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Abstract:

The investigation of determining solutions for the Diophantine equation x* + y* = z3 over the
Gaussian integer ring for the specific case of x # y is discussed. The discussion includes various
preliminary results later used to build the resolvent theory of the Diophantine equation studied. Our findings
show the existence of infinitely many solutions. Since the analytical method used here is based on simple
algebraic properties, it can be easily generalized to study the behavior and the conditions for the existence
of solutions to other Diophantine equations, allowing a deeper understanding, even when no general

solution is known.

Keywords: Algebraic properties, Diophantine equation, Gaussian integer, quartic equation, nontrivial

solutions, symmetrical solutions.

Introduction:

The field of Diophantine equations (DEs) is
ancient and vast, where no general method exists to
decide whether a given DE has any solution or how
many. Many studies were conducted in the past on
solving equations in the ring of Gaussian integers.
For example, Szabé! investigated some fourth-
degree DEs in Gaussian integers, stating that for
certain choices of the coefficients a,b,c, the
solutions of the equation ax* + by* =cz? in
Gaussian integers satisfy xy = 0. Apart from that,
Najman? showed that the equation x* + y* = iz?
has only trivial solutions in Gaussian integers. Then,
Emory? showed that nontrivial quadratic solutions
exist for x* + y* = d?z* when either d = 1 or d
is a congruent number. Apart from that, Ismail and
Mohd Atan* investigated the integral solutions of x*
+ y* = z% and discovered the existence of infinitely
many solutions to this type of DE in the ring of

integers for both cases, x = y and x # y. Moreover,
Izadi et al.> examined solutions in the Gaussian
integers for different choices of a, b and ¢ for the
Diophantine equation ax* + by* = cz2.
Similarly, Izadi et al.® examined a class of fourth-
power DEs of the form x* + kx?y? + y* = z2 and
ax* + by* = cz? inthe Gaussian integers, where a
and b are prime integers. In recent years, Soderlund’
discovered that the only primitive non-zero integer
solutions to the Fermat quartic 34x* + y* = z* are
(x,y,z) = (£2,%3,45). The proofs are based on a
previous complete solution given to another Fermat
quartic, namely x*+y*=17z*  Moreover,
Jakimczuk® investigated the equation x* — y* = z5,
and showed that if s is an odd prime, then the
equation has infinitely many solutions (x,y,z)
where x >y > 0 and z > 0. Besides, Ismail et al®
determined the gaussian integer zeroes of
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F(x,z) = 2x*- z3 and show the existence of
infinitely many non-trivial zeroes for F(x,z) =
2x* - z3 under the general formx = (1 + i)y3
and ¢ = —2y* for y € Z[i]. In recent years, Li°
studied the Diophantine equation x* + 2"y* =1
in quadratic number fields. The author showed that
nontrivial quadratic solutions to this equation arise
from integer solutions to the equations X* +
2ny* = Z2 investigated in 1853 by Lebesgue.
Apart from that, Somanath et al. ! studied the
guadratic Diophantine equation with two
unknowns 65J2 + 225K2 - 230/K = 1600 and
determined its non-zero separate solutions in Z[i].
The authors gained a few formulae and recurrence
relations on the Gaussian integer solutions
(Jn, K,) of the DE. Moreover, Ahmadi and
Janfada!? showed that the quartic Diophantine
equations ax* + by* = cz? has only trivial
solution in the Gaussian integers for some
particular choices of a,b and c, using a method
based on elliptic curves. In fact, the authors exhibit
two null-rank related families of elliptic curves
over the Gaussian field as well as determine the
torsion groups of both families. Moreover, Tho®?
showed that if the equation x* + 2™y* = z* forn
a positive integer, has a solution (x, y, z) in a cubic
number field K with xyz # 0, then the Galois
group of the field K is the symmetric group S5. In
addition, for every positive integer d > 1, there
exists a number field K, of degree d such that this
equation has a solution (x,y, z) in K; with xyz #
0. Finally, Tho (2022)* investigated the solutions
to x* + py* = z* in cubic number fields and show
that if p is a prime congruent to 11 mod 16, the
DE only has solutions x = +z,y = 0 inany cyclic
cubic number field.

In this paper, an investigation is performed to
determine solutions for the DE x* + y* = z3 over
the Gaussian integer ring for the specific case of x #
v, which has remained unsolved. Note that the case
x = y has been solved by Ismail et al.°.

Results and Discussion:

In this section, elementary algebraic methods
are used to study the behavior of the Diophantine
equation x* + y* = z3 when x # y. Our interest is
to determine which conditions give rise to nontrivial
solutions and which ones produce no solutions or
only trivial ones.

The following analysis supports the ensuing
discussion. Suppose that (a, b, ¢) is a solution of

x*+yt =23 1
suchthat a # b, and a, b, ¢ € Z[i]. Let

a=r + si b =1t + mi, and
c =g + hi 2

where r,s,t,m,g,h €Z, and r #t or s #m.
Then, replacing Eq.1
yields

(r*+t*—6(1r2s?2 +t?m?) +s* + m*)

+4@3s —rsd + t3m — tm3)i

= (g% —3gh®) + (3g*h — k)i,
which in turn implies that
r*+t*— 6?2 +t*m?) +st+mt =g3 —
3gh?, 3
4(r3s —rs® + t3m — tm3) = 3g%2h — hS. 4

Starting from Eg.3 and Eq.4, the paper is

divided into four main cases based on possible values
for r and s. Each of these cases will then be
subdivided into four subcases based on possible
values for t and m. Finally, it will be further
subdivided into four possibilities based on values for
g and h.

Case 1. Table. 1 shows all possible
combinations of values studied under this case.

Table 1. All possible combinations of values under
Case 1.

Casel11l: g=0h=0

e _ Case 1.12: g = 0,h £ 0

0.m=0 Case1.1.3: g #0,h =0

Casel14: g+0h+#0

Casel21l: g=0h=0

Case 1.2:| Case1.22: g =0,h#+0

t=0m=0| Case1.23: g#0,h =0

Case 1 Case 1.2.4: g # 0,h £ 0
r=0,s=

0 Casel31l: g=0h=0

Case 1.3:| Case132: g=0,h#0

t#0,m=0| Case1.33: g#0,h=0

Case134:g#0,h+0

Caseld4l:g= 0h=0

Case 1.4:| Case14.2: g=0,h#0

t#0,m+#0| Case1.43: g #0,h =0

Casel44:g+#0,h+0

Case 1.1.1: (r=0,5s=0,t=0, m=0,
g=0 h=0)

Under these conditions, a = b, which is
outside of our current study. (Notice that these
conditions trivially satisfy the equation.) Therefore,
the equation under this case is not considered.

Remark 1: Due to the same reason, Case 1.1.2,
Case 1.1.3, and Case 1.1.4 are discarded. Moreover,
these lead to inconsistencies.

Case 1.21: (r=0,s=0,t=0, m=0,
g=0, h=0)
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From Eq.3, m* = 0, which is a contradiction
since m* > 0 provided that m # 0. (Notice that
Eg.4 is automatically satisfied under this case.)
Therefore, the equation, in this case, is not
considered.

Remark 2: A similar inconsistency arises in
Case 1.3.1, Case 2.1.1, and Case 3.1.1.

Remark 3: A similar inconsistency arises in
Case 1.2.2, Case 1.3.2, Case 2.1.2, and Case 3.1.2.
Moreover, from Eq.4, these cases will lead to h3 =
0, which is also a contradiction since h3 > 0.

Case 1.23: (r=0,s=0,t=0, m=0,
g+0, h=0)

From Eq.3, m* = g3. (Notice that Eq.4 is
automatically satisfied under this case.) It follows

3
that |m| = g+, with m an integer. This implies that
g = u* for some integer u. Thus, |m| = |ul|3, or
equivalently, m = u3. Hence, (m,g) = (u3,u?).
By letting u = +1,+2,+3, ... , £k, ..., where k is
an integer, infinitely many solutions for (m, g) are
obtained. In turn, this leads to infinitely many
solutions for (a, b, ¢) of the form

((a,b,c) = (0,n3i,n%))
wheren € Z.

Remark 4: Case 1.3.3 yields symmetrical
solutions with (t, g) = (u3,u*) for u € Z. This
leads to

l(a,b,c) = (0,n3,n%)]

Remark 5: Case 2.1.3 yields symmetrical
solutions with (s,g) = (u3,u*) for u € Z. This
leads to

(a,b,c) = (n%i,0,nY)]

Remark 6: Case 3.1.3 yields symmetrical
solutions with (r,g) = (u3,u*) for u € Z. This
leads to

(a,b,c) = (n3,0,n%))

Case 1.24: (r=0,s5s=0,t=0, m=0,
g#0, h#0)

An inconsistency arises under this case as
follows. From Eq.4, 3g2h — h3 = 0, from which

h(3g2 — h?) = 0. Since h = 0, then ++/3 = g,

which gives rise to a contradiction since EIS a

rational while /3 is not. Therefore, the equation
under this case is not considered.
Remark 7: A similar inconsistency arises in
Case 2.2.4, Case 2.3.4, and Case 3.3.4.
Remark 8: A similar inconsistency arises in
Case 1.3.4, Case 2.1.4, and Case 3.1.4, the
only difference being that EQ.3 is not
automatically satisfied.

Case 14.1: (r=0,s=0,t+0, m=0,
g=0, h=0)

From Eq.3, t* — 6t?m? + m* = 0, which
can be rewritten as (t2 — m?)? = 4t?>m?. Thus,
[t? —m?| = 2|tm|, which implies t2 —m? =
+2tm. Dividing both sides by t? vyields

my 2 m

() £2(3)-1=0
which represents two quadratic equations on %
Upon solving them,? =+V2+1 or? =+V2 F 1,
both of which represent a contradiction since % is

rational while +v/2 + 1 and +v2 F 1 are not.
Remark 9: A similar inconsistency arises in
Case 1.4.2, Case 4.1.1, and Case 4.1.2.

Case 143: (r=0,s=0,t+0, m=0,
g#0, h=0)

From Eq.4, 4(t3m — tm?3) = 0, which can be
rewritten as 4tm(t? —m?) = 0. Since t,m # 0,
then t?2 —m? = 0, which implies |t| = |m| or,
equivalently, t = +m. Upon replacing on Eg.3
yields

—4m* = g3, 5
Itis obviousthatg < 0and 2 | g. Then, let
g= —2%y, 6
where gcd(v,2) =1. Replacing on Eq.5
yields —4m* = —23%p3, which implies
3a—2 3
lm| =2+ v, 7

Since m is an integer, then 3a = 2(mod 4), which is
an equation whose only solutions are of the form a =
4k + 2 for k € Z. Moreover, once again, due tom
being an integer, there must exist an integer u such
that v = u*. Then, replacing on Eq.6 yields g =
—24+2y%*  and replacing on Eq.7 gives
|m| = 23k+1|y|3. Therefore, this case leads to
(t, m’g) — (23k+1u3’ i23k+1u3, _24k+2u4).
In turn, this leads to
‘(a,b,c) — (O, 23k+1u3(1 + 0), _24k+2u4),‘
fork = 0andu € Z.

Remark 10: Case 4.1.3 yields symmetrical
solutions with (r,s,g) = (£23F+1y3,
i23k+1u3, _24k+2u4) and (T, S,g) —
(£23k+1q3 F23k+1y3 _24k+2y4)  This leads
to

|(a, b, C) — (23k+1u3(1 + i)’o’_24k+2u4)’
fork > 0andu € Z.

Case 144: (r=0,s5s=0,t+0, m=0,
g*0, h#0)

From Eq.3 and Eq.4, the following system of
equations is obtained:
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t* — 6t2m? + m* = g3 — 3gh? 8

4(t3m —
tm3) = 3g%h — h3, 9
These equations now yield

(t* — 6t°m? + m*)? + (4t3m — 4tm3)?
= (g% —3gh*)* + (3g*h — h*)?,
which, after simplification, becomes
(m? + t?)* = (g? + h?)3. 10
By means of a similar method used for Case 1.2.3,
there must exist an integer « such that
t? 4+ m? = a3, 11
g?+ h? =a*. 12
Let us consider Eg.11. From Cohen®, there
exist integers u and v, with gcd(u, v) = 1, such that
the solutions to this equation have the form
(t,m, ) = (u(w? — 3v?),v(3u? — v?),u? +
v?), 13
up to the exchange of variables t and m. Replacing
Eqg.13in Eq.8 and Eq.9 and solving for g and h yields
(g,h) = (u* — 6uv? + v* 4udv — 4uvd). 14
Moreover, notice that the exchange of t and m can
be absorbed by replacing # with —A. Therefore, Eq.13
and Eqg.14 yield
l(a,b,c) = (0, (u3 = 3uv?) + (Bvu? — v3)i, (W}
— 6ulv? + v + (4udy

— 4uv3)i)
and

l(a,b,c) = (0, Bu?v — v3) + (u3 — 3uv?)i, (W}
— 6ulv? + v — (4udy
— 4uv®)i),
where gcd(u, v) = 1.

Remark 11: Considering Eqg.12 and solving for
(g, h) (see Cohen®) yields the same results as before,
after excluding non-integer solutions.

Remark 12: Notice that the conditions of this
case convert the original equation, Eq.1, into

b* = ¢3, 15
where b,c € Z[i]. This is equivalent to the system
Eq.8-Eqg.9. Moreover, taking the absolute value on
both sides of Eq.15 yields Eq.10.

Remark 13: Eq.15 can be solved—and
therefore this case—using purely complex number
techniques. Indeed, let the complex prime
decomposition of b and ¢ be

, aj
b=u;(1+i)% Hﬁ-zlpj J 16
and
c=uy(1+ )P, qf", 17
respectively, where Uy, Uy €
{+1,-1,+i,—i}; ay, ..., a, Bg ..., By are non-

negative integers, and p; and q; are complex prime

numbers. Eq.15

m
uf (1 + i)*%o l_[p;.mj = u3(1 + i)3Po 1_[ qzﬂ".
j=1 k=1

The uniqueness of the prime power decomposition in
Z[i] yields uf = u3 = 1, which implies u, = 1.
Also, 4ay = 3f,, from which there must exist an
integer y such that @y = 3y and B, = 4y.
Moreover, | = m and, after an adequate reordering,
pj = qrand4a; = 3. This last equality, in turn,
implies that there exist integers y; such that a; =
3y; and By = 4yy. Thus, replacing on Eq.16 and
Eq.17 yields

m
b=u,(1+ i)3vnpj’yf
j=1

m
=u, [ (140D np}/j
j=1

Replacing yields
l

3

and

m m 4
c=(1 +i)4v1_[p;§yk - ((1 + i)Y Hp,{k> .
k=1 k=1

Let n= (140", p] € Zil.

l(a,b,c) = (0,un3,n%),
where u € {+1,—1,+i,—i} and n € Z[i], which
is an equivalent solution for this case.

Therefore,

Remark 14: Case 4.1.4 yields symmetrical
solutions with

l(a,b,c) = (W3 = 3uv?) + Bvu? — v3)i,0, (WY
— 6uv? + v + (4uy

— 4uv®)i)
and

l(a,b,c) = (Bu?v — v3) + (U3 — 3uv?)i, 0, (WY
— 6ulv? + v*) — (4udy

— 4uv®)i),

where gcd(u,v) = 1. On the other hand,
since the respective conditions convert our original
equation into

a* = c¢3,

the solutions can also be written in the form

l(a,b,c) = (un3,0,n%),

where u € {+1,—1,+i,—i} and n € Z[i].

Case 2. Table. 2 shows all possible
combinations of values studied under this case.
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Table 2. All possible combinations of values under
Case 2.

Case211: g=0,h=0
Case 2.1 case2.1.2: g =0, #0
t=0m=
0 Case2.13: g#0,h=0
Case2.14: g#0,h+0
Case2.21: g=0,h=0

Case 221 Case2.2.2: g=0,h#0

t=0m#
0 Case223:9g#0,h=0
Case 2 Case2.2.4: g #0,h#0
r=0,s #+
0 Case2.3.1: g=0,h=0
Case  2.3] case2.3.2: g=0h=+0
t+0,m=
0 Case2.33:g#0,h=0

Case234:g+#0,h+#0
Case24.1: g=0,h=0
Case 2.4 case24.2: g=0,h =+ 0
t#+0,m=+
0 Case24.3: g #0,h=0

Case244:g+0,h+#0

Case 221: r=0,s+0,t=0, m=0,
g=0 h=0)

From Eqg.3, s*+m* =0, which is a
contradiction since s* +m* > 0. (Notice that
Eq.4 is automatically satisfied under this case.)
Therefore, the equation under this case is not
considered.

Remark 15: A similar inconsistency arises in
Case 2.3.1, Case 3.2.1, and Case 3.3.1.

Remark 16: A similar inconsistency arises in
Case 2.2.2, Case 2.3.2, Case 3.2.2, and Case 3.3.2.
Moreover, from Eq.4, these cases will lead to h3 =
0, which is also an inconsistency since h3 > 0.

Case 223: (r=0,s+0,t=0, m=0,
g#0, h=0)

From Eq.3, s*+m* = g3 (Under these
conditions, Eq.4 is automatically satisfied.) Since s,
m and g are all integers, from Theorem 1.2 and
Theorem 1.3 in Ismail and Mohd Atan?, the triplet
(x,y,z) = (s,m,g) is a solution to the equation
x*+yt=z%ifandonlyifs=m=4n3and g =
8n* (which contradicts the hypothesis that a # b),
or s=un®"1 m=vn3%"1 and g=n*"1,
where n = u* + v*, and for any integer k. It follows
from Eq.2 that

((a,b,c) = (un3*~1i,vn3*—1j,n**"1)]

where u # v.

Remark 17: Case 2.3.3 leads to symmetrical
solutions with (s,t,g) = (4n3,4n3,8n%)
and (s,t,g) = (un3%~1,yn3k=1 ntk-1y  where
n = u* + v*, and for any integer k. These yields,
respectively,

l(a, b, c) = (4n3i,4n3,8n%)

1

and

‘(Cl, b, C) = (un3k_1i, 17Tl3k—1’ n4k—1)_‘

Remark 18: Case 3.2.3 leads to symmetrical
solutions with (r,m, g) = (4n3,4n3,8n*) and
(r,m, g) = (un3*1,pn3k=1 n4=1y where n =
u* + v*, and for any integer k. These yields,
respectively,

l(a, b, c) = (4n3,4n3i,8n%)

and

(a,b,c) = (un3*=1,vn3k-1j n*k-1)]

Remark 19: Case 3.3.3 leads to symmetrical
solutions with (r,t,g) = (4n3,4n3,8n*) (which
contradicts the hypothesis a = b) and (r,t,g) =
(un3%=1, vn3k=1 k=1 where n = u* + v4,
and for any integer k. This yields

((a,b,c) = (un3*—1,vn3k-1
where u # v.

Tl4k_1),

Case 24.1: r=0,s+0,t+0, m=0,
g=0, h=0)
An inconsistency arises under this case as follows.
From Eq.4, 4(t3m—tm3) =0, from which
4tm(t?* —m?) =0. Since t, m # 0, then t?—
m? = 0, or equivalently, |t| = |m|. Upon replacing
on Eq.3, —4t* + s* = 0. This leads us to% =++2,
which is a contradiction since % is a rational while v/2

is not. Therefore, the equation under this case is not
considered.

Remark 20: A similar inconsistency arises in
Case 3.4.1, Case 4.2.1, and Case 4.3.1.

Case 242: (r=0,s+0,t+0, m=0,
g=0, h#0)

An inconsistency arises under this case as
follows. From Eq.3, t* — 6t2m? + m* + s* = 0.
Rearranging this equation yields

s2\?  [t2—3m?\°
wz) ) =
Also, 8 = 22 + 22, These two equations imply that

t2-3m?
=Z2,

SZ

— =2 and >

m m
where the first equality gives rise to a contradiction
since % = ++/2. Therefore, the equation under this

case is not considered.
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Remark 21: A similar inconsistency arises in
Case 3.4.2, Case 4.2.2 and Case 4.3.2.

Case 243: r=0,s+0,t#0, m=#0,

g+0, h=0)
Eqg.3 and Eq.4 yield
t* — 6t2m? + m* + s* = g3, 18
4t3m — 4tm3 =0, 19

respectively. Here, EQ.19 can be rewritten as
4tm(t> —m?) = 0. Since t,m # 0, then |t| = |m|.
Substituting in Eq.18 yields

st —4am* = g3, 20
There are two possibilities that can be considered
here:
(i) Is| = |ml
(ii) Is| # Im|.

Under (i), the following theorem is obtained, which
states the form of solutions to Eq.20 when |s| =
|m|.

Theorem 1: The solutions to the equation

x* — 4y* = z3, when |x| = |y|, are given by x =

s, y=m and z=y, where
(s,m,g) = (9n3,+9n3,-27n%)

Proof: Let (x,y,z) = (s,m, g) be a solution
to x* — 4y* = z3 with |s| = |m|. Then,

—-3m* = g3 21
This clearly implies that 3 | g and g is negative. Let
g = —3%u, where gcd(3,u) =1 and e > 1. Thus,
from Eq.21, the equation

—3m* = —33¢y3
is obtained, which yields
3e—1 3
m=+3 ¢+ us. 22

Since m is an integer, then % is an integer and
there exists an integer v such that u = v*. Thus,
3e —1 = 0 (mod 4), which on simplifying gives
e = 3 + 4j for some integer j. It follows from Eq.22
that

m = +32+3Jp3, 23
By Eq.21 and Eq.23, g° = —3(3”31'173)4 =
—33(3jv)4. Let n =3/v. Then, g=—27n*%
from which Eq.23 gives m = +9n3. Therefore, s =
+9n3. Hence, considering that |s| = |m| (or s =

+m) yields
(s,m,g) = (9n3,+9n3,-27n"),
as asserted. m
Now, remembering that |t| = |m],the

solutions for the system EQ.18-Eq.19 under the
condition [s| = |m]| are given by
(s,t,m, g) = (9n3,9n3,+9n3, —27n%)

and
(s,t,m,g) = (9n3,—9n3,+9n3, —27n%).
This, in turn, gives us the solutions to the original
Eq.1, as
l(a,b,c) = (9n3i,9n3(1 + i), —27n")
and
l(a,b,c) = (9n3i,—9n3(1 + i), —27nh) )

Next, under (ii), Eq.20 has no solutions when
|s| # |m]. First, the following result is stated.

Lemma 1: Letu and v be integers such that
gcd(u,v) =1, and let gcd(u? —2v%u? +
2v?) =d. Then,d =1 ifuisoddandd = 2 ifu
is even.

Proof: Let gcd(u? — 2v?,u? + 2v?) =d.
There exist s and t such that

u?—2v2=ds and u?+ 2v?=dt.
Suppose first that u is odd. Then, d is odd since both
u? — 2v? and u? + 2v? are odd. Also,
2u? =d(s+1t) and 4v? =d(t —>s).

Since ged(d, 2) = 1, then d | u? and d | v2, which
implies that d = 1 since gcd(u, v) = 1.

Suppose next that u is even. Let u = 2w,
where e is a positive integer and gcd(2,w) = 1.
Then,

u? —2v?% = (2°w)? — 2v? and u? + 2v?% =
(28w)? + 2v?,
from which
uZ _ 2172 — 2(226—1W2 _ UZ)
2(22¢7tw? +v?),

Now, since ged(u,v) = 1, it follows that v is odd
and gcd(w, v) = 1. Thus, a similar procedure as the
above yields

ged(22671w?2 — p2, 22712 4 p2) = 1,
which implies

ged(u? — 2v2,u? + 2v?)
= gcd(2(2%¢71w?
—v?),2(2%¢ w2 + v?)) = 2.

Therefore, gcd(u? —2v2%,u? +2v?) =1
when u is odd, and ged (u? — 2v?,u? + 2v?) = 2
when u is even, as asserted. m

and u?+2v?=

The following lemma states the nonexistence
of solutions for EQ.20 under certain conditions.

Lemma 2: There are no integer solutions to
x* — 4y* = z3 such that gcd(x,y) = 1, x is odd,
andy # 0.

Proof: Suppose there exist integers u, v and g

such that u* — 4v* = g3, with gcd(u,v) =1, u

odd, and v+ 0. Then,
(u? - 2v3) (2 + 2v?) = g3,
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Since u is odd, by Lemma 1, gcd(u? —
2v3,u? +2vH) =1, so(u?+2v? and (u?-—
2v?2) are coprime factors of g3. Let g = ab such that
u?+2v2=a® and u?-2v2=0b3  Then,
gcd(a, b) = 1. Moreover, it is readily seen that

a® + b3 = 2u?, 24

a® — b3 = 4v2, 25
From Cohen®, Eq.24 has disjoint parameterized
solutions according to the following cases (up to the
exchange of u and v).

(a) Fors,t € Z such that gcd(s,t) = 1, s is odd
and s # t(mod 3),

a = (s? + 2t?)(5s?% + 8ts + 2t?)
b = —(s? + 4ts — 2t%)(3s? + 4ts + 2t?)
{ u = +(s? — 2ts — 2t?)
| (7s* + 20ts® + 24t%s? + 8t3s + 4t%)

Replacing in Eq.25 yields

v? = 25(19s* — 453t + 8st3 + 4t*)(s* +
453t + 16s%t? + 24st3 + 12t*)(s? +
st +t2)(s + 2t). 26

Since v is an integer, at least one of the
parameterized factors in Eg.26 must be even.
It is proven, in turn, that none of them is even,
which leads to a contradiction. It can readily
be seen that it is enough to prove that s2 +
st + t? is odd, so let us suppose it is even.
Then, there exists an integer k such that s? +
st +t2 =2k. Upon rewriting, s?+t(s +
t) = 2k, which implies that s and t(s + t)
have the same parity. Thus, t(s + t) should be
odd, implying that t and t+ s are odd.
However, this is a contradiction since t + s
would then be the sum of two odd numbers.
Thus, none of the parameterized factors in
Eq.26 is even.

(b) For s,t € Z such that gcd(s,t) =1, s #
t(mod 2) and 3 t t,

a = (3s? + 2ts + t?)(3s? + 6ts + t?)

b = (3s? — 6ts + t2)(3s? + 2ts + 2t?)

u = +(3s% — t2)(9s* + 18t2s? + t*)
Replacing in Eq.25 yields

v? = 2st(81s* —

6s%t? + t*)(3s* — 2s%t? + 3t*)(3s% +
t2). 27
Note that all the parameterized factors of Eq.27
must be coprime. Indeed, it is known that
gcd(s,t) = 1 and it is evident that s does not
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divide any of the remaining factors, nor does t.
Then, only the following cases need to be
considered:

(b.1) Let d = gcd(81s*-6s%t% +
t* 3s*-2s%t2 + 3t*) and suppose
d # 1. Then, there exist integers «
and g such that

81s%-65%t? + t* = da, 28

3s%-2s52t2 4+ 3t* = dp, 29

Subtracting Eq.27 times Eq.29 from
Eq.28  yields  16t2(3s%-5t?) =
d(a-27B). This implies d | 16 ord |
t?ord | (3s%-5t2).

e If d|16, then there is a
contradiction. Indeed, since d # 1,
then d must be even, implying that
the left-hand-side of Eq.28 is also
even, which is not possible by the
hypothesis s # t(mod 2).

e Ifd|t? then Eq.29 yields d | s* or
d = 3. Itis obvious that d | s* is not
possible since gcd(s,t) = 1. On the
other hand, if d =3, then Eq.28
yields 3 | t, which is a contradiction.

o If d| (3s%-5t2), then there exists
an integer y such that

3s2-5t% = dy. 30
Multiplying Eq.28 by 3 and subtracting
Eq.29 yields 16s2(15s% —t?) =
d(3a- ). Since it is already known
that d + 16, thend | s or d | (1552 —
t2). If d | s2, then Eq.28 yields d | t*,
which is not possible because
gcd(s,t) = 1. Then, there must exist an
integer § such that

15s5%-t% = dé. 31
From Eq.30 and Eq.31,24t% =
d(—5y + &), implying that d | 24 or
d | t?, both of which lead to a
contradiction as seen before.

(b.2) Let d = gcd(81s*- 652t +
t*,3s2+t%?) and suppose d = 1.
Then, there exist integers a and 8 such

that
81s*-65%t? + t* = da, 32
352+ t?2 =dg. 33
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Multiplying EQ.33 by ¢? and
subtracting it from EQq.32 yields
9s52(9s2-t?) = d(a-t2p).

By similar arguments as in case
(b.1), it is readily seen that d + 9
and d t s2, which implies that d |
(952 — t2). Then, there exists an

integer y such that

9s%-t2 =dy 34
From Eq.33 and Eq.34, 1252 = d(B +
), implying d | 12 or d | s2, both of
which lead to a contradiction.

(b.3) Let d = gcd(3s*-2s%t? +
3t*,3s2 + t?) and suppose d # 1.
Then, there exist integers a and 8 such

that

3s%-25%t? 4+ 3t* = da, 35
352+ t?2 =dg. 36
Multiplying Eq.36 by3t? and

subtracting it from EQ.35 vyields
s2(3s2-11t%) = d(a-t?p).
Similar arguments as in case (b.1) show
that d ts?, thus d| (3s%2 —11t?).
Then, there exists an integer y such that

352 — 11t? = dy. 37

From EQ.36 and Eq.37, 12t2 =d(B-y),
implying d | 12 or d | t2, both of which lead
to contradictions.

It is proven that all parameterized factors on
Eq.27 are coprime, concluding that all those
factors are squares, except for the one that is
even (either s or t, which must be of the form
22k=1q2 for some positive integers k and a).
In particular,

3s*-25%t? + 3t* = 1r?, 38
for some integer r. Since s % t(mod 2),
there exists an integer k such that s-t =
2k +1 or, equivalently, s =2k +t+ 1.
Replacing on Eq.38 yields

r? = 48k* + 96k3t + 64k?*t? + 16kt3
+ 4t* + 96k3 + 144kt
+ 64kt? + 8t3 + 72k?
+ 72kt + 16t% + 24k
+ 12t + 3.
It can be seen that the left-hand-side of this
equation has the form 4n + 3 for some integer

n, i.e., 4n + 3 = r2. However,r? = 3(mod
4) for all r € Z, which leads to a contradiction.

(c) Fors,t € Z such that gcd(s,t) = 1, s is odd
and 3 ¢ t,

a = —3s*+12t%s? + 4t4,
b = 3s* + 12t%s? — 4t*,
u = 6ts(3s* + 4t*).
Since u is odd by hypothesis, this is a
contradiction. Hence, this case does not
need to be considered.
(d) For s, t € Z such that gcd(s,t) = 1, t is odd
and 3 ¢ ¢,
a=—12%+12t%s? + t*,
b =12s*+ 12t%s? — t*,
u = 6ts(12s* + t*).
Since u is odd by hypothesis, this is a contradiction.
Hence, this case does not need to be
considered.

Therefore, there are no integer solutions to
x*-4y* = z3 with gcd(x, y) = 1, x odd, and
y*0.m

The following result states the nonexistence
of solutions to Eq.20 when gecd(x,y) = 1 and x is
even. Notice that these conditions automatically
imply that y=+#0. Thus, this result is
“complementary” to the previous lemma considering
exactly the same hypotheses, except for the fact that
x IS now even.

Lemma 3: There are no integer solutions to
x*-4y* = z3 with gcd(x,y) = 1 and x even.
Proof: Suppose x =u, y=v andz=g
satisfy the equation x*-4y* =123, with
gcd(u, v)=1 and u an even integer. Let u = 26w,
with e=>1 and gcd(2,w) =. Then,
(2ew)*-4v* = g3,
from which
4(24—6—1W4_ U4) — g3.

It can be clearly seen that g is even. Hence, let g =
2/m, with f>1 and gcd(2,m)=1. Then,
4(24—6—2W4—_ U4) — 23fm3,

or equivalently,

24€=2yy 4t = 23f -2y 3 39

Since f > 1, then 3f-2 > 1, and the right-hand-
side of EQ.39 is even. However, since 4e—2 > 0 and
v is odd, the left-hand-side of Eq.39 must be odd.
Therefore, there is a contradiction. As a conclusion,
there are no integer solutions x = u, y = vand z =
g to the equation x*-4y* =23 such that
ged(u,v) =1l andu iseven. m
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The following result shows the nonexistence
of nontrivial solutions to Eq.20 such that s and m are
coprime.

Lemma 4: There exist no integer solutions
to the equation x*-4y* = z3 with gcd(x,y) =1
andy # 0.

Proof: The direct consequence of Lemma 2
and Lemma 3. m

Finally, the following theorem states the
nonexistence of nontrivial solutions to Eq.20 when
|x| # |y|, i.e.,the main result for (ii).

Theorem 2: The equation x*-4y* = z3 has
no integer solutions with |x| # |y| and x, y # 0.

Proof: The method of contradiction is
employed. Suppose there exists a solution x = s,
y = mand z = g to this equation with |x| # |y| and
x,y # 0. Then, s* — 4m* = g3 with |s| # |m|. Let
d =gcd(s,m),u = %and V= %. Then, gcd(u, v) =
landv # 0.Sinced | sand d | m, it yields d* | g3.
That is,

3

ut — 4t = ‘3—4, 40
3 3
where ‘3—4 is an integer. Let = ‘3—4 . Then, wd* = g3,

1 4

and thus = ws ds . Since g is an integer, there exist
integers h and k such that w = h3 and d = k3.
Replacing in EQq.40 yields u*-4v* = h3. Thus,
(u, v, h) is a solution to the equation x* — 4y* = 23
with gcd(u,v) = 1. This contradicts Lemma 4.
Therefore, there are no integer solutions x = s,y =
m and z = g to the equation x* — 4y* = z3 with
[s| # |m]and x,y # 0. m

Corollary 1: The only integer solutions to
the equation x*-4y* = z3 with |x| # |y| are
(x,y,2) = (0, £23k+1y3, —24k+2y%) for k>0
andu € Z, and (x,y,z) = (n3,0,n*), forn € Z.

Proof: Notice that, given the assertion of the
previous theorem, it is enough to prove that there
existsolutions such that |x| # |y| when x = 0 or
y = 0. Indeed, suppose x = 0. Then, —4y* = z3,
which is the same as Eq.5 with y =m and z = g.
The solutions to this equation are given as
(x,y,2) = (0, £23k+1y3, —24k+2y%) for k>0
and u € Z.

On the other hand, suppose y = 0. Then,

3

X = z4, 41
Since x is an integer, there exists an integer n such
that z = n*. Replacing in Eq.41 yields x = n3. m

Remark 22: Although the previous corollary
shows there exist solutions for Eq.20 with |s| # |m|,
it does not need to be considered under the context of
the case currently studied (i.e., Case 2.4.3) because
one of the corresponding conditions ism # 0.

Remark 23: Case 3.4.3 yields symmetrical
solutions with
(r,t,m, g) = (9n3,9n3, +£9n3,—27n%),
(r,t,m, g) = (9n3,—9n3, +9n3, —27n%).
This leads to
l(a,b,c) = (9n3,9n3(1 + i), —27n%)|

and

l(a,b,c) = (9n3,—9n3(1 +i),—27n%)]
Remark 24: Case 4.2.3 yields symmetrical
solutions with
(r,s,m,g) = (9n3,+9n3,9n3,—27n"),
(r,s,m,g) = (—9n3,4+9n3,9n3, —27n").
This leads to
l(a,b,c) = (9n3(1 +i),9n3i,—27n%)|

and

l(a,b,0) = (—9n3(1 +i),9n3i, —27n")]
Remark 25: Case 4.3.3 yields symmetrical
solutions with
(r,s,t,9) = (9n3,+9n3,9n3, —27n*),
(r,s,t,9) = (—=9n3,+9n3,9n3, —27n%).
This leads to
l(a,b,c) = (9n3(1 +i),9n3,—27n%)|

and

l(a,b,c) = (—9n3(1 +i),9n3,—27n%)]

Case 244: r=0,s#0,t#0, m=0,
g+0, h#0)

This case will not be considered as it requires
a more in-depth analysis than what is intended in the
current discussion.

Remark 26: Case 3.4.4, Case 4.2.4 and Case
4.3.4 are symmetrical and should have the same
solutions.

Remark 27: Case 4.4.2 and Case 4.4.3 also
fall beyond the scope of our current discussion;
hence they will not be analyzed here.

Case 3. Table. 3, shows all possible
combinations of values studied under this case.
Notice that all these possibilities are symmetrical to
previous subcases and have already been solved.
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Table 3. All possible combinations of values under
Case 3.

Case3.11l: g=0,h=0
Case  3.1: Case3.12: g=0,h+#0
t=0m=0| Case3.13: g#0,h =0
Case3.14:g+0,h+#0
Case3.21l: g=0,h=0

ggset _ Case3.2.2: g=0,h #0
0,m =0 Case3.23: g+0,h=0
Case 3: Case3.2.4: g #0,h # 0
6?: 0 Case331l: g=0,h=0

Case  3.3; Case332: g=0,h+#0
t#0,m=0| Case333: g#0,h=0
Case3.34: g#0,h+0
Case341: g=0h=0

Case Case34.2: g=0,h+#0
34:t +
0,m=+0 Case3.43: g#0,h=0

Case344:g+0,h+#0

Case 4. Table. 4 shows all possible
combinations of values studied under this case.

Table 4. All possible combinations of values under
Case 4.

Case4.11: g=0,h=0

fi?et _ Cased.12: g=0h#0
0,m =0 Case4.1.3: g = 0,h =0

Case4.14: g+0,h+#0
Case4.21: g=0,h=0
Case 42| Cased.2.2: g=0,h#0
t=0,m=0| Case4.23: g#0,h=0

Caise 4 Case4.2.4: g # 0,h £ 0
T
0,5 # 0 Case431: g=0h=0

Case 43| Cased4.32: g=0h =0
t+0,m=0| Case4.33: g#0,h =0
Case4.34: g#0,h+0
Cased441: g=0,h=0
Case 4.4 Cased.42: g=0h#0
t+0,m+0| Case4.4.3: g#0,h =0
Case4.44: g+0,h+0

Case 44.1: r+0,s+0, t+0, m=0,

g=0, h=0)
From Eq.3 and Eq.4, the following system of
equations is obtained:

r*+t*—6(?s?+t?m?)+st*+m*=0
4(r3s —rs3+t3m—tm3) =0,

which, after reordering and factorization, can be
written as
(r?2 —s2)2 —4r?s2 + (t2 —m?)? — 4t>m? =0
4rs(r? — s?) + 4tm(t> — m?) = 0.
By letting o =12 —s2, B =2rs, y = t> —m?,
and 6 = 2tm, this can be further rewritten as
a?—p%2+y2—-62=0 42
2af3 + 2y8 = 0. 43
Since r,s =0, it is evident that 8 # 0. Thus,
dividing both sides of Eq.43 by £ yields

— _As
a=—"r 44

Replacing Eq.44 into Eg.42 and solving for S2
yields 2 = +y2, implyingthat 3 =y or g = —y.
Suppose 8 = y. Replacing on Eq.44 results in
a = —4&. Then, the following system of equations is
obtained given by
t2 —m? =2rs

r? —s? = —2tm.
Solving in a similar manner as the previous system,
2 2
this results in s2 = % ors? = —@, both of

which lead to a contradiction because s, t and m are
integers.

Suppose now that 8 = —y. Replacing on
Eq.44 results in « = §. Then, the following system
of equations

t? —m? = —2rs
r2 —s? =2tm
is obtained. Observe that this system is the same as
the previous one, but with t and m exchanged. Thus,
no solutions exist. Therefore, the equation under this
case is not considered.

Case 444: r+0,s+0,t+0, m=0,
g+0, h+0)

Observe that solving this case is equivalent to
obtaining a general solution for EqQ.1. The next
section is dedicated exclusively to this endeavour.

The general form of solutions

In this section, the general form of the
solutions to equation Eq.1 is studied. For this
purpose, the knowledge gathered in the previous
section is employed. The following conjecture states
a reasonable property proved by Cohen® for the case
of rational integers. Moreover, Theorem 3.1 of Ismail
et al.® implies this assumption to be true for the case
x =y in Gaussian integers, and the results of our
previous discussion seem to support it for x # y.

Conjecture 1: Let (x,y,z) =(a,b,c)be a
solutionto x* + y* = z3 with xyz # 0 in Gaussian
integers. Then, gcd(a, b,c) # 1. (Notice that this
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impliesthat gcd(a, b, c) € {+1,—1, +i,—i}, i.e. the
GCD is not a unit.)

Theorem 3: The triplet (x,y,z) = (a, b, c) is
a solution to x* + y* = z3 with x # y in Gaussian
integers if and only if there exist a,n,u, v € Z[i],
with u # v and n = u* + v*, such that
a= b=a3n3k"1y, and c=
a3n3k—1u1 a4n4-k

for some integer k > 0.

Proof. It is trivially evident that if a, b, c have
the stated form, then the triplet (x, y,z) = (a, b,c) is
a solution of the equation. On the other hand, suppose
(x,y,2) = (a, b, c) is a solution to the Diophantine
equation x* +y* =z3 with x #y in Gaussian
integers. The following proves that a, b, c have the
form indicated in the theorem statement. Indeed,

a* + b* = ¢3. 45
Letd = gcd(a, b, c) and u, v,w € Z[i] such that
a=du,b=dvandc=dw. 46
Since a # b, it is evident that u = v. Dividing both
sides of Eq.45 by d? yields

du* +v*) = ws. 47
Letn = u* + v*. Then, Eq.47 becomes

dn = w3. 48
Suppose d isacube, then n would also be a cube, i.e.,
p3 = u* + v* forsomep € Z[i]. But, gcd(u, v, p) =
gcd(u,v) = 1, which contradicts Conjecture 1.
Therefore, d cannot be a cube, which yields d =
a’n3k=1 for some a € Z[i] and some integer k >
0. Then, Eq.48 implies w = an®. Therefore,
replacing on Eq.46 gives

a= a3n3k 1y,

(Z4Tl4k

as asserted. m

b=a3n3*1y, and c=

Corollary 2: If the triplet (x,y,z) = (a, b, ¢)
is a solution to the Diophantine equation x* + y* =
z3 with x #y in Gaussian integers, then
ged(a,b,c) = a®n3%~1 wherea,nand k areasin
Theorem 3.

Remark 28: This result applies to the equation
x*+y* =23 with x # y in rational integers Z.
Therefore, it generalizes the result of Theorem 1.3
in Ismail and Mohd Atan®.

Conclusions:

In this work, the algebraic properties of the
x* + y* = z3 in Gaussian integers for x # y have
been examined. The main focus has been on
studying some of the conditions that give rise to
nontrivial solutions and their particular forms. Our

findings show the existence of infinitely many
solutions. Since the analytical method used in this
study is based on simple algebraic properties, it can be
easily generalized to study the behavior and
conditions for the existence of solutions to other
Diophantine  equations, allowing a deeper
understanding, even when there is no general
solution is known. In the particular case of the
current study, a general solution has been found to
the equation x* + y* = z3 in Gaussian integers,
for x + y.
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