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Abstract:

The necessary optimality conditions with Lagrange multipliers A(t) € R™ are studied and derived for a
new class that includes the system of Caputo—Katugampola fractional derivatives to the optimal control
problems with considering the end time free. The formula for the integral by parts has been proven for the
left Caputo—Katugampola fractional derivative that contributes to the finding and deriving the necessary
optimality conditions. Also, three special cases are obtained, including the study of the necessary optimality
conditions when both the final time t; and the final state x(t;) are fixed. According to convexity
assumptions prove that necessary optimality conditions are sufficient optimality conditions.

Keywords: Calculus of variations, Caputo—Katugampola fractional derivative, Hamiltonian system,
Necessary and sufficient optimality conditions, Optimal control.

Introduction:

In recent years, the topic of the fractional
calculus with optimal control problems (OCPs) has
become taking on a wide field and growing interest
of many researchers and readers, the main reason
for this is that solving problems for many natural
systems, scientific problems, engineering, and
biological applications is more accurate than
classical OCPs ones.

To see some of these applications, the

feedback control into the logistic model*,
nonanalytic dynamic systems 2, application to
identification problems 3, economic growth model
and so on* 7.
Fractional optimal control problems (FOCPs) are
the generalization of the OCPs with fractional
dynamical systems. The performance index of a
FOCP is considered a function of both the state and
the control variables, and the dynamic constraints
are expressed by a set of fractional differential
equations (FDEs).

Agrawal, O. P.8, is using Riemann—Liouville
FD in a general formulation and finds an
approximate solution for a class of FOCPs.

The Modified Adomian decomposition method
(MADM) has been used for finding solutions of a

class from FOCPs with a Caputo FD type by
Alizadeh, A et al.®.

Approximate results and the necessary
optimality conditions for a class composition
FODEs corresponding to OCPs suggested and
studied by Qasim Hasan S, et al.°.

The variational approach has been applied to
obtain the necessary optimality and transversality
conditions for solving the FOCPs by Chiranjeevi T,
et al . Caputo—Fabrizio FD was used in a
formulation of time FOCPs and deriving the
optimality system in terms of Volterra integrals by
Yildiz, T A, et al. *2 and for more about studying the
FOCPs (see!®14). Also, it is possible to see articles
that provide a study of solving fractional order
Volterra—Fredholm integral equations 1>1°.

New types of fractional operators were
introduced by U. Katugampola, These are done by
generalizing the Riemann-Liouville and Hadamard
FIs'” and generalizing the Riemann—Liouville and
Hadamard FDs! and new generalizations of
fractional derivatives can also be seen in®2,

This paper aims to study and derive the necessary
and sufficient optimality conditions for a new
system of FOCPs subjected to the dynamic control
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system from integer and Caputo—Katugampola FDs
in the form:

O] [P ®)
xz(t) 1B cKp xz(t) = g(t,x(®),u(®)),
xn(t) C’éD;’”’xn(t)

Let KD Px;(t),i = 1,2,..,n, is the left Caputo—
Katugampola FDs of order « € (0,1),p > 0,a €R
and (x(t),u(t)) be state and control variables
respectively considering A and B are a matrix of
order n X n. We proved a very important formula is
the integration by parts formula for Caputo—
Katugampola FD that contributes to the finding of
the necessary optimality conditions and plays a
major role in deriving these optimality conditions.
The other aspect of the paper is to study the
sufficient optimality conditions under some
convexity assumptions that have been obtained in
fine detail for system FOCPs.

This paper contains six sections: In section
2, preliminaries of FDs. In section 3, prove
integration by parts formula for Caputo-
Katugampola FDs.
The necessary optimality conditions are studied for
a class of system Caputo—Katugampola FOCPs in
section 4. The sufficient optimality conditions for a
class of system FOCPs are proven in section 5 and
the conclusions are introduced in section 6.

Basic preliminaries

The basic definitions of FDs and integrals are
presented with proof of some important theorems,
which are used in later work:
Definition 1:* 2! leta >0, p>0, and an
interval[a, bJof R, where 0 < a < b.The left and
right Riemann—Katugampola Fls of a function f €
L*([a, b]) are defined by

RKD—(ZPf(t) _ 1t (tP—rP)“_

1 dt
(50 o 1

p_pp\ 21 -
RKD apf()_@fb(r pt ) f(T):_p- 5

where T'(a) is the Gamma function defined by
() = [ et t*dt,a € C, (Re(a) > 0).

Definition 2: ® 2 leta>0,p>0 and an
interval[a, b]of R, where 0 < a < b.The left and right
Riemann-Katugampola FDs are defined by

RK ) &P _ P (j1pd)t_t

KDIPF () = o (ep ) s G f(2)dr, 3
RK®p _ _=P% (1-pd) b

D, f(t) = F(1 > (t dt)ft T f(Ddr. 4

Definition 3: ¥ 2! Leta €(0,1), p>0 and an
interval[a, b]of R, where 0 < a < b.The left and right
Caputo—Katugampola Katugampola FDs are defined

by
CKDIPF(t) = REDMP [f(t) f(@)]

- F(fl—za) (t1 g dt) J.a (tP—1P)@ [f(T) f(a)] 5
Dy f() = DA = FB)]
- F(_lp_a) (tl_p %) ftb (T:_tp)a [f(T) - f(b)]dl' . 6

Theorem 1: 22 A function f (X) is convex if for any
two points X; and X,, then

f) = fX) + VT, — Xp)
[x%] [*f]
where x2 | and X, xzz

Theorem 2: Let a € (0,1) and p > 0, then the left

Caputo—Katugampola FD of a function f € C! [a, b]

is given by
“SDPf() =

and

The right Caputo—Katugampola FD of a function f €

C!la, b] is given by

Proof.

First, by proofing the left Caputo—Katugampola FD
using Definition 3, in Eq.5, let

f P =) f(@dr. 7

F(1 a)’t

[ @ —tP)e f (D 8

I‘(l a)t

u=f(2) - f(a)

du = f (t)dt

dv = LdT
(tP—tP)®

v= ftrp‘l (tP —1P)~%dt

— P _ +P\1-«a
(p(l a) (t T ) )
CK &P __pr® 1-p 4 t
aDy f® = r(1 a) (t dt) fa u dv, 9
Now, using integration by parts, to obtain:

f: udv = [uv]}, — ft vdu,

= [f(@) - f@] (=

(tP — 1P)1- a)| _

T=a

p(1-a)

. =0
tP — P)1-a

Ja5amm (=T f (@, 10

By substituting the result of Eq.9 into Eq 10, to get

e “a) ths [(1 —a)(pt"™) fa Can
)= f (@],

f©) = s 1 =)™ f (.
where a € (0,1), p >0 two fixed real and f €
L*([a,b]).m

p(l a)

1714



Open Access
Published Online First: February, 2023

Baghdad Science Journal
2023, 20(5): 1713-1721

P-1SSN: 2078-8665
E-ISSN: 2411-7986

Integration by Parts Formula for Caputo-
Katugampola FDs

Integral formula with a transformational
relation between Caputo-Katugampola FD and
Riemann-Katugampola FD has been proven in
Theorem 3 and will rely on it to derive the
necessary optimality conditions.

Theorem 3: Let f(t) € Cla, b] and g(t) € C}[a, b]
be two functions and a € (0,1) and p > 0. Then

L7 F@® - KD g(t)dt
= [ (gt~ )REDP (1P £(¢))dt
N e

Proof:

By using the definition of the left Caputo-
Katugampola FDs by Theorem 2 of f(t) of
order (a, p), to obtain:

[2F(®) - CEDEP g(6)dt _

b « t —q a
Iy F© [rem o (=) - g (@] dt,
By using Dirichlet’s formula for Eq.11, to get

— [g(t)ngDb—(l—a,P) (tl—Pf(t))]Z
- [ (t)RKD-(l—a,P)(tl—pf(t))]t_

— [ g@® D [ (8P %) [ @ =) f @)

a0 (e ) [ e o

- f:%g(t) [r(fl—za) ftb(rp - tp)_af(f)df] dt

b d
fa L9 [( 2 0 @ - ) D dr] a1z

By using the definition of the right Riemann-
Katugampola FI of (¢1=Pf(t) ) of order (1 —a,p)
in Eq 12, to get:

RKn—(1—a,p)(,1-
= adtg(t) (D, (t1Pf(1))de,
Let h(t) RKp-(=@P) (£1-0 £(1)), to obtain:

=, dtg(t)h(t)dt 13
Now, using integration by parts of Eq.13, to obtain:

- [0, 00 (0rp)]

_f ()ilitjt[r‘(l a)f(p_
)7 f(@) L2 dr]at,

fmd]dt

fmd]d 14

By using the definition of the right Riemann-
Katugampola FD of (t'7Pf(t)) of order (1-—
a,p ) in Eq.14, to get:

Thus,

= [P(g(©)tP~1)REDEP (1P £ (1)) dt
+ [g(t)Rngb—(l—a,p) (tl_pf(t))]i:b,

f:f(t) - KD P g(t)dt = ff(g(t)tp—l)ngDg,p(tl—pf(t))dt + [g(t)ngDb_(l_a'p)(tl_pf(t))]:Z | .

Studying  the  Necessary  Optimality
Conditions for a Class of System Caputo—
Katugampola FOCPs

Let f,g are two differentiable functions with
domain[a,+o0) X R™*™", and {:[a,+%) X R™ - R
is a differentiable function. Consider the system of
Caputo—Katugampola FOCPs, in the form:

Minimize J(x, u, tf)
= [ fG(),u®), Odt + g (t,x(tr)), 15

Subject to dynamic control system

X! (t) [CKD“"’xl(t)
al® B| REAE0 | = 9@®,u®),0),
0 lcgpf‘pxn(t)J
16
and the initial boundary conditions
x(a) = xg, 17
x4 (£) uy (t)
where x(t) = l Z(t)] u(t) = qu:(t)‘.
xn (t) U (2)
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(91 H = H(x(t),u(t), A(t),t) =
g(t) = 9.2 f(x(t),u(t), t) + AT(t)g(x(t),u(t), t):
“f 18
__gn a ThUS,
aiq aqp in { '
A _|G21 Q22 Azn i— x}(t)
nxn — | : A J*(x, u, ty, /1) — fatf H-— AT(t) A x;(t) +
[An1  Ap2 Unn | k
[b11 by bin |_ X (£)
Bpsn = b_21 b_zz bz.n ’ [CKDa’px1(t)]\]
: : : KD/ t L
b b, - by, B| ¢ Pxa )| !dt + 9 (tr,x(tr)), 19
CK 1y &P J
and  x, = (X14,X14, -, X14) the fixed real number l “.Df x”(t)J J - .
with @ € (0,1),p > 0,a € R. Considering the end Consider there are variations as follows:
time ¢, free and ¢, is a variable number with a < X; + 6x;,
A + 84,
. C e e . . uj + 8Uj,
Constructing the problem as minimizing by using q Ay
Lagrange multipliers an , f f
A, () wherei=1,2,..,n, j=12,..,m,and 6x;(a) =0
A,(0) by the assumed boundary conditions in Eq.17, the
A(t) € R™, A(t) = [72)"7| , as follows: variation of J* should disappear (5]* = 0), and
1 kt) conclude that:
L/\n
Now, the Hamiltonian function is defined by:
- ACTI R CAEIONAY
0=["|ou—s| @ {al® +B|CKD”’C2“)| |l at
_ k | L@l |%p®ox, )] ) |
r CK pa.p 20
x,(t) Dy Py (t)
+8t |[H=-AT(0){ A xés(t) +B “aby 'i)xz(t) +61|;(tf,x(tf)),
l X (t) CKDIP x, (1)
Now, Integration by parts gives the relations, to get
Using the chain rule of H evaluated Firstly,
at(x(t), u(t), A(t), t)and the property of
§(fg) = (6f)g + f(8g), to get [ a8 % (©)dt = — [ sx,(OA () dt +
i . 6x;(te)Ai(tr), i =12,...,n 22
S g 0+ Ty o 81y + Xl 52 8 ané(f) )
%@©]  [EDFx®)] [€ED{ " 6x1(8)]
t —62T(t){ A xz(t) +B|CKD xZ(t)| f;f/lT(t) CZDg’p_ng(t) dt =
= (f CK P dt :
fa xn (t) l aDt axn (t)J C]C(lD;Z,p 6xn (t)
x1(£) R AG) CK R P
K P r aDt 6x1(t)_l
NUOY.A RIS —AT(t)B|C“Dt' 6x2(t)| ty CKDSP 50, (£)
: : A1) Ay(t An(t a=t 2 dt
() lopersm, o)l Je PO RO MO
MO SEA0) t G 6xy ()
+6t;|H O xé‘(t) +3B CKDapxz(t) = faf li(t)C’éDf’pri(t)dt i=12,..,n
Mkﬂ VKD (QJJ Using Theorem 1, to get
" ol [ () KDFP 5x, (1) dt
w ,
+o (tf'x(tf)) 8ty + (tf'x(tf)) (x (t)st, + 5"(%?2)1' — f;f(5xi(t)tp—1)ngD:;P (1P 2,(0))dt
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+ [6xi(t)R1§D;(1—a.P) (tl_pai(t))]tjtf
t=a

L7 20 EDEP 5x,(6)de

= [ (Bxi(D)tP YD (1P 2, (1))de

+5xi(tf)RKD—(1—a,p) (tfl—pli(tf))

—<Sacl(a)RKD_(1 % p)(al‘p)li(a))

since (6xl(a) = 0), to get

I M@ EDF 8x,(D)de = [ 6x,(DtP T REDE (6170 ,(0))de +6%x;(tp)RKD 7 (t 1-p, (tf))

follows

0=[7

a

Substitute the results of Eq.22 and 23, into Eq.21, as A0 [ngp—(l aﬂ>(t1—p,11(t)) T
1
-(1-a,p) _
KOl e A0 3 o)
’ —ox" (t
L] /12:(15) _ n(t) R,th—u—oz,p)(tl_p/1 ©®)
: f n i
An () oy
——(¢t,x(t
5xT(t) [ngDgp(tl_pll(t))] 6x( x( )) t=t;
a, - ( / CK &P 1
Bp-1 Rlithp(tl P2,(1)) |[ | x}(t) {-CKDapxl(t)-ll
: -7 (0) {2 +B| aDe "Z(t)i
RKDa'P tl_p/ln t +ot ’:
t tfaEl ( )) " f| k x4 () lCKDa pxn(t)JJ
suT(t)=
+ou (D) Bu’(t) | “’(t (t))+ (t x(0))x'(tf) e,
X1 =
oH x5(t) 24
7 A 2; B Now, rewrite the transversality conditions in Eq.24
r x),(t) by using the Taylor series for f = (x + dx) about
+54 (1) [CKD“le(t)] | the point x = ¢ can be given as:
B' K D& xy (1) | 8x(t) = 8x¢, — x'(t7)8tr + 0(5¢%) 25
CKDIZ!; (t)| where 6xtf =(x+ 5x)(tf + 5tf) — x(tf),
a xn
‘ and lim 292 is finite.
]/—)OO
Thus, to obtain
240 RGO
/ RKNXP (+1—p
s ()| By |2 O g1 | e (t 2(1))
An(®) [Rzgpg;p(tl—mn(t)) |

t
0=/

+6t;

T(r) M
+éu’ (t) o

CKDa le(tf)
H- (BA(y)) | o2 %)

lc’éDf‘ "xn(tf)J
RKD—(l—a,p) (t 1-p) (tf))

+(Bx’(tf))T *iDy, o ap)(: aa(6) |4 2 (¢, x(tp))

[RKD (- ap)( 1-p) (tf))

1717
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M (tr)

—Sxth A Az(ff)

| l/ln(.tf)J
RKD—(1—a.p) (t 1- pll(tf))
RKD—(l ap)( 1- pﬂz(tf))

[RKD—(l a,p) (t 1-p) (tf))J

—%(tf,x(tf))] +0(6t%)=0.m

since the variation functions were chosen
arbitrarily, the necessary optimality conditions for a
system Caputo—Katugampola FOCPs were obtained
and explained in the following theorem.

+B

x1(t)

X (£)
where

%) W 0]

6x1

()

()| forallt € [a,tf];
d
lm >‘ l— @‘

The stationary condition
2 (x(®),u(®),A(0), 1) = 0,
oH
5 ®)
s 21

6H

= Jforallt € [a,tf]; 27

| on

Frm (>J
The transversallty conditions
0=
[ IrCKD xl(tﬂ
H-— (Bl(t)) | aD¢ 'xz(t)i

lCKD“Pxn(t)J

R1§Dt-f(1-ayp)(t1 pll(t))

T ngDt—f(l—a.P) (tl_pﬂz (t))

+(Bx'()) +22 (t,2())

ngDt—f(l—a,p) (t1—p/1n (t))

[ m® [ (1P ()
O] g | D (22, 0)
)L;l (t) lngDtaf»P (tl_p;{n(t))_

[CKD“"’xl(t)'
ME20 +BiCKD“”xz(t)

LKDEP x, (0]

“t=ty

Theorem 4: If (x,u,ts) is a minimizer of Eq.15
under the dynamic constraint in Eq.16, as follows

X1 (6) [C’éDf""x1<t>
A O 48| TR0 < 0,0,
ol |epery )

and the boundary conditions in Eq.17, then 3 A(t) €
R™, for which (x, u, 1) satisfies:

The Hamiltonian system

- _g_:‘(x(t),u(t),a(t),ﬂ,

a
= £ (x(£), u(t), A(t), t),

J
and

I[RKD—(l “P)(tl—pll(t))'l
A |20 4 |0 (P R(0)|

[

|

|

I M H

[ ﬂ.n(t) [ngDt—f(l—“.P) (tl_pln(t))J

oy

_E(t'x(t))]mf 29
where the Hamiltonian is defined by Eq.18 and

0

0x4

oy
W _ a_xz(t) | n
ox . |

oy

a(ﬂj

To study three basic special cases on the end time t¢
or on x(ts) in both cases when they are fixed and
free in Corollary 1.

Corollary 1: Let (x,u) be a minimizer of Eq.15
subject to the dynamic constraint in Eq.16 and the
boundary condition in Eqg.17, then

1) The transversality conditions aren’t used in

Theorem 4 if both t; and x(t) are fixed.

2) Only the transversality condition in Eq.29 is
used in Theorem 4, if ¢ is fixed and x(tf) is
free.

1718



Open Access
Published Online First: February, 2023

Baghdad Science Journal
2023, 20(5): 1713-1721

P-1SSN: 2078-8665
E-ISSN: 2411-7986

3) Only the transversality condition in EQ.28 is
used in Theorem 4, if t; is free and x(¢f) is
fixed.

Remark 1: If ¢ is fixed and x(¢5) is free and

11 e 1
Letd =1 1 oo L
1 1 . 1.
0 0 -« 07
B:? 0 20w (ta(y)) =0
0 0

and a =p =1. Then(():onclude

The Hamiltonian system

SRAG)

20| = -2 0,u,200,0),
: X

[ A5 (8)]

1 (6)]

%O = I e, u0), 10,0,

[ L0 )

The stationary condition

o (), u(6), A(6), £) = 0,

forallt € [a,tf];
M (tr)
Az(.tf) ~0

l’171(’:f)J
Studying the Sufficient Optimality Conditions

for a Class of System Caputo-Katugampola
FOCPs

The transversality condition

Under some convexity assumptions sufficient
conditions are studied for a class of system Caputo—
Katugampola FOCPs in Theorem 5, as follows

X1 Uy
x| - U,
2 g=|"2
Xn Um

Theorem 5: Let x = and A =
M
)‘.2 satisfying conditions (26) — (29) of Theorem
An

4, and assume that
1. f and g are convex in x and u, and ¥ is

convex in x.
2. tr is fixed.

|
; | 0forallt € [a,tf] or g is linear in

x_1 uy
Xz uz
_ T

problem (15) (17).

Then is an optimal solution to the

Proof:

Deriving the Hamiltonian in Eq.18 relative to x(t)
and replaced in the Hamiltonian system of Theorem
4, to deduce

BRG]
I @0, a0 =A% O+
7 ]
“D? (1107 (0)

peo-1 |05 (F7PR0) |

I SN
| D" (tl‘P/ln(t))J

29 (e(6), u(), AL), 30
where
f
_(t) [% %]
0x4 Oxy,
axz (t)| =\ : N
Ch ) Jue 2oy .. "’LJ
[ (t)J axl axn

Now, derlvmg the Hamiltonian relative to u(t) and
replaced in the stationary condition of Theorem 4,
as follows:

"’—“(f(t),a(t). £)
L @), u(t), ) + 52 @B, W), HA(E) =0,
(x(t) u(t),t) = ——(x(t) (o), HAD), 31

a_

where
7 o0 . 09
| (t)| J"’? f’l;m]_
[ () J ou, AUy,

since tf |s fixed, then by the case (2) of Corollary 1
has the only transversality condition.
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ngDt—f(l—a,P) (tl—pZ(t))

ﬁ(t)-l RKp—(1—ap) (11-p5
c/l|’12_(t) |+ 8| Pt (t Az(t))
l %0 [R’EDt}(l‘“"’)'(tl‘pZ(t))J

N (= _
‘a(t'x(t))]m = 32

Let (x, u) be admissible, i.e., let Eq.16 and Eq.17 be
satisfied for (x, w). In this case,

Jow) =)@ = f)) [f (), u®),t) -
F(),u(t), t)]dt + ¢ (tf, x(tf)) -y (tf, Y(tf)),

since f is convex on x and u, and y is convex in x
from assumption 1, then by Theorem 1, to obtain

> [ (x(t) - %) LE®,a0),0) +
(u®) —u(®)" LEw®,uw,0)dt

— Top(, —
+ (x(tf) - x(tf)) ox (tf'x(tf))’
By using Eq. 30 and Eq. 31, to get

PG

—(x(®) —%(D)" A|42 O]

T ()
[*&DgP (tH’Z(r))]l
+(x(0) - 7)) Beo1 |0 (0T ) i
|*&Ds” (t;_pm)) |

- (20 2 (o), 10, H(x(® - %(®))
—(u(®) - u(®))" 52 Ge), u(t), HA(E)

+ (x(t) - %)) (e %(ty),

Integrating by parts, with a note that x(a)
and using Eq.32, to obtain

t

33

x(a),

=
x1(6) x4 (t)
(2©)' [ 4|2®|+pexpze|2®
xrll.(t) xn.(t)
Irz’(ml % (t) \
I —(Z(t))T| C/Z[EI.@) + BEKDLP Xz(t) |
% () Ol
- (30) 2 G®, 180, D (x© - %(©)
—(u() - u(t)) %9 -, &, u(®), HA()

dt

dt,

By using the dynamic control system in Eq.16, and

since g is convex on x and u, from assumption 1, to

get

[ (20) 2 (), 5, O (x(®) - x(®)) |
+(u(®) —7(®)" 2L @), ), HA)

- (1) 2 @®, 50, 0(x©) - %®)
| —(u(® - w(®)" L E®),u), HAE) |

dt =

t

O.I

Conclusions:

In this paper, a new system of FOCPs with
Caputo—Katugampola FDs KD/’x;(t),i = 1,2,...,n,
has been studied. we are assuming that the end time ¢,
free and a Lagrange multiplier vector A(t) € R™.The
necessary optimality conditions for the system are
obtained when a € (0,1),p > 0anda € R and consist
of a Hamiltonian system, stationary condition, and
transversality conditions which contributes to solving
non-linear dynamical control systems with FDs to obtain
approximate solutions for state and control variables with
the help of the proposed numerical methods. A special
case was deduced to study the system of FOCPs if both
the final time and the final state are fixed, then in this
case the optimality conditions obtained are applied
without the transversality conditions. Also, the necessary
optimality conditions have been proven to be sufficient
for a system of FOCPs.
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