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Introduction 

Forecasting volatility is crucial in the 

agricultural sector, mainly rubber. This may assist 

producers, traders and consumers in predicting future 

rubber prices. In recent years, there has been an 

increasing interest in the forecasting of natural 

rubber studies such as forecasting performance1-3 and 

forecasting price4-7. In Malaysia’s context, the 

Standard Malaysian Rubber Grade 20 (SMR 20) has 

chosen by researchers as empirical data in their 

research. However, the Malaysian natural rubber 

price fluctuates as a result of the world economy’s 

decline8. These fluctuations can influence the 

volatility model as well as efficiency forecasting 

with the current volatility clustering.  

Most researchers have used a time-varying 

volatility model such as the Generalized 

Autoregressive Conditional Heteroscedasticity 

(GARCH) model to obtain reliable forecasts1,9. 

Although the GARCH model is very general, there 

are serious challenges, especially when there are 

outliers. Previous studies have found that outliers can 

have detrimental effects on parameter estimate10-12, 

identification and estimation13,14 and forecasting13,15. 

Therefore, robust methods are more preferred by 

researchers to reduce the influence of outliers. The 
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well-known approach in robust methods is M-

estimator. 

The M-estimator has been one of the most 

interesting research subjects due to its down-

weighting in minimizing residual function. The 

selection of the weighting function in the M-

estimator will make model parameters less biased 

and forecast better performance during existing 

outliers16. Huber is the monotone weighting function 

that is most widely used in many areas17-20. 

Mathematically, the weighting function is dependent 

on standardized residuals with median absolute 

deviation (MAD) as a measure of dispersion. In 

contrast, 21 stated that MAD has two main flaws: low 

Gaussian performance (37%) and dependence on 

symmetric distributions. As a result, some robust 

dispersion, such as interquartile range, Qn and Sn, 

have been proposed for heavy-tailed distributions. 

A careful study of the literature reveals that the 

weighting function received little attention. A clear 

understanding of dispersion measurement in 

weighting functions is crucial to obtaining 

sustainable time series models, especially the 

GARCH model. The primary goal of this study was 

to build a sustainable GARCH model with applied 

two dispersion measurements (IQR/3 and Sn) in the 

Huber weighting function during the existence of an 

innovative outlier (IO). Besides, to forecast the 12-

day rubber price in 2021.  

The following section is structured as follows. 

The AR(𝑚) model, GARCH(𝑔, ℎ) model, IO, 

central tendency and dispersion measurements, 

Huber weighting function in M-estimator and 

evaluation performance describes briefly in the 

section methodology. The simulation result 

discusses in the section on simulation study. The 

result of rubber price with forecasting performs in 

section empirical results. The summary of this paper 

includes in the section conclusion. 

 

Materials and Methods 

The conditional mean of the stationary time 

series model is the autoregressive (AR) model. The 

AR model of order 𝑚, AR(𝑚) can be expressed as 

𝑌𝑡 = 𝛽0 + 𝛽1𝑌𝑡−1 + 𝛽2𝑌𝑡−2 + ⋯ + 
                      𝛽𝑚𝑌𝑡−𝑚 + 𝜀𝑡                                       1 

 

where 𝛽0 is a constant parameter with conditions 

𝛽0 > 0, 𝛽1, 𝛽2, … , 𝛽𝑚 ≥ 0 are the constraints with 

non-negative integer and 𝜀𝑡 is the white noise, 

𝜀𝑡~WN(0, 𝜎2), where WN is the white noise that’s 

independent and identically distributed with a mean 

of zero. 

Eq.1 is applicable only when the variance for 

the time series is constant.  When the variance in time 

series data is non-constant, the generalized 

autoregressive conditional heteroscedasticity 

(GARCH) model established by 22 is appropriate. 

Suppose that 𝜀𝑡 = 𝑧𝑡𝜎𝑡, where {𝑧𝑡} is a 𝑧𝑡~N(0,1). 

The symmetric GARCH(𝑔, ℎ) model can be 

expressed as 

𝜎𝑡
2 = 𝜑0 + 𝜑1𝜎𝑡−1

2 + ⋯ + 𝜑𝑔𝜎𝑡−𝑔
2 + 

                      𝜂1𝜀𝑡−1
2 + ⋯ + 𝜂ℎ𝜀𝑡−ℎ

2                             2 

where 𝜑0 is the constant parameter with conditions 

𝜑0 > 0, 𝜑1, … , 𝜑𝑔 ≥ 0 and 𝜂1, … , 𝜂ℎ ≥ 0. The 

GARCH(𝑔, ℎ) model in Eq.2 specifies that the 

today's conditional variance depends on the first 𝑔 

past conditional variance and ℎ past squared 

innovations.  Problems arise when there are outliers 

in the data.  There are several types of outliers such 

as innovative outliers. 

 

Innovative Outlier: 

An innovative outlier (IO), also known as 

internal change, is a data point that has an impact on 

subsequent observations23. The impact of IO is more 

complex than the impact of other forms of 

outliers24,25. For a stationary time series, IO will 

create a transient effect, while for a non-stationary 

time series, IO will produce a permanent level 

transition26.  

The dynamic pattern of the effect of IO 

outliers is represented as 

       𝜉IO(M) =
1−𝜑𝑔M

1−(𝜑𝑔+𝜂ℎ)M
                    3 

As mentioned by 27, the existence of IO in the 

GARCH model becomes 

𝑒𝑡
2 = 𝜔IO𝜉IO(M)𝐼𝑡(T) + 𝜀𝑡

2                                  4 

and can be considered as a regression model for 𝜀𝑡
2, 

such as  

 

𝑒𝑡
2 = 𝜔IO𝑥𝑡 + 𝜀𝑡

2                             5 
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where  

𝑒𝑡
2 is a series of observation 𝜀𝑡

2,  

𝜔IO is the size of the IO’s effect, which is 𝜔IO(T) =
∑ 𝑒𝑡

2𝑥𝑡
𝑛
𝑡=T

∑ 𝑥𝑡
2𝑛

𝑡=T
  with 𝑥𝑡 represented as 𝑥𝑡 = {

0 𝑡 ≠ 1
1 𝑡 = T

, 

𝜉IO(M) is the dynamic pattern of IO impact, 

𝐼𝑡(T) is the indicator function that describes IO’s 

effect as 𝐼𝑡(T) = {
1 𝑡 = T
0 otherwise

 with T is the 

location where IO emerged. 

To overcome the effect of an innovative 

outlier, researchers, for example, Huber, have 

suggested using different types of measures instead 

of regular mean and variance as the basis for 

modelling the time series.  Such measures were next 

to be discussed. 

 

Measure of Central Tendency and Dispersion: 

There are two measures were considered in the 

Huber weight function: central tendency and 

dispersion. The median was selected as a central 

tendency due to robustness against outliers. The 

interquartile range (IQR) is a dispersion 

measurement expressed as the distance between the 

75% percentile (Q0.75) and the 25% percentile 

(Q0.25) of the data28. The IQR can be defined as 

IQR = Q0.75 − Q0.25                    6 

This measure has a breakdown point of 25% 
21,29. The outcome of the simulation by 30 suggested 

that median and median absolute deviation (MAD) 

or IQR could be reasonable alternatives to mean and 

variance. Nevertheless, this paper used the IQR/3 

which was suggested by Ghani and Rahim31. 

The measures of Sn were proposed by 21 as an 

alternative to MAD. This measure was convenient in 

the heavy-tailed and skewed distributions. The 

explanation of Sn also includes in the 32 research. The 

Sn can be defined as 

Sn = 1.1926med𝑖{med𝑗|𝑋𝑖 − 𝑋𝑗|}                    7 

where (med𝑗) is the inner median with ⌊(𝑛 + 2) +

1⌋-th order statistic and (med𝑖) is the outer median 

with ⌊(𝑛 1⁄ ) + 2⌋-th order statistic. Huber in 33 has 

suggested a weight function to overcome the effect 

of heteroscedasticity in modelling time series data.  

 

Huber Weight Function: 

The Huber M-estimation33 is a common robust 

estimation approach. The weight function, 𝑤(𝑑) in 

the M-estimator was used to reduce the effect of 

heteroscedasticity on the standard error of 

approximate coefficients. Huber is the well-known 

weight function in M-estimator. The weight function 

of Huber is defined as 

𝑤(𝑑) = {
1 ,for |𝑑| ≤ 1.345

1.345

|𝑑|
,for |𝑑| > 1.345

                        8 

with 1.345 as the default scaling constant for Huber, 

which produces 95% asymptotic efficiency for the 

normal distribution, 𝜀𝑡 and 𝑑 term is the standardized 

residuals. 

Generally, the standardized residual is 

formulated as 

                                                                                

𝑑 =
𝜀𝑖

𝑠
=

𝑥−𝜇

𝜎
                       9 

where in the conventional approach, the 𝜇 and 𝜎 in 

Eq.4 represent mean and median absolute deviation 

(MAD), respectively. In this paper, the researchers 

have suggested a modification to the Huber weight 

function.  

 

Modified Huber Weight Function: 

Even if the conventional approach is accurate, 

it can cause problems with location and dispersion 

measurements. Therefore, the modification of mean 

and MAD in Eq.9 is made as 

                                                                               

𝑑̅ =
𝑥−median

IQR
3⁄

                      10 

and 

                                                                              

𝑑̿ =
𝑥−median

Sn
                             11 

with median is the central tendency measurement, 

while IQR/3 and Sn are two dispersion of 

measurements. For the building of a sustainable 

GARCH model, the performance dispersion 

measurement was more considered. 

 

Performance Evaluation: 

The efficiency of various AR(𝑚)-

GARCH(𝑔, ℎ) model specifications were compared 

using Akaike’s Information Criteria (AIC)34,35. 

While the mean absolute error (MAE), mean square 

error (MSE)36, and root mean square error (RMSE) 

was used to evaluate the effectiveness of the IQR/3 

and Sn. The AIC, MAE, MSE and RMSE measures 

are calculated as follows: 

AIC = −2 ln(𝐿) + 2𝑘                     

https://doi.org/10.21123/bsj.2023.7489
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      MAE =
1

T
∑ (|𝜎𝑡

2 − 𝜎̂𝑡
2|)T

𝑡=T1
 

MSE =
1

T
∑ (𝜎𝑡

2 − 𝜎̂𝑡
2)2T

𝑡=T1
              

      RMSE = √
1

T
∑ (𝜎𝑡

2 − 𝜎̂𝑡
2)2T

𝑡=T1
 

with 𝐿 is the value of the likelihood function 

evaluated at the parameter estimates, 𝑘 is the number 

of parameters to be estimated, T is the number of 

total observations, T1 is the initial observation, 𝜎𝑡
2 is 

the actual conditional variance at time 𝑡 and 𝜎̂𝑡
2 is the 

predicted conditional variance at time 𝑡. The lower 

the AIC, MAE, MSE and RMSE values, the more 

accurate the dispersion measurement. 

 

Simulation Study: 

In this section, evidence on the dispersion 

measurement of the Huber weighting function in the 

different percentages of IO contamination is 

provided. Three types of IO percentage 

contamination will be examined: 0%, 10% and 20%. 

Seven sets of simulations of the AR(1)-GARCH(2,1) 

model with different time series lengths, T for 

T=200, 500 and 1000 are generated. The seven sets 

of simulations are summarized in Table 1: 

 

Table 1. Grouping of different contamination IO 

and dispersion measurements 

Model 
Contamination 

IO 

Dispersion 

measurements 

Model 1 0% Without weight 

Model 2 10% Without weight 

Model 3 10% IQR/3 

Model 4 10% Sn 

Model 5 20% Without weight 

Model 6 20% IQR/3 

Model 7 20% Sn 

 

During this part, the AR(1)-GARCH(2,1) model 

used the t series package37 and the fGarch package38 

in the R software version 3.6.3, which was developed 

by 39. The general procedure of modifying Huber 

weight during IO contamination was conducted as 

follows:   

1) The AR(1)-GARCH(2,1) model specified 

using garchSpec function with stipulated the 

true value of parameters:  

𝛽0 = 0.0001622, 𝛽1 = 0.2225, 𝜑0 =
0.0000033, 𝜑1 = 0.3725, 𝜑2 = 0.4810 and 

𝜂1 = 0.1388. 

2) In the beginning, the GARCH process 

simulated 200 observations with a mean is 0 

and a standard deviation is 1 using garchSim.  

3) About 10% of the sample size was 

contaminated as IO. The locations and 

magnitudes of IO are identified. The 

magnitude for each contaminated point was 

calculated by using normal distribution where 

the mean is 0 and the standard deviation is 16. 

4) The modification of the Huber weight function 

with using IQR/3 as dispersion measurement 

was calculated to be 10% contamination of IO. 

The new data was determined based on the 

modified weighting the Huber function that 

was given to the 10% contamination of IO. 

5) The modification of Huber weight function 

with using Sn as dispersion measurement was 

calculated to be 10% contamination of IO. The 

new data was determined based on the 

modified weighting Huber function that was 

given to the 10% contamination of IO. 

6) Steps 3 to 5 are then repeated with increased 

contamination of IO to 20%. 

7) The parameters of the AR(1)-GARCH(2,1) 

model for three situations fitted using garchFit 

function in normal error distribution. 

8) The performance of the AR(1)-GARCH(2,1) 

model for three situations was evaluated. 

9) Steps 1 to 8 then are repeated for different time 

series lengths, T=500 and T=1000. All-time 

series lengths were carried out for 1000 trials. 

Table 2 presents the performance of the 

AR(1)-GARCH(2,1) model with percentage change 

via simulation analysis for T=200, 500 and 1000. 

The MAE, MSE, and RMSE values in model 2 

increased to 1.1077, 4.3959, and 2.0966, 

respectively, when the data was contaminated with 

10% IO. As IO contamination reached 20%, the three 

measures in model 5 increased as well (MAE20% IO = 

1.1518, MSE20% IO = 4.6318, RMSE20% IO = 2.1522). 

This result showed that all three dispersion 

measurements were higher than 0% IO (Model 1) 

during contamination with 10% IO and 20% IO. 

https://doi.org/10.21123/bsj.2023.7489
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As Table 2 shows, the dispersion statistics of 

IQR/3 and Sn affect the value of MAE, MSE and 

RMSE. The minimum MAE value during 

contaminated 10% IO was recorded by model 3 at 

0.4888, which dropped by 55.87 percent compared to 

model 2. Model 4 reveals that the MAE has likewise 

decreased by 0.7614 (-31.26%). For the MSE, model 

3 recorded a minimum value of 0.2835 as compared 

to model 4 in the 10% of IO contamination. Model 3 

was the highest percentage reduction for the RMSE 

at 74.61 percent contrasting with model 4 (57.19%).  

In the 20% contamination of IO, model 6 

indicates a minimum value for all three measures. 

For MAE and RMSE, model 6 reported a minimum 

value of 0.4956 and 0.5385, respectively, which 

declined by 56.97 percent and 74.98 percent 

compared with model 5. Otherwise, model 7 

declined by 31.84 percent and 57.02 percent for 

MAE and RMSE, respectively. Model 6 and model 7 

during contamination with 20% IO decreased the 

MSE to 0.29 and 0.8556, respectively; dropping by 

93.74 percent and 81.53 percent. Although Sn is 

recognizable as a robust dispersion measurement and 

simplicity facilitates computation21, however, our 

findings revealed that the IQR/3 showed more 

efficiency than Sn during contamination with 10% 

and 20% IO. 

Table 2. Simulation of evaluation performance with a percentage change for model 1 to model 7 

Time series length, T Model MAE % MAE MSE % MSE RMSE % RMSE 

200 Model 1 0.7865 - 0.9626 - 0.9811 - 

 Model 2 1.1077 40.84 4.3959 356.67 2.0966 113.70 

 Model 3 0.4888 -55.87 0.2835 -93.55 0.5324 -74.61 

 Model 4 0.7614 -31.26 0.8056 -81.67 0.8976 -57.19 

 Model 5 1.1518 46.45 4.6318 381.18 2.1522 119.37 

 Model 6 0.4956 -56.97 0.2900 -93.74 0.5385 -74.98 

 Model 7 0.7851 -31.84 0.8556 -81.53 0.9250 -57.02 

500 Model 1 0.7679 - 0.9191 - 0.9587 - 

 Model 2 1.1150 45.20 6.6408 622.53 2.5770 168.80 

 Model 3 0.5024 -54.94 0.3005 -95.47 0.5482 -78.73 

 Model 4 0.7709 -30.86 0.8258 -87.56 0.9087 -64.74 

 Model 5 1.3630 77.50 10.4150 1033.17 3.2272 236.62 

 Model 6 0.5408 -60.32 0.3482 -96.66 0.5901 -81.71 

 Model 7 0.8642 -36.60 1.0481 -89.94 1.0238 -68.28 

1000 Model 1 0.7957 - 0.9953 - 0.9977 - 

 Model 2 1.1748 47.64 6.6377 566.87 2.5764 158.24 

 Model 3 0.4909 -58.21 0.2818 -95.76 0.5308 -79.40 

 Model 4 0.7897 -32.78 0.8732 -86.84 0.9345 -63.73 

 Model 5 1.5672 96.96 16.5197 1559.69 4.0644 307.39 

 Model 6 0.5426 -65.38 0.3496 -97.88 0.5913 -85.45 

 Model 7 0.8852 -43.52 1.1128 -93.26 1.0549 -74.05 
Note: % MAE, % MSE and % RMSE represent percentage changes of MAE, MSE and RMSE, respectively. 

Results and Discussion 

Empirical (Real Data) Results: 

In this section, the daily price data for 

Standard Malaysian Rubber Grade 20 (SMR 20) are 

examined. These secondary data were obtained from 

the official website of the Malaysian Board of 

Rubber, which spans the period from 4th January 

2010 to 30th December 2020. The empirical was 

executed using the t series package36 and fGarch 

package37 in R program version 3.6.338.  

Fig. 1 (a) exhibits a clear trend of 1878 daily 

observations price of the rubber SMR 20 (in RM per 

kilogram) in Malaysia from 4th January 2010 to 11th 

September 2017. When daily prices are transformed 

to log returns, the plot of daily rubber SMR 20 

returns clearly shows volatility clustering, as seen in 

Fig. 1 (b). 

https://doi.org/10.21123/bsj.2023.7489
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(a)                                                                             (b) 

Figure 1. Plot of daily (a) price and (b) returns on the SMR 20 for T=1878. 

Table 3 illustrates the descriptive statistics of 

the daily returns for SMR 20. In daily returns, the 

range is between -0.07929 and 0.07568. The 

expected returns showed that -0.000171 per day. In 

daily returns, excess kurtosis occurs, which is 3.2659 

greater than the usual value of 3. This may clarify 

that the data includes heavier tails and distributes 

them as leptokurtic. 

Table 3. Descriptive statistics of the daily price and returns of SMR 20 

Statistics Observation Minimum Maximum Mean Skewness Kurtosis 

Price 1878 4.265 17.17 8.1821 0.8231 -0.1320 

Returns 1877 -0.07929 0.07568 -0.000171 -0.07025 3.2659 

 

The first step in time series data is to test the 

unit root. The R output is based on Phillips-Perron 

(PP) test40, Augmented Dickey-Fuller (ADF) test41 

and Kwiatkowski-Phillips-Schmidt-Shin (KPSS) 

test42 are shown in Table 4. As Table 4 shows, 

rejecting the null hypothesis of a unit root for the PP 

test and ADF test at the 1% level of significance. 

This indicates that the series is stationary where there 

is no unit root. Meanwhile, the p-value for KPSS test 

failed to reject the null hypothesis of a unit root at 

10% level of significance. This indicates that the 

series is stationary and there is no unit root. As all 

three tests show that the series is stationary and has 

no unit root, the following step is carried out. 

Table 4. Test of unit root 

Test Value Truncation lag parameter p-value Decision 

Phillips-Perron -1498.4 8 <0.01 Reject null hypothesis 

Augmented Dickey-Fuller -10.816 12 0.01 Reject null hypothesis 

Kwiatkowski-Phillips-

Schmidt Shin 

0.14167 8 0.1 Fail to reject null hypothesis 

 

In this paper, the AR(1) model is used as the 

conditional mean. Table 5 provides the result of 

ARCH effect using Engle’s Lagrange Multiplier 

(LM) test43. The p-value for the LM test indicates 

that the null hypothesis—that there was no ARCH 

effect—was rejected at the 5% level of significance. 

From Table 5, the result showed the presence of 

ARCH effect in daily returns SMR 20. This can be 

explained that heteroscedastic appearing in residuals. 

Table 5. Test for ARCH effect 

𝝀𝟐 df p-value 

317.05 12 < 2.2 × 10−16 

Therefore, the AR(1) is required to be 

combined with the conditional variance, i.e. the 

GARCH model. Four models were produced from 

different conditional variance specifications in 

GARCH(𝑔, ℎ) models, where 𝑔 and ℎ order were 

either 1 or 2. The four different specification models 

were compared using AIC criteria to determine the 

https://doi.org/10.21123/bsj.2023.7489
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best one. Table 6 shows a comparison of four 

models. The GARCH(2,1) model exhibits the lowest 

AIC value. The best in-sample part, according to 

Table 6, was the GARCH(2,1) model. 

 

Table 6. Specifications of GARCH(𝒈, 𝒉) model 

Mo

del 

GARCH

(1,1) 

GARCH

(1,2) 

GARCH

(2,1) 

GARCH

(2,2) 

AIC 

valu

e 

-5.9605 -5.9593 -5.9647 -5.9636 

 

To obtain the best fit between AR(1) and the 

four specifications GARCH(𝑔, ℎ) model, the AIC 

criteria in Table 7 were shown. The result in Table 7, 

showed that the AR(1)-GARCH(2,1) model reported 

the smallest value of AIC compared to the three types 

of specifications AR(1)-GARCH(𝑔, ℎ) models. 

 

Table 7. Selection criteria of AR(1)-

GARCH(𝒈, 𝒉) model for T=1878 

Mo

del 

AR(1)-

GARCH

(1,1) 

AR(1)-

GARCH

(1,2) 

AR(1)-

GARCH

(2,1) 

AR(1)-

GARCH

(2,2) 

AIC 

valu

e 

-5.9774 -5.9756 -5.9797 -5.9786 

For the out-of-sample part, the pattern of the 

805 daily SMR 20 price can be seen in Fig. 2 (a). 

Because the LM test implied an ARCH effect in daily 

returns SMR 20, volatility clustering was evident in 

the returns presented in Fig. 2 (b). 

 

 
(a)                                                                             (b) 

Figure 2. Plot of daily (a) price and (b) returns on the SMR 20 for T=805. 

The performance of forecasting for various 

specifications AR(1)-GARCH(𝑔, ℎ) model is 

provided in Table 8. Based on the AIC criteria, the 

AR(1)-GARCH(2,1) model showed the lowest AIC 

value. The best model out of the three was 

determined to be AR(1)-GARCH(2,1). 

 

Table 8. Selection criteria of AR(1)-GARCH(𝒈, 𝒉) model for T=805 

Model AR(1)-GARCH(1,1) AR(1)-GARCH(1,2) AR(1)-GARCH(2,1) AR(1)-GARCH(2,2) 

AIC value -5.6761 -5.6745 -5.6764 -5.6763 

 

The overall pattern of the 2683 daily SMR 20 price and returns from 4th January 2010 to 30th December 

2020 illustrates in Fig. 3 (a) and Fig. 3 (b), respectively. 
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(a)                                                                             (b) 

Figure 3. Plot of daily (a) price and (b) returns on the SMR 20. 

 

The estimated conditional mean and 

conditional variance equation from daily SMR 20 is 

AR(1)-GARCH(2,1) was obtained. The five models 

expressed as 

𝑌𝑡(Model 1) = 0.0001622 + 0.2225𝑌𝑡−1           12 

                           (0.7381)      (9.8807∗∗∗∗) 

𝜎𝑡
2(Model 1) = 0.0000033 + 0.3725𝜎𝑡−1

2 + 

                          (3.5143∗∗∗)    (3.419∗∗∗∗) 

                           0.4810𝜎𝑡−2
2 + 0.1388𝜀𝑡−1

2          13 

                           (4.722∗∗∗∗)     (8.2301∗∗∗∗)  

𝑌𝑡(Model 3) = 0.0003 + 0.0136𝑌𝑡−1                  14 

                     (2.1906∗∗)   (0.6731)    

𝜎𝑡
2(Model 3) = 0.0000021 + 0.4591𝜎𝑡−1

2 + 

                            (1.2876)       (1.3622)      

                          0.3860𝜎𝑡−2
2 + 0.1042𝜀𝑡−1

2           15 

                           (1.1703)        (2.7845∗∗∗) 

𝑌𝑡(Model 4) = 0.0002 − 0.0447𝑌𝑡−1                  16 

                       (0.7223)    (−1.8941∗) 

𝜎𝑡
2(Model 4) = 0.0000216 + 0.3667𝜎𝑡−1

2 + 

                          (3.1718∗∗∗)    (2.8587∗∗∗)      

                          0.2467𝜎𝑡−2
2 + 0.2403𝜀𝑡−1

2           17 

                           (1.8221∗)      (7.2588∗∗∗∗) 

𝑌𝑡(Model 6) = 0.0002 − 0.1609𝑌𝑡−1                  18 

                       (1.1609)    (−8.0925∗∗∗∗)   

 

𝜎𝑡
2(Model 6) = 0.0000033 + 0.3308𝜎𝑡−1

2 + 

                            (1.3438)        (1.1543)      

                          0.5222𝜎𝑡−2
2 + 0.0894𝜀𝑡−1

2           19 

                           (1.8564∗)      (2.8029∗∗∗) 

𝑌𝑡(Model 7) = 0.00004 − 0.3209𝑌𝑡−1                20 

                         (0.1624)    (−13.3632∗∗∗∗)   

𝜎𝑡
2(Model 7) = 0.000062 + 0.1889𝜎𝑡−1

2 + 

                        (4.1942∗∗∗∗)   (1.8406∗)      

                          0.2715𝜎𝑡−2
2 + 0.2438𝜀𝑡−1

2           21 

                          (2.4245∗∗)     (7.0246∗∗∗∗) 

The bracket values under the coefficient for all 

equations show the t-statistics, which are statistically 

significant at the level of 0.1% (****), 1% (***) and 

5% (**) and 10% (*).  

To ensure that IQR/3 is more efficient than Sn, 

the seven models were compared based on 

performance evaluation. Table 9 shows the 

performance of the AR(1)-GARCH(2,1) model 

based on the percentage contamination of IO and 

dispersion statistics in the Huber weight function. 

The MAE, MSE, and RMSE values increased to 

0.304604, 6.342343, and 2.518401, respectively, 

when the daily returns of SMR 20 were contaminated 

with 10% IO. As IO contamination reached 20%, the 

three measures increased as well (MAEmodel 5 = 

0.634847, MSEmodel 5 = 10.88619, RMSEmodel 5 = 

3.299422). This result showed that all three 

dispersion measurements in model 2 and model 5 

were higher than in model 1. 
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Table 9. Evaluation performance for model 1 to model 7 of the SMR 20 price 

Model MAE MSE RMSE 

Model 1 0.010456 0.000219 0.014783 

Model 2 0.304604 6.342343 2.518401 

Model 3 0.005702 0.000039 0.006263 

Model 4 0.009675 0.000138 0.011732 

Model 5 0.634847 10.88619 3.299422 

Model 6 0.006703 0.000055 0.007401 

Model 7 0.011707 0.000199 0.014120 

 

From the data in Table 10, it is apparent that 

the four models affect the value of MAE, MSE and 

RMSE. The minimum MAE value in model 3 

presents 0.005702, dropped by 98.13 percent 

compared with model 2 in Table 9. While model 4 

also dropped by 0.009675 (-96.82%). For the MSE, 

model 3 recorded a minimum value of 0.000039 as 

compared to model 4 (0.000138) in the 10% of IO 

contamination. Model 3 was the highest percentage 

reduction for the RMSE at 99.75 percent contrasting 

with model 4.  

In the 20% contamination of IO, model 6 

indicates a minimum value for all three measures. 

For MAE and RMSE, model 6 reported a minimum 

value of 0.006703 and 0.007401, respectively, which 

declined by 98.94 percent and 99.78 percent 

compared with model 5 in Table 9. Otherwise, model 

7 declined by 98.16 percent and 99.57 percent for 

MAE and RMSE, respectively. The MSE of model 6 

and model 7 declined by 100 percent with 0.000055 

and 0.000199, respectively. Even though Sn is well-

known for its reliable dispersion measurement and 

ease of calculation21 our findings demonstrated that 

the IQR/3 is more efficient than Sn. 

Table 10. Evaluation performance for model 1 to model 7 of the SMR 20 price 

Model MAE % MSE % RMSE % 

Model 3 0.005702 -98.13 0.000039 -100.00 0.006263 -99.75 

Model 4 0.009675 -96.82 0.000138 -100.00 0.011732 -99.53 

Model 6 0.006703 -98.94 0.000055 -100.00 0.007401 -99.78 

Model 7 0.011707 -98.16 0.000199 -100.00 0.014120 -99.57 

 

Forecasting: 

Table 11 presents the 12-days ahead forecast 

results for the price of SMR 20 with a percentage 

change for Model 1, Model 3, Model 4, Model 6 and 

Model 7 based on the forecast package44. The 

forecast price of SMR 20 on 4th January 2021 for 

Model 1 is increased by 0.03265 per cent to 

RM6.127 per kilogram as compared to RM 6.125 per 

kilogram. However, model 3 and model 4 increased 

the forecast price to RM6.1253 per kilogram and 

RM6.1262 per kilogram, respectively, rising by 

0.0049 percent and 0.01959 per cent. As the IO 

contamination increases to 20%, model 6 and model 

7 yield the forecast price of RM6.1254 per kilogram 

and RM6.1263 per kilogram, an increase of 0.00653 

percent and 0.02122 percent, respectively against 

RM 6.125 per kilogram for the same time.  

It appears from Table 11 that the difference 

between actual and forecast prices (in model 1) of 

SMR 20 was 0.002, which ranged from 0.03115 

percent to 0.03265 percent from 5th to 19th January 

2021. When contaminated with 10% IO, model 3 and 

model 4 resulted in a forecast price increase by 

ranged 0.00467 percent to 0.0049 percent and 

0.01716 percent to 0.01959 percent, respectively. As 

the level of IO contamination raises to 20%, the 

difference between models 6 to actual price was 

0.0004. In the meantime, the forecast price of SMR 

20 is increased by a range from 0.02122 percent to 

0.02406 percent for model 7. According to the results 

in Table 11, the dispersion statistics of IQR/3 showed 

more efficiency than Sn during contamination with 

10% and 20% IO. 
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Table 11. Results of daily actual and forecast price with a percentage change for selected models 

Date Actual price Forecast price 

Model 1 Model 3 Model 4 Model 6 Model 7 

4/1/2021 6.1250 6.1270 6.1253 6.1262 6.1254 6.1263 

  (0.03265) (0.00490) (0.01959) (0.00653) (0.02122) 

5/1/2021 6.2350 6.2370 6.2353 6.2362 6.2354 6.2365 

  (0.03208) (0.00481) (0.01925) (0.00642) (0.02406) 

6/1/2021 6.1950 6.1970 6.1953 6.1962 6.1954 6.1964 

  (0.03228) (0.00484) (0.01937) (0.00646) (0.02260) 

7/1/2021 6.4200 6.4220 6.4203 6.4212 6.4204 6.4215 

  (0.03115) (0.00467) (0.01869) (0.00623) (0.02336) 

8/1/2021 6.3700 6.3720 6.3703 6.3712 6.3704 6.3714 

  (0.03140) (0.00471) (0.01884) (0.00628) (0.02198) 

11/1/2021 6.2100 6.2120 6.2103 6.2112 6.2104 6.2114 

  (0.03221) (0.00483) (0.01932) (0.00644) (0.02254) 

12/1/2021 6.2000 6.2020 6.2003 6.2011 6.2004 6.2014 

  (0.03226) (0.00484) (0.01774) (0.00645) (0.02258) 

13/1/2021 6.2650 6.2670 6.2653 6.2661 6.2654 6.2664 

  (0.03192) (0.00479) (0.01756) (0.00638) (0.02235) 

14/1/2021 6.2200 6.2220 6.2203 6.2211 6.2204 6.2214 

  (0.03215) (0.00482) (0.01768) (0.00643) (0.02251) 

15/1/2021 6.3900 6.3920 6.3903 6.3912 6.3904 6.3914 

  (0.03130) (0.00469) (0.01878) (0.00626) (0.02191) 

18/1/2021 6.4100 6.4120 6.4103 6.4111 6.4104 6.4114 

  (0.03120) (0.00468) (0.01716) (0.00624) (0.02184) 

19/1/2021 6.3900 6.3920 6.3903 6.3911 6.3904 6.3914 

  (0.03130) (0.00469) (0.01721) (0.00626) (0.02191) 
Note: The actual and forecast price represent in RM per kilogram. The value in the bracket represents percentage change. 

 

Conclusion 

The two dispersion measurements (IQR/3 and Sn) 

which were applied in the Huber weighting function 

for AR(1)-GARCH(2,1) model were reported in this 

paper. The following conclusions can be made: 

a) The AR(1)-GARCH(2,1) model using IQR/3 as a 

dispersion measurement in the Huber weighting 

function was found to be the sustainable GARCH 

model to forecast SMR 20 price. 

b) The forecast price of SMR 20 is more sustained 

when the IQR/3 measure is applied to Huber 

weight function during contamination 10% and 

20% IO. 

Therefore, the two measurements identified in the 

Huber weight function assist in our understanding of 

the role of suitable dispersion measurement in 

obtaining a sustainable model. Although M-

estimator has some weighting, this work focuses on 

Huber weights in the M-estimator. Considerably 

further work would have to be undertaken to test the 

order type weighting function which can make the 

time series modelling and forecasting sustained with 

contaminate other types of outliers. 
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 المطاط: نهج دالة الترجيح المعدلة لهوبر بسعرمستدام للتنبؤ  GARCH بناء نموذج
 حنفي رحيم   ،إنتان مارتينا محمد غني

 كوالا نيروس ، تيرينجانو دار الإيمان ، ماليزيا 03212كلية تكنولوجيا هندسة المحيطات والمعلوماتية ، جامعة ماليزيا تيرينجانو ، 

 
 

 ةالخلاص

ر يالطبيعة غير المستقرة وغير المؤكدة لأسعار المطاط الطبيعي تجعلها شديدة التقلب وعرضة للقيم المتطرفة ، والتي يمكن أن يكون لها تأث

( ونموذج ARبنموذج هجين يجمع بين نموذج الانحدار الذاتي ) البحثكبير على كل من النمذجة والتنبؤ. لمعالجة هذه المشكلة ، يوصي 

لضمان بقاء القيمة المتوقعة لأسعار المطاط  Huber(. يستخدم النموذج وظيفة الترجيح GARCHالشرطي الشرطي المعمم )التباين 

يومًا من خلال تحليل  30مستدامة حتى في وجود القيم المتطرفة. تهدف الدراسة إلى تطوير نموذج مستدام والتنبؤ بالأسعار اليومية لمدة 

( في ماليزيا. يشتمل التحليل على قياسين للتشتت SMR 20للمطاط الماليزي القياسي ) 02يومية من الدرجة من بيانات الأسعار ال 0861

(IQR / 3  وSn وثلاثة مستويات من تلوث )IO (0٪  ،10٪  تشير النتائج إلى أن استخدام دالة الترجيح ٪02، و .)Huber  مع قياس

IQR / 3  لبناء نموذجAR (1) -GARCH (2،1 يؤدي إلى استدامة أفضل. هذه النتائج لديها القدرة على تعزيز نموذج )GARCH  عن

 .Mطريق تعديل وظيفة الترجيح لمقدر 

 ، هوبر. GARCHالانحدار الذاتي ، التشتت ، التنبؤ ،  كلمات المفتاحية:ال
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