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Abstract:  
       In this paper normal self-injective hyperrings are introduced and studied. Some new relations 

between this concept and essential hyperideal, dense hyperideal, and divisible hyperring are 

studied.   
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Introduction. 
       Hypergroup was firstly defined by Marty in 

1934 1. Later Krasner introduced the hyperrings 

(resp. hypermodules), as an extension of rings (resp. 

modules) named by Krasner hyperrings (resp. 

Krasner hypermodules) 1. After that, many others 

defined other types of hyperrings, for example 

(multiplication2, general2, etc) hyperrings. All 

hyperrings in this paper are Krasner hyperrings, 

unless otherwise stated would like to point out that, 

in this paper, the Krasner hyperring will be denoted 

by ℛ, the set P*(ℛ) ={𝒜 ⊆ ℛ.𝒜 ≠ ∅} and normal 

self-injective hypering referred as (NSI). The main 

objection of this paper is to shed light on the normal 

self-injective hyperring and find some of its 

characterizations. Jeshraghani S.H and Ameri R1 in 

2020 defined projective and injective Krasner 

hypermodules. Then, in 2022 H. Bordbar and I. 

Cristea defined the normal injective hypermodules2. 

The following definitions were mentioned as simple 

retrench during the paper. 

Definition 13 . The map ∔∶ 𝒢 × 𝒢 ⟶ P*(𝒢), on a 

nonempty set 𝒢, which is defined as ∔ (𝑔1, 𝑔2) = 𝑔1 ∔

𝑔2 is called “hyperoperation”.  

Definition 23 . The pair (𝒢,∔) is called 

“semihypergroup” if for each 𝑔
1
, 𝑔
2
 𝑎𝑛𝑑 𝑔

3
 in 𝒢 the 

following condition holds; 𝑔
1
∔ (𝑔

2
∔ 𝑔

3
) = (𝑔

1
∔

𝑔
2
) ∔ 𝑔

3
. This means ∪𝑔∈𝑔2∔𝑔3

 𝑔
1
 ∔ 𝑔 = ∪𝑔ˊ∈𝑔1∔𝑔2 

𝑔ˊ 

∔ 𝑔
3
. If the semihypergroup satisfies the axiom x ∔ 𝒢 = 

𝒢 = 𝒢 ∔x, for all x ∈ 𝒢, then it is called a “hypergroup”. 

Definition 3 3. The hyperstructure (𝒢,∔) is called 

commutative hyperstructure if, for all 𝑔
1
, 𝑔
2
∈ 𝒢; 𝑔

1
∔

𝑔
2
= 𝑔

2
∔ 𝑔

1
.  

Definition 4 4 . A commutative semihypergroup is 

called a canonical hypergroup if it satisfied the following 

axioms. 

 There exists 0 ∈ 𝒢 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡, 0 ∔ 𝑔1 = {𝑔1}=

 𝑔1 ∔ 0, for each 𝑔
1
 ∈ 𝒢. 

 For each 𝑔
1
 ∈ 𝒢, there is a unique element –𝑔1 

which is the opposite of 𝑔
1
 and will be denoted as 

𝑔
1
ˊ s.t, 0 ∈ (𝑔

1
∔ 𝑔

1
ˊ), where 0 ∈ 𝒢. And 𝑔

1
− 𝑔

2
 

will write as recompense of 𝑔
1
∔ (−𝑔

2
); 

 𝑔
3
 ∈ 𝑔

1
∔ 𝑔

2
 implies 𝑔

1
 ∈ 𝑔

3
− 𝑔

2
; 

Definition 5 4
. The non-empty set ℛ equipped with 

the hyperoperation ∔∶ ℛ × ℛ ⟶P*(ℛ), and the 

multiplication  ⋅ : ℛ × ℛ ⟶  ℛ, such that; 

i. (ℛ,∔) satisfies the conditions of canonical 

hypergroup with unite element 0,  

ii. (ℛ,⋅) satisfies a condition of the semigroup, and 

x. 0 = 0 = 0. x,  

iii. 𝓇1 ⋅(𝓇2 ∔ 𝓇3) =(𝓇1 ⋅ 𝓇2)∔(𝓇1 ⋅ 𝓇3). Also (𝓇1 ∔

𝓇2)⋅ 𝓇3=(𝓇1 ⋅ 𝓇3)∔(𝓇2 ⋅ 𝓇3), where 𝓇1, 𝓇2 and 

𝓇3 are all in ℛ. 

It is called “Krasner hyperring”. A Krasner hyperring is 

said to be “commutative” with unite element, if (ℛ,⋅) is a 

“commutative semigroup” with unite element.  

Definition 6 4. The nonempty subset 𝐼 of the Krasner 

hyperring ℛ is called right (resp. left) hyperideal in ℛ, if 

the following two conditions are satisfied; 
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 If 𝓀, 𝒷 ∈ 𝐼, then 𝓀-𝒷  ⊆ 𝐼; 
 If 𝓀 ∈ 𝐼, 𝓉 ∈ ℛ, then 𝓉. 𝓀 ∈ 𝐼, (𝑟𝑒𝑠𝑝. 𝓀. 𝓉 ∈ 𝐼). 

If 𝐼 is right and left hyperideal, then it is said to be 

“hyperideal”. Also, a proper hyperideal 𝐼 of ℛ is called 

maximal hyperideal if for any hyperideal J of ℛ with 𝐼 ⊊ 

J ⊆ ℛ, then J = ℛ. 

Definition 74
.  If (ℛ ∖ {0},⋅) is a group, then the 

Krasner hyperring (ℛ,∔,∙) is called a hyperfeild.   

Remarks 1 5.  
1. Any hyperfield is a hyperring. 

2. The only hyperideals in any hyperfeild 𝐹are 0 

and 𝐹 itself.  

Definition 8 2. A non-zero element 𝓍 in ℛ where ℛ is 

a commutative hyperring is said to be a zero divisor if 

there is 0 ≠ 𝑦 ∈ ℛ such that ⋅ 𝑦 = {0}. 

Definition 9 4
. A commutative Krasner hyperring 

(ℛ,∔,⋅) with unite element is said to be a hyperdomain if 

whenever 𝒶.𝒷 = 0, then either 𝒶 = 0 or 𝒷 = 0 for each 

𝒶,𝒷 ∈ ℛ.  

Definition 10 6
. A commutative Krasner hyperring 

with a unite element is called “principal hyperideal 

hyprdomain” if any hyperideal of ℛ is generated by a 

single element and ℛ has no zero divisor elements.  

Definition 11 2.  The hyperstructuer (ℳ,+), over a 

hyperring (ℛ,∔,∙) with unite element “1”  is said to be a 

“left Krasner hypermodule” over a hyperring ℛ if (ℳ,+) 

is a canonical hypergroup with a map ⋅ : ℛ ×ℳ ⟶ℳ, 

defined as;  

⋅ (𝑠,𝑚)  ↦  𝑠.𝑚 = 𝑠𝑚 ∈ ℳ 

such that for all 𝓀,𝒷 ∈ ℛ 𝑎𝑛𝑑  𝑚,𝑚` ∈ ℳ, we have 

1.  (𝓀 ∔ 𝒷)𝑚 = 𝓀𝑚 ∔𝒷𝑚 

2. 𝓀(𝑚 +𝑚ˋ)=𝓀𝓂 + 𝓀𝑚ˋ 
3. (𝓀𝒷)𝑚=𝓀(𝒷𝑚) 

4. 0ℛ . 𝑚 =  0ℳ, where 0ℛ is a zero of ℛ, 0ℳ the 

secular identity of ℳ.  

And denoted to it by “left ℛ-hypermodule”. In the same 

way one can define the right ℛ-hypermodule. The ℛ- 

hypermodule ℳ is called unitary if 1.𝑚=𝑚, for all 𝑚 ∈
ℳ where 1 is the identity of ℛ . 

Definition 12 2. The function ℓ from the hyperring 

(ℛ1 ∔,∙) into the hyperring (ℛ2,∔
ˈ
,⋅ˈ), with unite 

elements1ℛ1 , 1ℛ2 respectively is called a hyperring 

homomorphism if the following hold.  

1. For each  𝓀,𝒷 ∈ ℛ1, ℓ(𝓀 ∔ 𝒷) = ℓ(𝓀) ∔
ˈ
ℓ(𝒷). 

2. For each 𝓀,𝒷 ∈ ℛ1, ℓ(𝓀.𝒷)= ℓ(𝓀) ⋅ˈ ℓ(𝒷). 

3. ℓ(1ℛ1)= 1ℛ2 . 

      Bordbar H and Cristea I. in their paper “Divisible 

hypermodules” 2 considered  ℳ and 𝒩  as an ℛ-

hypermodules. The single-value function ℓ: ℳ ⟶𝒩 is 

called strict ℛ-homomorphism if  

1. for each m and mˈ ∈ ℳ, ℓ(m+ℳmˈ) ⊆ ℓ(m) ∔𝒩 

ℓ(mˈ); 

2. for each m ∈ ℳ and each 𝓇 ∈ ℛ, ℓ(𝓇 ⋅ℳ m) = 

𝓇 ⋅𝒩 ℓ(m).  

And it is called normal ℛ-homomorphism if it satisfies 

the condition (2) and the following point 

3. for each m, mˈ ∈ ℳ, ℓ(m+ℳmˈ) = ℓ(m) 

+𝒩ℓ(mˈ) 

Where the set of all normal ℛ-homomrphism from ℳ 

into 𝒩 is denoted by 𝐻𝑜𝑚𝑅
𝑛 (ℳ,𝒩). 

 

Main Results:  
     Recall that a hypermodule ℳ over a Krasner 

hyperring ℛ is called normal injective if and only if for 

each hyperideal 𝐼 of ℛ, the inclusion  i ∶ 𝐼 ⟶ ℛ, and a 

normal ℛ-homomorphism d ∶ 𝐼 ⟶ℳ, there exists a 

normal ℛ-homomorphism j ∶ ℛ ⟶ℳ, such that ji = d 7 

Definition 13. A Krasner hyperring ℛ is called a 

“Normal Self-Injective” (NSI) hyperring if ℛ is a normal 

injective hypermodule over itself. 

      In the definition of a normal self-injective Krasner 

hyperring ℛ, we will use the same definition of normal 

ℛ-homomorphism which is defined by Bordbar H and 

Cristea I in their paper “Divisible hypermodules” 2 

Examples 1. 
1. Every hyperfield 𝐹 is (NSI) hyperring, since the 

only hyperideals of 𝐹 are 0 and 𝐹. 

2. (ℤ𝑝,∔,∙) is a hyperfield so it is an (NSI) hyperring. 

The hyperoperation ∔ defined as a ∔ z = 

{a, z, a + z}. 

Definition 14. A hyperring ℛ is said to be satisfying 

the Baer’s condition if for every family ℱ of hyperideals 

in ℛ, for every hyperideal 𝐼 in ℱ, and every normal 

homomorphism 𝑓: 𝐼 ⟶ ℛ, there exists 𝓇 ∈ ℛ such that 

𝑓(x) = 𝓇x, for each x ∈ 𝐼. 
The following proposition shows that normal self-

injectivity is equivalent to Baer’s condition. 

Proposition 1. A hyperring ℛ with unite element is a 

normal self-injective hyperring if and only if ℛ satisfies 

Baer’s condition. 

Proof. Let ℛ be a (NSI) hyperring, 𝐼 be any hyperideal 

in ℛ, and  ℓ: 𝐼 ⟶ ℛ be an ℛ-homomorphism. By the 

concept of (NSI) of ℛ, ℓ can be extended to a normal ℛ-

homomorphism 𝑔. ℛ ⟶ ℛ. Now ℓ(𝓍)= ℓ(1.𝓍)=
𝑔(1.𝓍)= 𝑔(1).𝓍. Put r = 𝑔(1) thus ℓ(𝑥) =r𝑥, ∀ 𝓍 ∈ 𝐼. 
         Conversely, suppose that Baer’s condition holds for 

ℛ, and ℓ : 𝐼 ⟶  ℛ is an ℛ-homomorphism, let  ℋ be the 

set of all pairs (𝐼ˊ , ℓˊ), for a hyperideal  𝐼ˊ of ℛ with  𝐼 ⊆ 

𝐼ˊ, ℓˊ|
𝐼
= ℓ. Firstly, ℋ ≠ ∅, since (𝐼, ℓ) ∈ ℋ. The 

elements of ℋ are partially ordered as (𝐼ˊ, ℓˊ) ≤ (𝐼ˊˊ, ℓˊˊ) 

if and only if 𝐼ˊ ⊆ 𝐼ˊˊ and   ℓˊˊ|
𝐼ˊ
= ℓˊ. 

Let 𝔖 ={(𝐼𝛼 , ℓ𝛼) ∶  𝛼 ∈ ∧} be a chain in ℋ. 𝐼𝓀 =

𝑈𝛼∈∧𝐼𝛼 is a hyperideal of ℛ which contain 𝐼 4. Now  

ℓ𝓀: 𝐼𝓀 ⟶ ℛ, is defined as follows, if a ∈ 𝐼𝓀, then a ∈ 𝐼𝛼 

for some 𝛼 ∈ ∧ . Put ℓ𝓀(a) = ℓ𝛼(a), since ℓ𝛽(a) = ℓ𝛼(a) 

for all 𝛼 ≥ 𝛽 and a ∈ 𝐼𝓀 so ℓ𝓀 is well defined. Hence 

(ℓ𝓀, 𝐼𝓀) is an upper bound of 𝔖. By Zorn’s lemma, ℋ 

contains maximal element denoted by (𝐽, 𝑔). For that: 

suppose  𝐽 = ℛ. If not, there is an element y ∈ ℛ - 𝐽. 
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Put 𝐶 = 𝐽 + 𝑦ℛ, C is a hyperideal of ℛ which properly 

contains 𝐽, consider the hyperideal 𝐾 ={r ∈ ℛ : 𝑦r ∈ 𝐽}. 

Define ℎ . 𝐾 ⟶ ℛ by ℎ(r) = 𝑔(yr) for each r ∈ 𝐾. It is 

clear that ℎ is an ℛ-homomorphism. Hence there is an 

element t ∈ ℛ such that ℎ(𝑟) = 𝑔(yr) =  tr, for r ∈ 𝐾. ℎ 

is well-defined. Let 𝑔ˊ: C ⟶  ℛ be defined as 𝑔ˊ(a +

yr) = 𝑔(a) + tr for each a + yr ∈ C. If a + y𝑟1 =  b +

y𝑟2, then y(𝑟1 − 𝑟2) = b –  a, and b − a ∈ 𝐽. Hence 𝑟1 −

 𝑟2 ∈ 𝐾. Therefore 𝑔(y(𝑟1 − 𝑟2)) = t(𝑟1 − 𝑟2) =  t𝑟1 −
t𝑟2. But 𝑔(y(𝑟1 − 𝑟2)) = 𝑔(b − a) = 𝑔(𝑏) − 𝑔(a), then   

𝑔(a) + t𝑟1 = 𝑔(b) + t𝑟2. Thus 𝑔ˊ is well-defined, since  

𝑔ˊ is an extended to 𝑔 then 𝑔ˊ is an ℛ-homomorphism, 

this contradiction with the maximality of (𝐽, 𝑔). 

Therefore ℛ is a normal self-injective hyperring. ∎ 

Definition 15 2. The element x in the commutative 

hyperring ℛ is called divisible if, for any nonzero divisor 

element say r ∈ ℛ, there is y ∈ ℛ such that x= r.y. 

Definition 16. A commutative hyperring ℛ is called 

divisible if every element in ℛ is divisible, and it can be 

written as ℛ =xℛ. 

Proposition 2. If Baer’s condition holds for all 

principal hyperideals of a hyperring ℛ, then ℛ is 

divisible. 

Proof. Clearly that xℛ ⊆ ℛ, where xℛ is a hyperideal 

of ℛ and (0≠x) ∈ ℛ is a nonzero divisor. To show that ℛ 

⊆ xℛ, let y ∈ ℛ, and consider the mapping 𝑓: xℛ ⟶ ℛ, 

defined by 𝑓(xr) = yr for each xr ∈ xℛ. If xr = xt, then 

0 ∈ x(r − t) thus there is y ∈ (r − t) such that 0 = xy.  
Since x is a nonzero divisor, so 𝑦 = 0, then 0 ∈ r − t 
implies t ∈ r + 0 = {t}. Since ℛ is a canonical 

hypergroup under +, thus r = t, and hence 𝑓 is well-

defined and 𝑓 is an ℛ-homomorphism. By hypothesis, 

there exists an element s ∈  ℛ such that 𝑓(𝑤) = s𝑤, 𝑤 ∈ 

xℛ. Since ℛ has a unite element, 𝑦 = 𝑓(x) = sx and 𝑦 ∈
xℛ. Hence ℛ =xℛ. ∎                                                                                                                                                                

Theorem 1. Let ℛ be a principal hyperideal 

hyperdomain. If ℛ is divisible, then ℛ  satisfies Baer’s 

condition. 

Proof. Let 𝐼 be any hyperideal of ℛ and f ∶ 𝐼 ⟶ ℛ be 

an ℛ-homomorphism. If 𝐼 is the zero hyperideal, then it 

is done. Consider the case 𝐼 ≠0. Since ℛ is the principal 

hyperideal hyperdomain, therefore 𝐼=sℛ for some 

nonzero element s ∈ 𝐼. Now f(s) in ℛ, hence there is a 

nonzero element t ∈ ℛ such that f(s) = ts by divisibility 

of ℛ. Thus ℛ is satisfy Baer’s condition. Hence by 

Proposition 1, ℛ is (NSI) hyperring.∎ 

Example 22. Let (Z,+) be a canonical hypergroup, 

where the hyperoperation “∔” defined as a∔b = {0, 

a+b}\{a,b} and the hyperstructuer (Z,∔,⋅) is  

commutative Krasner hyperring with unit element 1. So 

the hyperring Z is not divisible hyperring. Therefore, it is 

not a normal self-injective hyperring. 

Example 38. The hyperoperation “∔” and the 

multiplication “∙” which are defined in Tables 1 and 2 on 

the set ℛ = {0, 1, 2}. 

 

 

 

Table 1. Additive hyperoperation 

∔ 0 1 2 

0 {0} {1} {2} 

1 {1} {1,2} {1} 

2 {2} {1} {0,2} 

 

Table 2. Multiplicative operation 
. 0 1 2 

0 0 0 0 

1 0 1 2 

2 0 2 1 

 
Then ℛ is a hyperring and the only hyperideals 

of it are {0} and ℛ it-self, where {0} is generated by 0 

and ℛ by 1, thus ℛ is a principal hyperideal hyperdomain 

and every nonzero element is divisible, thus ℛ is 

divisible hyperring and by Theorem 1, ℛ is (NSI). 

Definition 17. The hyperring ℛ is said to be the direct 

sum of two hyperrings ℛ1 and ℛ2, if  ℛ1 + ℛ2 =  ℛ and 

ℛ1 ∩ ℛ2 = {0}. For each element in ℛ, say 𝓇, there are 

unique elements 𝓇1 ∈ ℛ1and 𝓇2 ∈ ℛ2, such that 𝓇 ∈
𝓇1 + 𝓇2, and denoted by ℛ = ℛ1⊕ℛ2. 

Theorem 2. If ℛ is a direct sum of two hyperrings ℛ1 

and ℛ2, then ℛ is (NSI) if and only if each of ℛ1  and ℛ2 
is (NSI). 

Proof. Assume that each of ℛ1 and ℛ2 is (NSI) 

hyperring. Let 𝐼 be a hyperideal of ℛ, and 𝑓  an ℛ-

homomorphism of 𝐼 into ℛ. I can write as 𝐼 = 𝐼1 + 𝐼2, 

where 𝐼1, 𝐼2 are hyperideals in ℛ1 and ℛ2 respectively,  
8 

and 𝑓 can be represented as a pair (𝑓
1
, 𝑓
2
) where 𝑓

𝑖
 is an 

ℛ𝑖-homomorphism of 𝐼𝑖 into ℛ𝑖, for 𝑖=1,2. Then for each 

x ∈ 𝐼 we have x = (𝑥1, 𝑥2), and 𝑓(x) = (𝑓(𝑥1),𝑓(𝑥2)). 

Since each ℛ𝑖 is a normal self-injective hyperring, 𝑖=1, 2, 

there is 𝑘𝑖 ∈ ℛ𝑖 such that 𝑓
𝑖
(𝑥𝑖) = 𝑘𝑖𝑥𝑖 for all 𝑥𝑖 ∈ 𝐼𝑖, 

𝑖 =1,2. by Proposition 1. Then for any x ∈ 𝐼, 

𝑓(x)=(𝑓
1
(𝑥1), 𝑓2(𝑥2))=(𝑘1𝑥1, 𝑘2𝑥2) = (𝑘1, 𝑘2)(𝑥1, 𝑥2) =

kx ,where k=(𝑘1, 𝑘2) ∈ ℛ. Hence Baer’s condition holds 

for ℛ. Therefore by Proposition 1, ℛ is a normal self-

injective. 

For the converse, suppose that ℛ is an (NSI) hyperring. 

Let 𝐼1 be a hyperideal in ℛ1 and 𝑓
1
 be an ℛ1-

homomorphism of 𝐼1 into ℛ1. 𝐼1 + ℛ2 is a hypeideal in 

ℛ1 + ℛ2 = ℛ. 

Define 𝑓: 𝐼1 + ℛ2 ⟶  ℛ by 𝑓=(𝑓
1
,𝑖2) where 𝑖2 is the 

identity mapping of ℛ2. It is clearly that 𝑓 is an R-

homomorphism. Since ℛ is (NSI) hyperring, therefore by 

Proposition 1, there is an element 𝑠 = (𝑠1,𝑠2) ∈ ℛ such 

that 𝑓((𝑥1, 𝑥2)) = (𝑓
1
(𝑥1), 𝐼2(𝑥2) = (𝑠1,𝑠2)(𝑥1, 𝑥2) =

(𝑠1𝑥1, 𝑠2𝑥2) for each (𝑥1,𝑥2) ∈ 𝐼1 + ℛ2 in fact 𝑠2 is the 

unite element in ℛ2. Hence (𝑓
1
(𝑥1)) =𝑠1𝑥1 for each 𝑥1 ∈ 

𝐼1, thus Baer’s condition holds for ℛ1. By Proposition 1  

ℛ1  is (NSI) hyperring. Similar proved that ℛ2  is (NSI) 

hyperring. ∎ 
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Corollary 1. If ℛ is a direct sum of a finite family of 

hyperrings (ℛ𝑖)𝑖∈𝐼, then ℛ is (NSI) hyperring if and only 

if each of ℛ𝑖 is (NSI). 

Theorem 3. Let ℛ be a hyperring considered as an ℛ-

hypermodule. Then ℛ is (NSI) if and only if ℛ is a direct 

summand of every extension of ℛ  

Proof. Let  ℛ be (NSI) hyperring, and ℛˊ be any 

extension of ℛ as an ℛ-hypermodule. Thus there is an ℛ-

homomorphism ℎ:ℛ´
             
→   ℛ such that ℎ𝑖 = I ℛ, where 

𝑖: ℛ
               
→    ℛ´ is the inclusion map and I ℛ : ℛ

               
→    ℛ is 

the Identity map. 

Let 𝑟ˊ ∈ ℛˊ, then h(𝑟ˊ) ∈ ℛ. Hence h(𝑟ˊ -h(𝑟ˊ)) = h(𝑟ˊ) – 

h(h(𝑟ˊ)) = h(𝑟ˊ) – h(i(h(𝑟ˊ))) = h(𝑟ˊ) – hi(h(𝑟ˊ)) = h(𝑟ˊ) – 

I ℛ(h(𝑟ˊ)) = h(𝑟ˊ) – h(𝑟ˊ) = 0. Hence 𝑟ˊ- h(𝑟ˊ) ∈ ker(h), and 

so there exists an element x ∈ ker(h) such that  𝑟ˊ- h(𝑟ˊ) = 

x, hence 𝑟ˊ= h(𝑟ˊ) + x. Therefore ℛˊ = ℛ + ker(h). But 

ℛ ⋂ ker(h) = {0}, then ℛˊ = ℛ ⨁ ker(h). 

Conversely, assume that ℛ is a direct sum and of every 

extension of ℛ. Since every hypermodule can be 

embedded in an injective hypermodule 9 (9, Prop. 2.5,
in proof part(4 → 5)). Thus ℛ has an injective extension 

say S. Therefore S = ℛ+N for some subhypermodule N 

in S. By Theorem 2, got ℛ is (NSI) hyperring. ∎ 

     One of the main purposes of this paper is to introduce 

Baer’s condition to get normal self injectivity.  

First need some definitions and propositions.  

Proposition 3. If ℛ is a hyperring and 𝐼 is a 

hyperideal in ℛ, then there exists a hyperideal J in ℛ 

which is maximal among all hyperideals in ℛ with zero 

intersection with 𝐼. 

Proof. Let ℋ ={J: J⋂𝐼={0}, J is a hyperideal in ℛ}. 
Since {0}∈ ℋ, so ℋ ≠ ∅. The elements of ℋ is partially 

ordered by inclusion. Let S={𝐼𝛼 : 𝛼 ∈ Α}  be any linearly 

ordered subset of ℋ. Clearly 𝐼𝑜 =∪ 𝐼𝛼 is a hyperideal in 

ℛ, and  𝐼𝑜 ∩  𝐼 = {0}, it can be proved that 𝐼𝑜 is an upper 

bound of S. Therefore, by Zorn’s lemma, ℋ has a 

maximal element say J this completes the proof. ∎ 

        This hyperideal J in the above proposition is called a 

complement hyperideal of 𝐼 in ℛ, and it is denoted by 𝐼𝑐. 

Definition 18 10. A right hyperideal 𝐼 in a hyperring ℛ 

is “essential” if for each right hyperideal 0 ≠ K of ℛ, 

have 𝐼 ∩K≠ 0. In fact this definition is the same in 

algebra system. 11,12,13 

Definition 19 10. A right hyperideal 𝐼 in ℛ is called 

“denes” if given any 0≠ 𝓇1 ∈ ℛ, 𝓇2 ∈ ℛ, there is 𝓇 ∈ ℛ 

such that. 𝓇1.𝓇 ≠ 0, and 𝓇2.𝓇 ∈ 𝐼. 

Definition 2 010 . The set {𝓇 ∈ ℛ. 𝑎𝓇 = 0 , ∀𝑎 ∈ 

𝐼}.is called left annihilator of a hyperideal 𝐼 in ℛ and 

denoted by Ann(𝐼) in the same way one can define the 

right annihilator. 

Remark 210. Let 𝐼 be a hyperideal, then Ann(𝐼) = 0 if 

and only if 𝐼 is a dense right hyperideal. 

Proposition 4. Let 𝐼 be a hyperideal in a hyperring 

ℛ, 𝐼c is the complement hyperideal of 𝐼 in ℛ. Then 𝐼+𝐼c 
is an essential hyperideal in ℛ. 

Proof. Assume that (𝐼 + 𝐼c)∩H ={0} for some 

hyperideal H in ℛ, to prove that H={0}. Let i ∈ 𝐼 ∩(𝐼c + 

H) then i=j+h where j ∈ 𝐼𝑐 and h ∈ H, hence h=i-j and h 

∈ (𝐼+𝐼𝑐)∩H ={0}. Therefore i=j. Since 𝐼 ∩ 𝐼𝑐 = {0}. 

Therefore i=j=0. Then 𝐼 ∩ (𝐼c+H) = {0}. By maximality 

of 𝐼c, have H ⊆ 𝐼c. Hence H = (𝐼+𝐼c ) ∩ H = {0}. ∎ 

Corollary 2. If ℛ is a hyperring and 𝐼 is a hyperideal 

in ℛ, then 𝐼 is an essential hyperideal if and only if 𝐼𝑐 = 

{0} 

Proof. Suppose that 𝐼 is an essential hyperideal, if 𝐼 ∩

𝐼𝑐 = {0}, then 𝐼𝑐 = {0}. Conversely, if 𝐼𝑐 = {0}, then by 

Proposition 4, 𝐼+𝐼𝑐 is an essential hyperideal of ℛ. 

Therefore 𝐼 = 𝐼+𝐼𝑐 is an essential hyperideal in ℛ. ∎ 

The following proposition proved by M. Anbarloei in his 

paper “The Maximal hyperring of quotient” 10 here it will 

be proven in another way. 

Proposition 510
. Every dense hyperideal in ℛ is 

essential. 

Proof. Let 𝐼 be a dense hyperideal, and 𝐼𝑐 be a 

complement hyperideal of 𝐼 in ℛ. Then 𝐼𝑐𝐼 ⊆ 𝐼 ∩ 𝐼𝑐 = 

{0}, thus 𝐼𝑐𝐼 = {0}. Since 𝐼 is dense, therefore 𝐼𝑐 = {0}. 

Hence 𝐼 is essential in ℛ  by Corollary 2. ∎ 

       

Proposition 6. Let ℛ be a hyperring and 𝐼 be a 

hyperideal in ℛ. If 𝐼 is an essential hyperideal in ℛ, then 

it is dense. 

Proof. Let 𝐼 be an essential hyperideal in ℛ. 𝐼 ∩
 Ann(𝐼) = {0}10 (10, Remark 3.4), whence Ann(𝐼)={r ∈ 

ℛ: 𝐼r ={0}}. But 𝐼 is essential hyperideal, then Ann(𝐼) = 

{0}, and hence 𝐼 is dense (by Remark 2). ∎ 

Proposition 7. Let 𝑓 be an epimorphism of a 

hyperring ℛ onto ℛˊ, and 𝐼 be essential in ℛˊ. Then 

𝑓−1(𝐼) is an essential hyperideal in ℛ. 

Proof. Assuming that 𝑓−1(𝐼) is not essential, there is a 

hyperideal 0≠H ∈ ℛ such that H∩ 𝑓−1(𝐼) = {0}. Then 

𝑓(H) ≠ 0 a hyperideal in ℛˊ, and 𝑓(H) ∩ 𝐼 ={0}. Hence 𝐼 
is not essential hyperideal that is a contradiction. 

Therefore 𝑓−1(𝐼) is an essential hyperideal in ℛ. ∎ 

Proposition 8. If  ℛ is a hyperring, and 𝐼  is a 

hyperideal in ℛ. Then 𝐼 is essential in ℛ if and only if for 

each c ∈ ℛ - 𝐼, there is r ∈ ℛ - 𝐼 such that cr ∈ 𝐼. 

Proof. Let 𝐼 be an essential hyperideal in ℛ, c ∈ ℛ such 

that c ∉ 𝐼. Therefore 𝐼 ∩ cℛ ≠{0}. Then there is r ∈ ℛ 

such that cr ∈ 𝐼 ∩ cℛ Hence cr ∈ 𝐼. 
      Conversely, assume that for each c ∈ ℛ, there is r ∈ 

ℛ such that. cr ∈ 𝐼. Let H be any nonzero hyperideal in 

ℛ, and let 0≠h ∈ H be any element. Hence there is 

element r ∈ ℛ such that rh ∈ 𝐼. Hence 𝐼 ∩ ℛh ≠{0}. But 

ℛh ⊆ H. Therefore 𝐼 ∩ ℛh= 𝐼 ∩H and 𝐼 ∩H≠{0}. Thus 𝐼 
is an essential hyperideal in ℛ. ∎ 

Theorem 4. Let ℛ be a hyperring. Then ℛ is (NSI) if 

and only if for each essential hyperideal 𝐼 in ℛ, and 

every an ℛ-homomorphism 𝑓: 𝐼 ⟶  ℛ, there is an 

element r ∈ ℛ such that. 𝑓(x) = rx , ∀x ∈ 𝐼. 
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Proof. Suppose that, ℛ is (NSI) hyperring, so by 

Proposition.1 Baerˊs condition holds for ℛ, in particular 

holds for every essential hyperideal in ℛ. 

        Conversely, to prove ℛ is (NSI) hyperring. Let 𝑔 be 

an ℛ-homomorphism of a hyperideal J in ℛ into ℛ. 

Consider 𝐼𝑐 a complement hyperideal of J in ℛ. By 

Proposition 4, 𝐼 =J+𝐽𝑐 is an essential hyperideal in ℛ. 

Define 𝑓: 𝐼 ⟶  ℛ as follows 𝑓(x)=𝑔(x) if x ∈ J , and 

𝑓(x) =0 if x ∈ 𝐽𝑐. 𝑓 is an ℛ-homomorphism of 𝐼 into ℛ, 

then there is an element r ∈ ℛ such that 𝑓(x)=rx for all x 

∈ 𝐼. Hence 𝑔(x) = rx for all x ∈ J. ∎ 

 

Conclusion: 
      Normal injective are introduced and studied by more 

than one author on a hypermodules. The goal of this 

paper is to shed light on the definition of normal injective 

but on the hyperring named by normal self-injective 

hyperring. Also, the extension of the Baer’s condition on 

a ring to Baer’s condition on a hyperring.      
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