 = 0, which implies |𝑡| = |𝑚| or, 

equivalently, 𝑡 = ±𝑚. Upon replacing on Eq.3 

yields 

                                                             

−4𝑚4 = 𝑔3.                      5 

It is obvious that 𝑔 < 0 and 2 ∣ 𝑔. Then, let 

  𝑔 = −2𝛼𝑣,                                                                                6 

where gcd(𝑣, 2) = 1. Replacing on Eq.5 

yields −4𝑚4 = −23𝛼𝑣3, which implies 

|𝑚| = 2
3𝛼−2

4 𝜐
3

4 .                                                        7 

Since 𝑚 is an integer, then 3𝛼 ≡ 2(mod 4), which is 

an equation whose only solutions are of the form 𝛼 =
4𝑘 + 2 for 𝑘 ∈ ℤ. Moreover, once again, due to 𝑚 

being an integer, there must exist an integer 𝑢 such 

that 𝑣 = 𝑢4. Then, replacing on Eq.6 yields 𝑔 =
−24𝑘+2𝑢4, and replacing on Eq.7 gives  

|𝑚| = 23𝑘+1|𝑢|3. Therefore, this case leads to 

(𝑡,𝑚, 𝑔) = (23𝑘+1𝑢3, ±23𝑘+1𝑢3, −24𝑘+2𝑢4). 
In turn, this leads to 

(𝑎, 𝑏, 𝑐) = (0, 23𝑘+1𝑢3(1 ±  𝑖),−24𝑘+2𝑢4), 
for 𝑘 ≥ 0 and 𝑢 ∈ ℤ. 
 

Remark 10: Case 4.1.3 yields symmetrical 

solutions with (𝑟, 𝑠, 𝑔) = (±23𝑘+1𝑢3,
±23𝑘+1𝑢3, −24𝑘+2𝑢4) and (𝑟, 𝑠, 𝑔)  =
 (±23𝑘+1𝑢3, ∓23𝑘+1𝑢3, −24𝑘+2𝑢4). This leads 

to 

(𝑎, 𝑏, 𝑐) = (23𝑘+1𝑢3(1 ±  𝑖),0, −24𝑘+2𝑢4), 
for 𝑘 ≥ 0 and 𝑢 ∈ ℤ. 

 

Case 1.4.4: (𝑟 = 0, 𝑠 = 0, 𝑡 ≠ 0, 𝑚 ≠ 0,
𝑔 ≠ 0, ℎ ≠ 0) 

From Eq.3 and Eq.4, the following system of 

equations is obtained: 
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𝑡4 − 6𝑡2𝑚2 +𝑚4 = 𝑔3 − 3𝑔ℎ2                             8 

                                                                  4(𝑡3𝑚−
𝑡𝑚3) = 3𝑔2ℎ − ℎ3.                                                          9 

These equations now yield 

(𝑡4 − 6𝑡2𝑚2 +𝑚4)2 + (4𝑡3𝑚− 4𝑡𝑚3)2

= (𝑔3 − 3𝑔ℎ2)2 + (3𝑔2ℎ − ℎ3)2, 
which, after simplification, becomes 

(𝑚2+ 𝑡2)4 = (𝑔2+ ℎ2)3.                              10 

By means of a similar method used for Case 1.2.3, 

there must exist an integer 𝛼 such that 

  𝑡2 +𝑚2 = 𝛼3,                                           11 

𝑔2 + ℎ2 = 𝛼4.                                             12 

Let us consider Eq.11. From Cohen9, there 

exist integers 𝑢 and 𝑣, with gcd(𝑢, 𝑣) = 1, such that 

the solutions to this equation have the form 

 (𝑡,𝑚, 𝛼) = (𝑢(𝑢2 − 3𝑣2), 𝑣(3𝑢2 − 𝑣2), 𝑢2 +
𝑣2),                                       13 

up to the exchange of variables 𝑡 and 𝑚. Replacing 

Eq.13 in Eq.8 and Eq.9 and solving for 𝑔 and ℎ yields 

 (𝑔, ℎ) = (𝑢4 − 6𝑢2𝑣2 + 𝑣4, 4𝑢3𝑣 − 4𝑢𝑣3).   14                

Moreover, notice that the exchange of 𝑡 and 𝑚 can 

be absorbed by replacing ℎ with −ℎ. Therefore, Eq.13 

and Eq.14 yield 

(𝑎, 𝑏, 𝑐) = (0, (𝑢3 − 3𝑢𝑣2) + (3𝑣𝑢2 − 𝑣3)𝑖, (𝑢4

− 6𝑢2𝑣2 + 𝑣4) + (4𝑢3𝑣
− 4𝑢𝑣3)𝑖) 

and 

(𝑎, 𝑏, 𝑐) = (0, (3𝑢2𝑣 − 𝑣3) + (𝑢3 − 3𝑢𝑣2)𝑖, (𝑢4

− 6𝑢2𝑣2 + 𝑣4) − (4𝑢3𝑣
− 4𝑢𝑣3)𝑖), 

where gcd(𝑢, 𝑣) = 1. 

Remark 11: Considering Eq.12 and solving for 

(𝑔, ℎ) (see Cohen9) yields the same results as before, 

after excluding non-integer solutions. 

Remark 12: Notice that the conditions of this 

case convert the original equation, Eq.1, into 

                                                                                

𝑏4 = 𝑐3,                                                                  15 

where 𝑏, 𝑐 ∈  ℤ[𝑖]. This is equivalent to the system 

Eq.8–Eq.9. Moreover, taking the absolute value on 

both sides of Eq.15 yields Eq.10. 

 

Remark 13: Eq.15 can be solved—and 

therefore this case—using purely complex number 

techniques. Indeed, let the complex prime 

decomposition of 𝑏 and 𝑐 be 

                                                 

𝑏 = 𝑢1(1 + 𝑖)
𝛼0∏ 𝑝

𝑗

𝛼𝑗𝑙
𝑗=1                                 16 

and 

𝑐 = 𝑢2(1 + 𝑖)
𝛽0∏ 𝑞𝑘

𝛽𝑘𝑚
𝑘=1 ,                       17 

 

respectively, where 𝑢1, 𝑢2 ∈
{+1,−1,+𝑖, −𝑖}; 𝛼0, … , 𝛼𝑙, 𝛽0 … ,𝛽𝑚 are non-

negative integers, and 𝑝𝑗 and 𝑞𝑗 are complex prime 

numbers. Replacing Eq.15 yields 

𝑢1
4(1 + 𝑖)4𝛼0∏𝑝

𝑗

4𝛼𝑗 =

𝑙

𝑗=1

 𝑢2
3(1 + 𝑖)3𝛽0∏𝑞𝑘

3𝛽𝑘

𝑚

𝑘=1

. 

The uniqueness of the prime power decomposition in 

ℤ[𝑖] yields 𝑢1
4  =  𝑢2

3  =  1, which implies 𝑢2  =  1. 

Also, 4𝛼0  =  3𝛽0, from which there must exist an 

integer 𝛾 such that 𝛼0  =  3𝛾 and 𝛽0  =  4𝛾. 

Moreover, 𝑙 =  𝑚 and, after an adequate reordering, 

𝑝𝑗  =  𝑞𝑘 and 4𝛼𝑗  =  3𝛽𝑘. This last equality, in turn, 

implies that there exist integers 𝛾𝑖 such that 𝛼𝑗  =

 3𝛾𝑗 and 𝛽𝑘 =  4𝛾𝑘. Thus, replacing on Eq.16 and 

Eq.17 yields 

𝑏 = 𝑢1(1 + 𝑖)
3γ∏𝑝

𝑗

3𝛾𝑗

𝑚

𝑗=1

= 𝑢1  ((1 + 𝑖)
𝛾∏𝑝

𝑗

𝛾𝑗

𝑚

𝑗=1

)

3

 

 and  

𝑐 = (1 + 𝑖)4γ∏𝑝𝑘
4𝛾𝑘

𝑚

𝑘=1

= ((1 + 𝑖)𝛾∏𝑝𝑘
𝛾𝑘

𝑚

𝑘=1

)

4

. 

Let 𝑛 = (1 + 𝑖)𝛾∏ 𝑝𝑘
𝛾𝑘𝑚

𝑘=1  ∈  ℤ[𝑖]. Therefore, 

(𝑎, 𝑏, 𝑐)  =  (0, 𝑢𝑛3, 𝑛4), 
where 𝑢 ∈  {+1,−1,+𝑖, −𝑖} and 𝑛 ∈  ℤ[𝑖], which 

is an equivalent solution for this case. 

 

Remark 14: Case 4.1.4 yields symmetrical 

solutions with 

 

(𝑎, 𝑏, 𝑐) = ((𝑢3 − 3𝑢𝑣2) + (3𝑣𝑢2 − 𝑣3)𝑖, 0, (𝑢4

− 6𝑢2𝑣2 + 𝑣4) + (4𝑢3𝑣
− 4𝑢𝑣3)𝑖) 

and 

(𝑎, 𝑏, 𝑐) = ((3𝑢2𝑣 − 𝑣3) + (𝑢3 − 3𝑢𝑣2)𝑖, 0, (𝑢4

− 6𝑢2𝑣2 + 𝑣4) − (4𝑢3𝑣
− 4𝑢𝑣3)𝑖), 

 

where gcd(𝑢, 𝑣) = 1. On the other hand, 

since the respective conditions convert our original 

equation into 

𝑎4 = 𝑐3, 
the solutions can also be written in the form 

 

(𝑎, 𝑏, 𝑐) = (𝑢𝑛3, 0, 𝑛4), 
 

where 𝑢 ∈ {+1,−1,+𝑖, −𝑖} and 𝑛 ∈ ℤ[𝑖]. 
 

Case 2. Table. 2 shows all possible 

combinations of values studied under this case. 
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Table 2. All possible combinations of values under 

Case 2. 

Case 2: 

𝑟 = 0, 𝑠 ≠
0 

Case 2.1: 

𝑡 = 0,𝑚 =
0 

Case 2.1.1: 𝑔 = 0, ℎ = 0 

Case 2.1.2: 𝑔 = 0, ℎ ≠ 0 

Case 2.1.3: 𝑔 ≠ 0, ℎ = 0 

Case 2.1.4: 𝑔 ≠ 0, ℎ ≠ 0 

Case 2.2: 

𝑡 = 0,𝑚 ≠
0 

Case 2.2.1: 𝑔 = 0, ℎ = 0 

Case 2.2.2: 𝑔 = 0, ℎ ≠ 0 

Case 2.2.3: 𝑔 ≠ 0, ℎ = 0 

Case 2.2.4: 𝑔 ≠ 0, ℎ ≠ 0 

Case 2.3: 

𝑡 ≠ 0,𝑚 =
0 

Case 2.3.1: 𝑔 = 0, ℎ = 0 

Case 2.3.2: 𝑔 = 0, ℎ ≠ 0 

Case 2.3.3: 𝑔 ≠ 0, ℎ = 0 

Case 2.3.4: 𝑔 ≠ 0, ℎ ≠ 0 

Case 2.4: 

𝑡 ≠ 0,𝑚 ≠
0 

Case 2.4.1: 𝑔 = 0, ℎ = 0 

Case 2.4.2: 𝑔 = 0, ℎ ≠ 0 

Case 2.4.3: 𝑔 ≠ 0, ℎ = 0 

Case 2.4.4: 𝑔 ≠ 0, ℎ ≠ 0 

 

Case 2.2.1: (𝑟 = 0, 𝑠 ≠ 0, 𝑡 = 0, 𝑚 ≠ 0,
𝑔 = 0, ℎ = 0) 

From Eq.3, 𝑠4 +𝑚4 = 0, which is a 

contradiction since 𝑠4 +𝑚4 > 0. (Notice that 

Eq.4 is automatically satisfied under this case.) 

Therefore, the equation under this case is not 

considered. 

 

Remark 15: A similar inconsistency arises in 

Case 2.3.1, Case 3.2.1, and Case 3.3.1. 

Remark 16: A similar inconsistency arises in 

Case 2.2.2, Case 2.3.2, Case 3.2.2, and Case 3.3.2. 

Moreover, from Eq.4, these cases will lead to ℎ3 =
0, which is also an inconsistency since ℎ3 > 0. 

 

Case 2.2.3: (𝑟 = 0, 𝑠 ≠ 0, 𝑡 = 0, 𝑚 ≠ 0,
𝑔 ≠ 0, ℎ = 0) 

From Eq.3, 𝑠4 +𝑚4 = 𝑔3. (Under these 

conditions, Eq.4 is automatically satisfied.) Since 𝑠, 
𝑚 and 𝑔 are all integers, from Theorem 1.2 and 

Theorem 1.3 in Ismail and Mohd Atan4, the triplet 

(𝑥, 𝑦, 𝑧)  =  (𝑠,𝑚, 𝑔) is a solution to the equation 

𝑥4 + 𝑦4 = 𝑧3 if and only if 𝑠 = 𝑚 = 4𝑛3 and 𝑔 =
8𝑛4 (which contradicts the hypothesis that 𝑎 ≠ 𝑏), 

or 𝑠 = 𝑢𝑛3𝑘−1, 𝑚 = 𝑣𝑛3𝑘−1  and 𝑔 = 𝑛4𝑘−1, 

where 𝑛 = 𝑢4 + 𝑣4, and for any integer 𝑘. It follows 

from Eq.2 that 

 

(𝑎, 𝑏, 𝑐) = (𝑢𝑛3𝑘−1𝑖, 𝑣𝑛3𝑘−1𝑖, 𝑛4𝑘−1), 
where 𝑢 ≠ 𝑣. 

 

Remark 17: Case 2.3.3 leads to symmetrical 

solutions with (𝑠, 𝑡, 𝑔) = (4𝑛3, 4𝑛3, 8𝑛4) 
𝑎𝑛𝑑 (𝑠, 𝑡, 𝑔) = (𝑢𝑛3𝑘−1, 𝑣𝑛3𝑘−1, 𝑛4𝑘−1), where 

𝑛 = 𝑢4 + 𝑣4, and for any integer 𝑘. These yields, 

respectively, 

(𝑎, 𝑏, 𝑐) = (4𝑛3𝑖, 4𝑛3, 8𝑛4) 
and 

(𝑎, 𝑏, 𝑐) = (𝑢𝑛3𝑘−1𝑖, 𝑣𝑛3𝑘−1, 𝑛4𝑘−1). 
 

Remark 18:  Case 3.2.3 leads to symmetrical 

solutions with (𝑟,𝑚, 𝑔) = (4𝑛3, 4𝑛3, 8𝑛4) and 

(𝑟,𝑚, 𝑔) = (𝑢𝑛3𝑘−1, 𝑣𝑛3𝑘−1, 𝑛4𝑘−1), where 𝑛 =
𝑢4 + 𝑣4, and for any integer 𝑘. These yields, 

respectively, 

(𝑎, 𝑏, 𝑐) = (4𝑛3, 4𝑛3𝑖, 8𝑛4) 
and 

(𝑎, 𝑏, 𝑐) = (𝑢𝑛3𝑘−1, 𝑣𝑛3𝑘−1𝑖, 𝑛4𝑘−1). 
Remark 19: Case 3.3.3 leads to symmetrical 

solutions with (𝑟, 𝑡, 𝑔) = (4𝑛3, 4𝑛3, 8𝑛4) (which 

contradicts the hypothesis 𝑎 ≠ 𝑏) and (𝑟, 𝑡, 𝑔) =
(𝑢𝑛3𝑘−1, 𝑣𝑛3𝑘−1, 𝑛4𝑘−1), where 𝑛 = 𝑢4 + 𝑣4, 

and for any integer 𝑘.  This yields 

(𝑎, 𝑏, 𝑐) = (𝑢𝑛3𝑘−1, 𝑣𝑛3𝑘−1, 𝑛4𝑘−1), 
where 𝑢 ≠ 𝑣. 

 

Case 2.4.1: (𝑟 = 0, 𝑠 ≠ 0, 𝑡 ≠ 0, 𝑚 ≠ 0,
𝑔 = 0, ℎ = 0) 
An inconsistency arises under this case as follows. 

From Eq.4, 4(𝑡3𝑚− 𝑡𝑚3) = 0, from which 

4𝑡𝑚(𝑡2 −𝑚2) = 0. Since 𝑡, 𝑚 ≠ 0, then 𝑡2 −
𝑚2 = 0, or equivalently, |𝑡| = |𝑚|. Upon replacing 

on Eq.3, −4𝑡4 + 𝑠4 = 0. This leads us to 
𝑠

𝑡
= ± √2, 

which is a contradiction since 
𝑠

𝑡
 is a rational while √2 

is not. Therefore, the equation under this case is not 

considered. 

 

Remark 20: A similar inconsistency arises in 

Case 3.4.1, Case 4.2.1, and Case 4.3.1. 

 

Case 2.4.2: (𝑟 = 0, 𝑠 ≠ 0, 𝑡 ≠ 0, 𝑚 ≠ 0,
𝑔 = 0, ℎ ≠ 0) 

An inconsistency arises under this case as 

follows. From Eq.3, 𝑡4 − 6𝑡2𝑚2 +𝑚4 + 𝑠4 = 0. 

Rearranging this equation yields 

(
𝑠2

𝑚2)

2

+ (
𝑡2 − 3𝑚2

𝑚2 )

2

= 8. 

Also, 8 = 22 + 22. These two equations imply that 
𝑠2

𝑚2 = 2   and  
𝑡2−3𝑚2

𝑚2 = ±2, 

where the first equality gives rise to a contradiction 

since 
𝑠

𝑚
= ±√2. Therefore, the equation under this 

case is not considered. 
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Remark 21: A similar inconsistency arises in 

Case 3.4.2, Case 4.2.2 and Case 4.3.2. 

 

Case 2.4.3: (𝑟 = 0, 𝑠 ≠ 0, 𝑡 ≠ 0, 𝑚 ≠ 0,
𝑔 ≠ 0, ℎ = 0) 

Eq.3 and Eq.4 yield 

  𝑡4 − 6𝑡2𝑚2 +𝑚4 + 𝑠4 = 𝑔3,                 18 

4𝑡3𝑚− 4𝑡𝑚3 = 0,                                      19 

respectively. Here,  Eq.19 can be rewritten as 

4𝑡𝑚(𝑡2 −𝑚2) = 0. Since 𝑡, 𝑚 ≠ 0, then |𝑡| = |𝑚|. 
Substituting in Eq.18 yields 

𝑠4 − 4𝑚4 = 𝑔3.                                  20 

There are two possibilities that can be considered 

here: 

(i) |𝑠| = |𝑚|, 
(ii) |𝑠| ≠ |𝑚|. 

 

Under (i), the following theorem is obtained, which 

states the form of solutions to Eq.20 when |𝑠|  =
 |𝑚|. 

 

Theorem 1: The solutions to the equation 

𝑥4 − 4𝑦4 = 𝑧3, when |𝑥| = |𝑦|, are given by 𝑥 =
𝑠, 𝑦 = 𝑚 and 𝑧 = 𝑔, where 

(𝑠,𝑚, 𝑔) = (9𝑛3, ±9𝑛3, −27𝑛4) 
. 

Proof: Let (𝑥, 𝑦, 𝑧) = (𝑠,𝑚, 𝑔) be a solution 

to 𝑥4 − 4𝑦4 = 𝑧3 with |𝑠| = |𝑚|. Then, 

                                                               

−3𝑚4 = 𝑔3                                                      21 

This clearly implies that 3 ∣ 𝑔 and 𝑔 is negative. Let 

𝑔 = −3𝑒𝑢, where gcd(3, 𝑢) = 1 and 𝑒 > 1. Thus, 

from Eq.21, the equation 

−3𝑚4 = −33𝑒𝑢3 
is obtained, which yields 

𝑚 = ±3
3𝑒−1

4 𝑢
3

4.                                        22 

Since 𝑚 is an integer, then 
3𝑒−1

4
 is an integer and 

there exists an integer 𝑣 such that 𝑢 = 𝑣4. Thus, 

3𝑒 − 1 ≡ 0 (mod 4), which on simplifying gives 

𝑒 = 3 + 4𝑗 for some integer 𝑗. It follows from Eq.22 

that 

𝑚 = ±32+3𝑗𝑣3.                                      23 

By Eq.21 and Eq.23, 𝑔3 = −3(32+3𝑗𝑣3)
4
=

−33(3𝑗𝑣)
4
. Let 𝑛 = 3𝑗𝑣. Then, 𝑔 = −27𝑛4, 

from which Eq.23 gives 𝑚 = ±9𝑛3. Therefore, 𝑠 =
±9𝑛3. Hence, considering that |𝑠| = |𝑚| (or 𝑠 =
±𝑚) yields 

(𝑠,𝑚, 𝑔) = (9𝑛3, ±9𝑛3, −27𝑛4), 
as asserted. ∎ 

 

Now, remembering that |𝑡| = |𝑚|, the 

solutions for the system Eq.18–Eq.19 under the 

condition |𝑠| = |𝑚| are given by 

(𝑠, 𝑡,𝑚, 𝑔) = (9𝑛3, 9𝑛3, ±9𝑛3, −27𝑛4) 

and 

(𝑠, 𝑡,𝑚, 𝑔) = (9𝑛3, −9𝑛3, ±9𝑛3, −27𝑛4). 
This, in turn, gives us the solutions to the original 

Eq.1, as  

(𝑎, 𝑏, 𝑐) = (9𝑛3𝑖, 9𝑛3(1 ± 𝑖), −27𝑛4) 
and    

(𝑎, 𝑏, 𝑐) = (9𝑛3𝑖, −9𝑛3(1 ± 𝑖), −27𝑛4). 
 

Next, under (ii), Eq.20 has no solutions when 

|𝑠| ≠ |𝑚|. First, the following result is stated. 

 

Lemma 1: Let 𝑢 and 𝑣 be integers such that 

gcd(𝑢, 𝑣) = 1, and let gcd(𝑢2 − 2𝑣2, 𝑢2 +
2𝑣2) = 𝑑. Then, 𝑑 = 1 if 𝑢 is odd and 𝑑 = 2 if 𝑢 

is even. 

 

Proof: Let gcd(𝑢2 − 2𝑣2, 𝑢2 + 2𝑣2) = 𝑑. 

There exist 𝑠 and 𝑡 such that 

𝑢2 − 2𝑣2 = 𝑑𝑠    and       𝑢2 + 2𝑣2 = 𝑑𝑡. 
Suppose first that 𝑢 is odd. Then, 𝑑 is odd since both 

𝑢2 − 2𝑣2 and 𝑢2 + 2𝑣2 are odd. Also, 

2𝑢2 = 𝑑(𝑠 + 𝑡)   and   4𝑣2 = 𝑑(𝑡 − 𝑠). 
Since gcd(𝑑, 2) = 1, then 𝑑 ∣ 𝑢2  and 𝑑 ∣ 𝑣2, which 

implies that 𝑑 = 1 since gcd(𝑢, 𝑣) = 1. 

Suppose next that 𝑢 is even. Let 𝑢 = 2𝑒𝑤, 

where 𝑒 is a positive integer and gcd(2,𝑤) = 1. 

Then, 

𝑢2 − 2𝑣2 = (2𝑒𝑤)2 − 2𝑣2  and   𝑢2 + 2𝑣2 =
(2𝑒𝑤)2 + 2𝑣2, 
from which 

𝑢2 − 2𝑣2 = 2(22𝑒−1𝑤2 − 𝑣2)  and  𝑢2 + 2𝑣2 =
2(22𝑒−1𝑤2 + 𝑣2). 
Now, since gcd(𝑢, 𝑣) = 1, it follows that 𝑣 is odd 

and gcd(𝑤, 𝑣) = 1. Thus, a similar procedure as the 

above yields 

gcd(22𝑒−1𝑤2 − 𝑣2, 22𝑒−1𝑤2 + 𝑣2) = 1, 
which implies 

gcd(𝑢2 − 2𝑣2, 𝑢2 + 2𝑣2)
= gcd(2(22𝑒−1𝑤2

− 𝑣2), 2(22𝑒−1𝑤2 + 𝑣2)) = 2. 
Therefore, gcd(𝑢2 − 2𝑣2, 𝑢2 + 2𝑣2) = 1 

when 𝑢 is odd, and gcd(𝑢2 − 2𝑣2, 𝑢2 + 2𝑣2) = 2 

when 𝑢 is even, as asserted. ∎ 

 

The following lemma states the nonexistence 

of solutions for Eq.20 under certain conditions. 

 

Lemma 2: There are no integer solutions to 

𝑥4 − 4𝑦4 = 𝑧3 such that gcd(𝑥, 𝑦) = 1, 𝑥 is odd, 

and 𝑦 ≠ 0. 

 

Proof: Suppose there exist integers 𝑢, 𝑣 and 𝑔 

such that 𝑢4 − 4𝑣4 = 𝑔3, with gcd(𝑢, 𝑣) = 1, 𝑢 

odd, and 𝑣 ≠ 0. Then, 

(𝑢2 − 2𝑣2)(𝑢2 + 2𝑣2) = 𝑔3. 
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Since 𝑢 is odd, by Lemma 1, gcd(𝑢2 −
2𝑣2, 𝑢2 + 2𝑣2) = 1, so (𝑢2 + 2𝑣2) and (𝑢2 −
2𝑣2) are coprime factors of 𝑔3. Let 𝑔 = 𝑎𝑏 such that 

𝑢2 + 2𝑣2 = 𝑎3 and 𝑢2 − 2𝑣2 = 𝑏3. Then, 

gcd(𝑎, 𝑏) = 1. Moreover, it is readily seen that 

𝑎3 + 𝑏3 = 2𝑢2,                                           24 

𝑎3 − 𝑏3 = 4𝑣2.                                           25 

From Cohen9, Eq.24 has disjoint parameterized 

solutions according to the following cases (up to the 

exchange of 𝑢 and 𝑣). 

 

(a) For 𝑠, 𝑡 ∈ ℤ such that gcd(𝑠, 𝑡) = 1, 𝑠 is odd 

and 𝑠 ≢ 𝑡(mod 3), 
 

{
 
 

 
 𝑎 = (𝑠2 + 2𝑡2)(5𝑠2 + 8𝑡𝑠 + 2𝑡2)

𝑏 = −(𝑠2 + 4𝑡𝑠 − 2𝑡2)(3𝑠2 + 4𝑡𝑠 + 2𝑡2)

𝑢 = ±(𝑠2 − 2𝑡𝑠 − 2𝑡2)

(7𝑠4 + 20𝑡𝑠3 + 24𝑡2𝑠2 + 8𝑡3𝑠 + 4𝑡4)

 

 

Replacing in Eq.25 yields 

 

𝑣2 = 2𝑠(19𝑠4 − 4𝑠3𝑡 + 8𝑠𝑡3 + 4𝑡4)(𝑠4 +
4𝑠3𝑡 + 16𝑠2𝑡2 + 24𝑠𝑡3 + 12𝑡4)(𝑠2 +
𝑠𝑡 + 𝑡2)(𝑠 + 2𝑡).                                     26 

 

Since 𝑣 is an integer, at least one of the 

parameterized factors in Eq.26 must be even. 

It is proven, in turn, that none of them is even, 

which leads to a contradiction. It can readily 

be seen that it is enough to prove that 𝑠2 +
𝑠𝑡 + 𝑡2 is odd, so let us suppose it is even. 

Then, there exists an integer 𝑘 such that 𝑠2 +
𝑠𝑡 + 𝑡2 = 2𝑘. Upon rewriting, 𝑠2 + 𝑡(𝑠 +
𝑡) = 2𝑘, which implies that 𝑠 and 𝑡(𝑠 + 𝑡) 
have the same parity. Thus, 𝑡(𝑠 + 𝑡) should be 

odd, implying that 𝑡 and 𝑡 + 𝑠 are odd. 

However, this is a contradiction since 𝑡 +  𝑠 
would then be the sum of two odd numbers. 

Thus, none of the parameterized factors in 

Eq.26 is even. 

 

(b) For 𝑠, 𝑡 ∈ ℤ such that gcd(𝑠, 𝑡) = 1, 𝑠 ≢
𝑡(mod 2) and 3 ∤ 𝑡, 
 

{

𝑎 = (3𝑠2 + 2𝑡𝑠 + 𝑡2)(3𝑠2 + 6𝑡𝑠 + 𝑡2)

𝑏 = (3𝑠2 − 6𝑡𝑠 + 𝑡2)(3𝑠2 + 2𝑡𝑠 + 2𝑡2)

𝑢 = ±(3𝑠2 − 𝑡2)(9𝑠4 + 18𝑡2𝑠2 + 𝑡4)

 

Replacing in Eq.25 yields 

                           𝑣2 = 2𝑠𝑡(81𝑠4 −
6𝑠2𝑡2 + 𝑡4)(3𝑠4 − 2𝑠2𝑡2 + 3𝑡4)(3𝑠2 +
𝑡2).                       27 

Note that all the parameterized factors of Eq.27 

must be coprime. Indeed, it is known that 

gcd(𝑠, 𝑡) = 1 and it is evident that 𝑠 does not 

divide any of the remaining factors, nor does 𝑡. 
Then, only the following cases need to be 

considered: 

 

(b.1) Let 𝑑 = gcd(81𝑠4–6𝑠2𝑡2 +
𝑡4, 3𝑠4– 2𝑠2𝑡2 + 3𝑡4) and suppose 

𝑑 ≠ 1. Then, there exist integers 𝛼 

and 𝛽 such that 

                                              

81𝑠4– 6𝑠2𝑡2 + 𝑡4 = 𝑑𝛼,               28 

                                                 

3𝑠4–2𝑠2𝑡2 + 3𝑡4 = 𝑑𝛽,               29 
 

Subtracting Eq.27 times Eq.29 from 

Eq.28 yields 16𝑡2(3𝑠2–5𝑡2) =
𝑑(𝛼– 27𝛽). This implies 𝑑 ∣ 16 or 𝑑 ∣
𝑡2 or 𝑑 ∣ (3𝑠2–5𝑡2). 
 

 If 𝑑 ∣ 16, then there is a 

contradiction. Indeed, since 𝑑 ≠ 1, 

then 𝑑 must be even, implying that 

the left-hand-side of Eq.28 is also 

even, which is not possible by the 

hypothesis 𝑠 ≢ 𝑡(mod 2). 
 If 𝑑 ∣ 𝑡2, then Eq.29 yields 𝑑 ∣ 𝑠4 or 

𝑑 = 3. It is obvious that 𝑑 ∣ 𝑠4 is not 

possible since gcd(𝑠, 𝑡) = 1. On the 

other hand, if 𝑑 = 3, then Eq.28 

yields 3 ∣ 𝑡, which is a contradiction. 

 If 𝑑 ∣ (3𝑠2–5𝑡2), then there exists 

an integer 𝛾 such that 

                                                                          

3𝑠2–5𝑡2 = 𝑑𝛾.                                    30 

Multiplying Eq.28 by 3 and subtracting 

Eq.29 yields 16𝑠2(15𝑠2 − 𝑡2) =
𝑑(3𝛼–𝛽). Since it is already known 

that 𝑑 ∤ 16, then 𝑑 ∣ 𝑠2 or 𝑑 ∣ (15𝑠2 −
𝑡2). If 𝑑 ∣ 𝑠2, then Eq.28 yields 𝑑 ∣ 𝑡4, 

which is not possible because 

gcd(𝑠, 𝑡) = 1. Then, there must exist an 

integer 𝛿 such that 

                                                                           

15𝑠2– 𝑡2 = 𝑑𝛿.                                 31 

From Eq.30 and Eq.31, 24𝑡2 =
𝑑(−5𝛾 + 𝛿), implying that 𝑑 ∣ 24 or 

𝑑 ∣ 𝑡2, both of which lead to a 

contradiction as seen before. 

 

(b.2) Let 𝑑 = gcd(81𝑠4–6𝑠2𝑡2 +
𝑡4, 3𝑠2 + 𝑡2) and suppose 𝑑 ≠ 1. 

Then, there exist integers 𝛼 and 𝛽 such 

that 

                                                    

81𝑠4–6𝑠2𝑡2 + 𝑡4 = 𝑑𝛼,                         32 

                                                                  

3𝑠2 + 𝑡2 = 𝑑𝛽.                                  33 
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Multiplying Eq.33 by 𝑡2 and 

subtracting it from Eq.32 yields 

9𝑠2(9𝑠2– 𝑡2) = 𝑑(𝛼– 𝑡2𝛽). 
By similar arguments as in case 

(b.1), it is readily seen that 𝑑 ∤ 9 

and 𝑑 ∤ 𝑠2, which implies that 𝑑 ∣
(9𝑠2 − 𝑡2). Then, there exists an 

integer 𝛾 such that 

                                                             

9𝑠2– 𝑡2 = 𝑑𝛾                                  34 
From Eq.33 and Eq.34, 12𝑠2 = 𝑑(𝛽 +
𝛾), implying 𝑑 ∣ 12 or 𝑑 ∣ 𝑠2, both of 

which lead to a contradiction. 

 

(b.3) Let 𝑑 = gcd(3𝑠4– 2𝑠2𝑡2 +
3𝑡4, 3𝑠2 + 𝑡2) and suppose 𝑑 ≠ 1. 

Then, there exist integers 𝛼 and 𝛽 such 

that 

                                                    

3𝑠4–2𝑠2𝑡2 + 3𝑡4 = 𝑑𝛼,                        35 

                                                                  

3𝑠2 + 𝑡2 = 𝑑𝛽.                                  36 

Multiplying Eq.36 by 3𝑡2 and 

subtracting it from Eq.35 yields 

𝑠2(3𝑠2– 11𝑡2) = 𝑑(𝛼– 𝑡2𝛽). 
Similar arguments as in case (b.1) show 

that 𝑑 ∤ 𝑠2, thus 𝑑 ∣ (3𝑠2 − 11𝑡2). 
Then, there exists an integer 𝛾 such that 

                                                               

3𝑠2 − 11𝑡2 = 𝑑𝛾.                             37 
 

From Eq.36 and Eq.37, 12𝑡2 = 𝑑(𝛽– 𝛾), 
implying 𝑑 ∣ 12 or 𝑑 ∣ 𝑡2, both of which lead 

to contradictions. 

It is proven that all parameterized factors on 

Eq.27 are coprime, concluding that all those 

factors are squares, except for the one that is 

even (either 𝑠 or 𝑡, which must be of the form 

22𝑘−1𝛼2 for some positive integers 𝑘 and 𝛼). 

In particular, 

                                                              

3𝑠4–2𝑠2𝑡2 + 3𝑡4 = 𝑟2,                           38 

for some integer 𝑟. Since 𝑠 ≢ 𝑡(mod 2), 

there exists an integer 𝑘 such that 𝑠– 𝑡 =
2𝑘 + 1 or, equivalently, 𝑠 = 2𝑘 + 𝑡 + 1. 

Replacing on Eq.38 yields 

 

𝑟2 = 48𝑘4 + 96𝑘3𝑡 + 64𝑘2𝑡2 + 16𝑘𝑡3

+ 4𝑡4 + 96𝑘3 + 144𝑘2𝑡
+ 64𝑘𝑡2+ 8𝑡3 + 72𝑘2

+ 72𝑘𝑡 + 16𝑡2+ 24𝑘
+ 12𝑡 + 3. 

It can be seen that the left-hand-side of this 

equation has the form 4𝑛 + 3 for some integer 

𝑛,  i.e., 4𝑛 + 3 = 𝑟2. However, 𝑟2 ≢ 3(mod 

4) for all 𝑟 ∈ ℤ, which leads to a contradiction. 

(c) For 𝑠, 𝑡 ∈ ℤ such that gcd(𝑠, 𝑡) = 1, 𝑠 is odd 

and 3 ∤ 𝑡, 
 

{
𝑎 = −3𝑠4 + 12𝑡2𝑠2 + 4𝑡4,

𝑏 = 3𝑠4 + 12𝑡2𝑠2 − 4𝑡4,

𝑢 = 6𝑡𝑠(3𝑠4 + 4𝑡4).

 

 Since 𝑢 is odd by hypothesis, this is a 

contradiction. Hence, this case does not 

need to be considered. 

(d) For 𝑠, 𝑡 ∈ ℤ such that gcd(𝑠, 𝑡) = 1, 𝑡 is odd 

and 3 ∤ 𝑡, 

{

𝑎 = −124 + 12𝑡2𝑠2 + 𝑡4,

𝑏 = 12𝑠4 + 12𝑡2𝑠2 − 𝑡4,

𝑢 = 6𝑡𝑠(12𝑠4 + 𝑡4).

 

Since 𝑢 is odd by hypothesis, this is a contradiction. 

Hence, this case does not need to be 

considered. 

 

Therefore, there are no integer solutions to 

𝑥4–4𝑦4 = 𝑧3 with gcd(𝑥, 𝑦) = 1, 𝑥 odd, and 

𝑦 ≠ 0. ∎ 

 

The following result states the nonexistence 

of solutions to Eq.20 when gcd(𝑥, 𝑦) = 1 and 𝑥 is 

even. Notice that these conditions automatically 

imply that 𝑦 ≠ 0. Thus, this result is 

“complementary” to the previous lemma considering 

exactly the same hypotheses, except for the fact that 

𝑥 is now even. 

 

Lemma 3: There are no integer solutions to 

𝑥4– 4𝑦4 = 𝑧3 with gcd(𝑥, 𝑦) = 1 and 𝑥 even. 

Proof: Suppose 𝑥 = 𝑢, 𝑦 = 𝑣 and 𝑧 = 𝑔 

satisfy the equation 𝑥4–4𝑦4 = 𝑧3, with 

gcd(𝑢, 𝑣)=1 and 𝑢 an even integer. Let 𝑢 = 2𝑒𝑤, 

with 𝑒 ≥ 1 and gcd(2,𝑤) =. Then, 

(2𝑒𝑤)4– 4𝑣4 = 𝑔3, 
from which 

4(24𝑒−1𝑤4–𝑣4) = 𝑔3. 
It can be clearly seen that 𝑔 is even. Hence, let 𝑔 =
2𝑓𝑚, with 𝑓 ≥ 1 and gcd(2,𝑚) = 1. Then, 

4(24𝑒−2𝑤4–𝑣4) = 23𝑓𝑚3, 
or equivalently, 

                                                

24𝑒−2𝑤4–𝑣4 = 23𝑓−2𝑚3.                           39 
 

Since 𝑓 ≥ 1, then 3𝑓– 2 ≥ 1, and the right-hand-

side of Eq.39 is even. However, since 4𝑒– 2 > 0 and 

𝑣 is odd, the left-hand-side of Eq.39 must be odd. 

Therefore, there is a contradiction. As a conclusion, 

there are no integer solutions 𝑥 = 𝑢, 𝑦 = 𝑣 and 𝑧 =
𝑔 to the equation 𝑥4–4𝑦4 = 𝑧3 such that 

gcd(𝑢, 𝑣) = 1 and 𝑢 is even. ∎ 
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The following result shows the nonexistence 

of nontrivial solutions to Eq.20 such that 𝑠 and 𝑚 are 

coprime. 

 

Lemma 4: There exist no integer solutions 

to the equation 𝑥4– 4𝑦4 = 𝑧3 with gcd(𝑥, 𝑦) = 1 

and 𝑦 ≠ 0.  

 

Proof: The direct consequence of Lemma 2 

and Lemma 3. ∎ 

 

Finally, the following theorem states the 

nonexistence of nontrivial solutions to Eq.20 when 

|𝑥| ≠ |𝑦|, i.e., the main result for (ii). 

 

Theorem 2: The equation 𝑥4–4𝑦4 = 𝑧3 has 

no integer solutions with |𝑥| ≠ |𝑦| and 𝑥, 𝑦 ≠ 0. 
 

Proof: The method of contradiction is 

employed. Suppose there exists a solution 𝑥 = 𝑠, 
𝑦 = 𝑚 and 𝑧 = 𝑔 to this equation with |𝑥| ≠ |𝑦| and 

𝑥, 𝑦 ≠ 0. Then, 𝑠4 − 4𝑚4 = 𝑔3 with |𝑠| ≠ |𝑚|. Let 

𝑑 = gcd(𝑠,𝑚), 𝑢 =
𝑠

𝑑
 and 𝑣 =

𝑚

𝑑
. Then, gcd(𝑢, 𝑣) =

1 and 𝑣 ≠ 0. Since 𝑑 ∣ 𝑠 and 𝑑 ∣ 𝑚, it yields 𝑑4 ∣ 𝑔3. 

That is, 

𝑢4 − 4𝑣4 =
𝑔3

𝑑4
,                                            40 

where 
𝑔3

𝑑4
   is an integer. Let =

𝑔3

𝑑4
 . Then, 𝑤𝑑4 = 𝑔3, 

and thus = 𝑤
1

3 𝑑
4

3 . Since 𝑔 is an integer, there exist 

integers ℎ and 𝑘 such that 𝑤 = ℎ3 and 𝑑 = 𝑘3. 

Replacing in Eq.40 yields 𝑢4– 4𝑣4 = ℎ3. Thus, 

(𝑢, 𝑣, ℎ) is a solution to the equation 𝑥4 − 4𝑦4 = 𝑧3 

with gcd(𝑢, 𝑣) = 1. This contradicts Lemma 4. 

Therefore, there are no integer solutions 𝑥 = 𝑠, 𝑦 =
𝑚 and 𝑧 = 𝑔 to the equation 𝑥4 − 4𝑦4 = 𝑧3 with 

|𝑠| ≠ |𝑚| and 𝑥, 𝑦 ≠ 0. ∎ 

 

Corollary 1: The only integer solutions to 

the equation 𝑥4– 4𝑦4 = 𝑧3 with |𝑥| ≠ |𝑦| are 

(𝑥, 𝑦, 𝑧) = (0,±23𝑘+1𝑢3, −24𝑘+2𝑢4), for 𝑘 ≥ 0 

and 𝑢 ∈ ℤ, and (𝑥, 𝑦, 𝑧) = (𝑛3, 0, 𝑛4), for 𝑛 ∈ ℤ. 

 

Proof: Notice that, given the assertion of the 

previous theorem, it is enough to prove that there 

exist solutions such that |𝑥| ≠ |𝑦| when 𝑥 = 0 or 

𝑦 = 0. Indeed, suppose 𝑥 = 0. Then, −4𝑦4 = 𝑧3, 

which is the same as Eq.5 with 𝑦 = 𝑚 and 𝑧 = 𝑔. 

The solutions to this equation are given as 

(𝑥, 𝑦, 𝑧) = (0,±23𝑘+1𝑢3, −24𝑘+2𝑢4), for 𝑘 ≥ 0 

and 𝑢 ∈ ℤ. 

On the other hand, suppose 𝑦 = 0. Then, 

   𝑥 = 𝑧
3

4.                                                      41 

Since 𝑥 is an integer, there exists an integer 𝑛 such 

that 𝑧 = 𝑛4. Replacing in Eq.41 yields 𝑥 = 𝑛3. ∎ 

 

Remark 22: Although the previous corollary 

shows there exist solutions for Eq.20 with |𝑠| ≠ |𝑚|, 
it does not need to be considered under the context of 

the case currently studied (i.e., Case 2.4.3) because 

one of the corresponding conditions is 𝑚 ≠ 0.  

 

Remark 23: Case 3.4.3 yields symmetrical 

solutions with 

(𝑟, 𝑡,𝑚, 𝑔) = (9𝑛3, 9𝑛3, ±9𝑛3, −27𝑛4), 
(𝑟, 𝑡,𝑚, 𝑔) = (9𝑛3, −9𝑛3, ±9𝑛3, −27𝑛4). 

This leads to 

(𝑎, 𝑏, 𝑐) = (9𝑛3, 9𝑛3(1 ± 𝑖), −27𝑛4) 
and  

(𝑎, 𝑏, 𝑐) = (9𝑛3, −9𝑛3(1 ± 𝑖), −27𝑛4). 
Remark 24: Case 4.2.3 yields symmetrical 

solutions with 

(𝑟, 𝑠,𝑚, 𝑔) = (9𝑛3, ±9𝑛3, 9𝑛3, −27𝑛4), 
(𝑟, 𝑠,𝑚, 𝑔) = (−9𝑛3, ±9𝑛3, 9𝑛3, −27𝑛4). 

This leads to 

(𝑎, 𝑏, 𝑐) = (9𝑛3(1 ± 𝑖), 9𝑛3𝑖, −27𝑛4) 
and 

(𝑎, 𝑏, 𝑐) = (−9𝑛3(1 ± 𝑖), 9𝑛3𝑖, −27𝑛4). 
Remark 25: Case 4.3.3 yields symmetrical 

solutions with 

(𝑟, 𝑠, 𝑡, 𝑔) = (9𝑛3, ±9𝑛3, 9𝑛3, −27𝑛4), 
(𝑟, 𝑠, 𝑡, 𝑔) = (−9𝑛3, ±9𝑛3, 9𝑛3, −27𝑛4). 

This leads to 

(𝑎, 𝑏, 𝑐) = (9𝑛3(1 ± 𝑖), 9𝑛3, −27𝑛4) 
and 

(𝑎, 𝑏, 𝑐) = (−9𝑛3(1 ± 𝑖), 9𝑛3, −27𝑛4). 
 

Case 2.4.4: (𝑟 = 0, 𝑠 ≠ 0, 𝑡 ≠ 0, 𝑚 ≠ 0,
𝑔 ≠ 0, ℎ ≠ 0) 

This case will not be considered as it requires 

a more in-depth analysis than what is intended in the 

current discussion. 

Remark 26: Case 3.4.4, Case 4.2.4 and Case 

4.3.4 are symmetrical and should have the same 

solutions. 

Remark 27: Case 4.4.2 and Case 4.4.3 also 

fall beyond the scope of our current discussion; 

hence they will not be analyzed here. 

 

Case 3. Table. 3, shows all possible 

combinations of values studied under this case. 

Notice that all these possibilities are symmetrical to 

previous subcases and have already been solved. 
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Table 3. All possible combinations of values under 

Case 3. 

Case 3: 

𝑟 ≠
0, 𝑠 = 0 

Case 3.1: 

𝑡 = 0,𝑚 = 0 

Case 3.1.1: 𝑔 = 0, ℎ = 0 

Case 3.1.2: 𝑔 = 0, ℎ ≠ 0 

Case 3.1.3: 𝑔 ≠ 0, ℎ = 0 

Case 3.1.4: 𝑔 ≠ 0, ℎ ≠ 0 

Case 

3.2: 𝑡 =
0,𝑚 ≠ 0 

Case 3.2.1: 𝑔 = 0, ℎ = 0 

Case 3.2.2: 𝑔 = 0, ℎ ≠ 0 

Case 3.2.3: 𝑔 ≠ 0, ℎ = 0 

Case 3.2.4: 𝑔 ≠ 0, ℎ ≠ 0 

Case 3.3: 

𝑡 ≠ 0,𝑚 = 0 

Case 3.3.1: 𝑔 = 0, ℎ = 0 

Case 3.3.2: 𝑔 = 0, ℎ ≠ 0 

Case 3.3.3: 𝑔 ≠ 0, ℎ = 0 

Case 3.3.4: 𝑔 ≠ 0, ℎ ≠ 0 

Case 

3.4: 𝑡 ≠
0,𝑚 ≠ 0 

Case 3.4.1: 𝑔 = 0, ℎ = 0 

Case 3.4.2: 𝑔 = 0, ℎ ≠ 0 

Case 3.4.3: 𝑔 ≠ 0, ℎ = 0 

Case 3.4.4: 𝑔 ≠ 0, ℎ ≠ 0 

 

Case 4. Table. 4 shows all possible 

combinations of values studied under this case. 

 

Table 4. All possible combinations of values under 

Case 4. 

Case 4: 

𝑟 ≠
0, 𝑠 ≠ 0 

Case 

4.1: 𝑡 =
0,𝑚 = 0 

Case 4.1.1: 𝑔 = 0, ℎ = 0 

Case 4.1.2: 𝑔 = 0, ℎ ≠ 0 

Case 4.1.3: 𝑔 ≠ 0, ℎ = 0 

Case 4.1.4: 𝑔 ≠ 0, ℎ ≠ 0 

Case 4.2: 

𝑡 = 0,𝑚 ≠ 0 

Case 4.2.1: 𝑔 = 0, ℎ = 0 

Case 4.2.2: 𝑔 = 0, ℎ ≠ 0 

Case 4.2.3: 𝑔 ≠ 0, ℎ = 0 

Case 4.2.4: 𝑔 ≠ 0, ℎ ≠ 0 

Case 4.3: 

𝑡 ≠ 0,𝑚 = 0 

Case 4.3.1: 𝑔 = 0, ℎ = 0 

Case 4.3.2: 𝑔 = 0, ℎ ≠ 0 

Case 4.3.3: 𝑔 ≠ 0, ℎ = 0 

Case 4.3.4: 𝑔 ≠ 0, ℎ ≠ 0 

Case 4.4: 

𝑡 ≠ 0,𝑚 ≠ 0 

Case 4.4.1: 𝑔 = 0, ℎ = 0 

Case 4.4.2: 𝑔 = 0, ℎ ≠ 0 

Case 4.4.3: 𝑔 ≠ 0, ℎ = 0 

Case 4.4.4: 𝑔 ≠ 0, ℎ ≠ 0 

 

Case 4.4.1: (𝑟 ≠ 0, 𝑠 ≠ 0, 𝑡 ≠ 0, 𝑚 ≠ 0,
𝑔 = 0, ℎ = 0) 

From Eq.3 and Eq.4, the following system of 

equations is obtained: 

𝑟4 + 𝑡4− 6(𝑟2𝑠2 + 𝑡2𝑚2) + 𝑠4 +𝑚4 = 0  
         4(𝑟3𝑠 − 𝑟𝑠3 + 𝑡3𝑚− 𝑡𝑚3) = 0, 

which, after reordering and factorization, can be 

written as 

(𝑟2 − 𝑠2)2− 4𝑟2𝑠2+ (𝑡2 −𝑚2)2− 4𝑡2𝑚2 = 0 
4𝑟𝑠(𝑟2− 𝑠2) + 4𝑡𝑚(𝑡2 −𝑚2) = 0. 

By letting 𝛼 = 𝑟2 − 𝑠2, 𝛽 = 2𝑟𝑠, 𝛾 = 𝑡2 −𝑚2, 
and 𝛿 = 2𝑡𝑚, this can be further rewritten as 

𝛼2 − 𝛽2+ 𝛾2 − 𝛿2 = 0                                     42 

2𝛼𝛽 +  2𝛾𝛿 =  0.                                      43 

Since 𝑟, 𝑠 ≠ 0, it is evident that 𝛽 ≠ 0. Thus, 

dividing both sides of Eq.43 by 𝛽 yields 

                                                                

𝑎 = −
𝜆𝛿

𝛽
 .                                                             44 

Replacing Eq.44 into Eq.42 and solving for 𝛽2 

yields 𝛽2 = ±𝛾2, implying that 𝛽 = 𝛾 or 𝛽 = −𝛾. 

Suppose 𝛽 = 𝛾. Replacing on Eq.44 results in 

𝛼 = −𝛿. Then, the following system of equations is 

obtained given by 

𝑡2 −𝑚2 = 2𝑟𝑠 
𝑟2 − 𝑠2 = −2𝑡𝑚. 

Solving in a similar manner as the previous system, 

this results in 𝑠2 =
(𝑡+𝑚)2

2
  or 𝑠2 = −

(𝑡+𝑚)2

2
, both of 

which lead to a contradiction because 𝑠, 𝑡 and 𝑚 are 

integers. 

Suppose now that 𝛽 = −𝛾. Replacing on 

Eq.44 results in 𝛼 = 𝛿. Then, the following system 

of equations 

𝑡2 −𝑚2 = −2𝑟𝑠  
    𝑟2 − 𝑠2 = 2𝑡𝑚 

is obtained. Observe that this system is the same as 

the previous one, but with 𝑡 and 𝑚 exchanged. Thus, 

no solutions exist. Therefore, the equation under this 

case is not considered. 

 

Case 4.4.4: (𝑟 ≠ 0, 𝑠 ≠ 0, 𝑡 ≠ 0, 𝑚 ≠ 0,
𝑔 ≠ 0, ℎ ≠ 0) 

Observe that solving this case is equivalent to 

obtaining a general solution for Eq.1. The next 

section is dedicated exclusively to this endeavour. 

 

The general form of solutions 
In this section, the general form of the 

solutions to equation Eq.1 is studied. For this 

purpose, the knowledge gathered in the previous 

section is employed. The following conjecture states 

a reasonable property proved by Cohen9 for the case 

of rational integers. Moreover, Theorem 3.1 of Ismail 

et al.8 implies this assumption to be true for the case 

𝑥 = 𝑦 in Gaussian integers, and the results of our 

previous discussion seem to support it for 𝑥 ≠ 𝑦. 

 

Conjecture 1: Let (𝑥, 𝑦, 𝑧) = (𝑎, 𝑏, 𝑐) be a 

solution to 𝑥4 + 𝑦4 = 𝑧3 with 𝑥𝑦𝑧 ≠  0 in Gaussian 

integers. Then, gcd(𝑎, 𝑏, 𝑐) ≠ 1. (Notice that this 
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implies that gcd(𝑎, 𝑏, 𝑐) ∉ {+1,−1,+𝑖, −𝑖}, i.e., the 

GCD is not a unit.) 

 

Theorem 3: The triplet (𝑥, 𝑦, 𝑧) = (𝑎, 𝑏, 𝑐) is 

a solution to 𝑥4 + 𝑦4 = 𝑧3 with 𝑥 ≠ 𝑦 in Gaussian 

integers if and only if there exist 𝛼, 𝑛, 𝑢, 𝑣 ∈ ℤ[𝑖], 
with 𝑢 ≠ 𝑣 and 𝑛 = 𝑢4 + 𝑣4, such that 

𝑎 =
𝛼3𝑛3𝑘−1𝑢, 

𝑏 = 𝛼3𝑛3𝑘−1𝑢, and  𝑐 =
𝛼4𝑛4𝑘 

for some integer 𝑘 > 0. 

 

Proof. It is trivially evident that if 𝑎, 𝑏, 𝑐 have 

the stated form, then the triplet (𝑥, 𝑦, 𝑧) = (𝑎, 𝑏, 𝑐) is 

a solution of the equation. On the other hand, suppose 

(𝑥, 𝑦, 𝑧) = (𝑎, 𝑏, 𝑐) is a solution to the Diophantine 

equation 𝑥4 + 𝑦4 = 𝑧3 with 𝑥 ≠ 𝑦 in Gaussian 

integers. The following proves that 𝑎, 𝑏, 𝑐 have the 

form indicated in the theorem statement. Indeed,  

                                                                   

𝑎4 + 𝑏4 = 𝑐3.                                                       45 

Let 𝑑 = gcd(𝑎, 𝑏, 𝑐) and 𝑢, 𝑣, 𝑤 ∈ ℤ[𝑖] such that 

𝑎 = 𝑑𝑢, 𝑏 = 𝑑𝑣 and 𝑐 = 𝑑𝑤.    46                                                     

Since 𝑎 ≠ 𝑏, it is evident that 𝑢 ≠ 𝑣. Dividing both 

sides of Eq.45 by 𝑑3 yields 

𝑑(𝑢4 + 𝑣4) = 𝑤3.                                  47 

Let 𝑛 = 𝑢4 + 𝑣4. Then, Eq.47 becomes 
                                                                       

𝑑𝑛 = 𝑤3.                                                                          48 

Suppose 𝑑 is a cube, then 𝑛 would also be a cube, i.e., 

𝑝3 = 𝑢4 + 𝑣4 for some 𝑝 ∈ ℤ[𝑖]. But, gcd(𝑢, 𝑣, 𝑝) =
gcd(𝑢, 𝑣) = 1, which contradicts Conjecture 1. 

Therefore, 𝑑 cannot be a cube, which yields 𝑑 =
𝛼3𝑛3𝑘−1 for some 𝛼 ∈ ℤ[𝑖] and some integer 𝑘 >
0. Then, Eq.48 implies 𝑤 = 𝛼𝑛𝑘. Therefore, 

replacing on Eq.46 gives 

𝑎 = 𝛼3𝑛3𝑘−1𝑢,   𝑏 = 𝛼3𝑛3𝑘−1𝑢,    and    𝑐 =
𝛼4𝑛4𝑘 

as asserted. ∎ 

 

Corollary 2: If the triplet (𝑥, 𝑦, 𝑧) = (𝑎, 𝑏, 𝑐) 
is a solution to the Diophantine equation 𝑥4 + 𝑦4 =
𝑧3 with 𝑥 ≠ 𝑦 in Gaussian integers, then 

gcd(𝑎, 𝑏, 𝑐) = 𝛼3𝑛3𝑘−1, where 𝛼, 𝑛 and 𝑘 are as in 

Theorem 3. 

Remark 28: This result applies to the equation 

𝑥4 + 𝑦4 = 𝑧3 with 𝑥 ≠ 𝑦 in rational integers ℤ. 

Therefore, it generalizes the result of Theorem 1.3 

in Ismail and Mohd Atan4. 

 
Conclusions: 

In this work, the algebraic properties of the 

𝑥4 + 𝑦4 = 𝑧3 in Gaussian integers for 𝑥 ≠ 𝑦 have 

been examined. The main focus has been on 

studying some of the conditions that give rise to 

nontrivial solutions and their particular forms. Our 

findings show the existence of infinitely many 

solutions. Since the analytical method used in this 

study is based on simple algebraic properties, it can be 

easily generalized to study the behavior and 

conditions for the existence of solutions to other 

Diophantine equations, allowing a deeper 

understanding, even when there is no general 

solution is known. In the particular case of the 

current study, a general solution has been found to 

the equation 𝑥4 + 𝑦4 = 𝑧3 in Gaussian integers, 

for 𝑥 ≠ 𝑦. 
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𝑥4حلول غاوسي الصحيحة لمعادلة ديوفانتين  + 𝑦4 = 𝑧3  لـx ≠ y 

 
 4كاي سيونك ياو    3دييكو سجاس فسكارا    2كامل اريفين موحد اتان  1شاهرينا إسماعيل

 
 ماليزيا ،كلية العلوم والتكنولوجيا، جامعة سينس اسلام 1
 ماليزيا ،معهد البحوث الرياضية، جامعة برتا 1
 قسم العلوم الدقيقة ، كلية الهندسة والعمارة ، جامعة بريفادا بوليفيانا ، كوتشابامبا ، بوليفيا. 1
 ماليزيا ،قسم الرياضيات والاحصاء، كلية العلوم، جامعة برتا 1
 كلية علوم وهندسة الكمبيوتر، كلية الهندسة ، جامعة نانيانغ التكنولوجية ، سنغافورة 1

             

 :الخلاصة

𝑥4تمت مناقشة حساب تحديد الحلول لمعادلة ديوفانتين  + 𝑦4 = 𝑧3  على الحلقة الصحيحة الغاوسية للحالة المحددة لـx≠ y .

نا إليها لتتضمن المناقشة نتائج أولية مختلفة استخدمت لاحقاً لبناء نظرية المذيب لمعادلة ديوفانتين التي تمت دراستها. تظهر النتائج التي توص

لا حصر له من الحلول. نظرًا لأن الطريقة التحليلية المستخدمة هنا والتي تستند إلى خصائص جبرية بسيطة ، لذا يمكن تعميمها وجود عدد 

 بسهولة لدراسة السلوك والشروط لوجود حلول لمعادلات ديوفانتين الأخرى ، مما يسمح بفهم أعمق ، حتى في حالة عدم وجود حل عام معروف.

 
 ناظرةحلول مت حلول غير بديهية، الخصائص الجبرية، معادلة ديوفانتين، العدد الصحيح الغاوسي، المعادلة الرباعية، ية:الكلمات المفتاح
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