e

Um —Salama Science Journal Vol. 3 (4) 2006

Solving a Class of System of Volterra Integro-Differential
Equations Using B —spline Functions

*OQmar M. Al-Faour
Date of acceptance 6/93/2006

Abstract:

In this paper we propose an approach to the approximation for a system of first
order linear Volterra integro-ordinary differential equations LVIODEs. In this
approach, B — spline basis functions which is dependent on control parameters is first
formulated using matrix equations. We then focus on the two features of the
B — spline functions, convergence and stability.

Numerical results, including the solution of LVIODEs show the effectiveness that

can be achieved using the proposed formula of the B — spline functions.

1. Introduction

A large class of scientific and
engineering problems is modeled by
integral equation, integro-differential
equation, integro-partial differential
cquation or coupled ordinary and
partial differential equations, which
can be described as a system of linear
VIDEs in Banach space[1].

In this paper, B — spline functions

including different orders have been
applied to find approximate solution
for system of LVIODEs.

The general form for the system of
first order LVIODES is:

1 (x) + B (o (x) = fi(x) +

n (1)

> dr, i=12
_,:-_13/\'“(.\‘.{)”](.')

1,2,..., n

where xe/=[0,1], with the
initial conditions

u(M=wu; i=12,....m (2)

where the functions f and P;

i=12,...,m are assumed to be
continuous on I, . and
k,. 7=12.....m denotes given

continuous functions,

2. B -spline functions

B —splines  arc  the  standard
representation of smooth non-linear
geometry in numerical calculations.
Schoenberg  first  introduced the
B—spline in 1949, le defined the
basis  functions  using  integral
convolution (the " B " in B - spline
stands for "basis")[2],[3],[4].

Let X be a set of non-decreasing
numbers,
=B EE, BX BER EE B,

The x,'s are called knots, the set X is

the knot vector and the half open

interval [x,x, ) is the ithknot span.
Then the  ith B—spline  basis

: . k
functions of degree &, B (x), can be

defined recursively as follows [5]:

k X=-x k-t
B (x)y=—— B " '(x)
Xivk —X; (3‘)
Tivk+l TV g
Lomp—— ]
Nivksl —Xig
where
I ifx, <x<x
BJO(,\’) = k i ‘ i+l (4)
0 . otherwise

The above formula is usually referred
to as "cox-de Boor recursion formula”.
The x,'s are called parametric knot
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values, for an open curve they are
given by:

0 Jd<k+1
X, =3k +1<i<n

'

n—k+1 ,i>n

where 0 <7i<p+k+1, and the range
of xis Osx<n—-k+1.

In this paper. we will assume that
n =k, hence; the parametric knot
values x, will be given by

0] ko]
X o=<i-k Jk+1gi<k (3)
i Ak

where 0 <7/ <2k +1, and the range of
1s 0<x <1, thatis,

[-“o XX e A My L2k x2k+1]

= oo o0 L]

The theory of B-—spline curves
separates the degree of the resulting
curve frome the number of (he given
control points. The B — spline curve is
defmed by & +1 control points 4. In
particular, for any set of points
by,b,...,b,and  for any x, the

expression,

B (x)=hy Bi(x)+ b, BE(x)+--b, Bi (x)

max

OExsy (6)

is an affine combination of the
set of points hy.b....b, and if
0<x <1, it is a convex combination
of the points.

To understand the recursive nature
of the B-spline functions, an
important  formula  for  kth order
I3 —spline functions will he derived in
this section.

o 1" arder B —spline Rf (x):

This kind of B—spline is calied
lincar spline, it is defined from the
recurrence relation defined by eq. (3).
Then we have;

X=X -
- - XXX
Yivp =%
i, Y2 — X N .
Bi(x) = T X S
X2 T
0 ,0therwise

Far 1% order B —spline. we have
k=1, and obtain the following
parameters knot x5 =01.23

[xo XX, x3]=[0 0 1 1] (7)
these values can be put into eq.

{6) to el

B'(x)=b,By(x)+bBl(x), 0<x<]

X=X
0 2 Xg EX < x|
,l’] - .YO
Xy — X
= b(} 2 . .\'| <x< X'_) +
v \|
0 .othervise
X — X
WX SX <Xy
x2 - ){|
Xy — X
hi 2 ..\"1 <x< Xy
.\'_5 ) i
0 \othenrnvise

Combining eqs. (7) and (8) to obtain

BUxY = byl =Y+ h v, 0<x<1(9)

that is, B)(x}=1-xand Bl(x)=x
which gives us the new formula for the
I order B — spline functions.

2" order B spline Bl(x):
This kind of B —spline is called
quadratic spline, using eq. (3), we get:
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(r=u,)"

LI B
(i —y 0y ) =)
R GSah/PIC St N
(N2~ )(-\AH] - '\-1'1’])
X1 =xX){x—x
BF(.\') — { i+3 = X)(x Yf+l) i Sy
(Fis3 =X ) (x00 %)
3
(’\H—}il\) PR S'\.<-“‘H.‘
('rt+3 Y )(.1'_,+3 ~Y4z2)
0 .otherwise
For 2" order B—spline, we have
k=2, and obtain the following

parameters v 37 =0,12,....5

[,\-{, Mo g Ay f"s]

10
=foo o1 1] LD
The formula for the 2™ order
B —spline functions is given by:

(11)

BH(x) = by(1 - x)% + 2

Xl -y + bzx2 , 0=x=l

that B (xy=(1-x),

Bi(x)=2x(1-x) and BI{x)=x".

13,

e 3" order B— spline B (x):
[n the same way as in 1™ and 2™
order B - spline

functions, the

formula for the 3 order B — spline
Junctions can be caleulated to be

Bj(x)-: bo(l*.):)3 + 34 x(l—x)2 (12)

+ 38501 - .\‘),\’2 + [)3,\‘3 . 0=xg|

that is,  Bl(x)=(1-x)°,
Bl (x)=3x(1-x)?, BX(x)=3x*(1-x)
and B;(x)=x",

. klh

order B~ spline B (x):

the  above  discussion
concerning the B~ spline curves of
orders 1, 2, and 3 . we can conclude the
following formula for the k™ order
B —spline functions

From

715

Koo

#hivy - Y W wF e e (1)
(A — )it
There are kth degree
B —spline polynomials. For

mathematical convenience, we usually
set B (x)=0,if 7<0 or i>k.

Fg. (13) ts very essential  in our work
as well as in other applications.

3. Solution for System of
LVIODEs Using  B-spline

Functions of Different Orders
In this section we shall discuss

a variety  of ditferent B - spline
formulas which holds for LVIODEs.
Recall eqn. (1) and (2)

sz’(x) + (0 () = fi(x) +

m X

3 fr’c,j(.\*,f}uj(()dt; P D e 0
=10

(14)

where  x e/ =[0,1], with the

initial conditions

w(M=u, i=12,...,m (15)
where the functions f, and p;
i=1.2..... nrooare assumed to be
continuous on i, and

koo Lj=12....m

i denotes given

continuous functions.

Now the basic ideas of using the
formutas  of B spline functions
derived in the pervious section are
presented for approximating
LVIODEs.

In this approach, each unknown
function u,(x); i=12,...,m ineq.
(14) is approximated by A" order

B~ spline tunctions defined on a set
of knots {0 =xé,x]",...,x;; =1 }, that
18,

u(x) = by By (x)+b] Bf (x)+--+ b Bf (x)

i=12,...,m (16)
In other word,
1 (x); =12, ,m, can be uniquely

identitied with a control parameters
with &' ={8;,6],....b,}.

i
&

vector A
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where & is the order of B - spline

tunctions B° (x).

e For the case of lincar B-— spline

basis [unctions, we take k=1 in eq.

{16), that is,

w,(x) = by By(x)+b{Bl(x) 0<x <1 (17)
with the control parameters b,

and by, i=12,...,m, to be found as

follows;

put x=0 and x=1 into eq. (17) to
u(0) = b, u,(1)=5,.

" Hence eq. (17) becomes

obtain and

u, (x)=u(0)By(x) +u,()B/(x)  (18)
Differentiate eq. (18) wrt. x| vields
u, (xX)=—u(0)+u(l) (19)

Substituting  (18)-(19) into (14) to
obtain

— iy g+ Pi(x) (um B(I)(x) +u, B|1 (.\‘)):

£+ E‘u,,.(,\-‘ !)(u,—n By (N +u, B (r))dr;
=1
(20)
- where u,, = u {0) and

wy=u(); i=12,....m,0<x<1.

Finally, put x=1 into eq. (20) and
using trapezoidal rule to find  the
u,(1)=5;
I=12,...,m then substituting
the linear

expansion (18) ., we obtain an
approximation  for the unknown
functions u,(x); i=12,....m.

* To process eq. (14) with quadratic
B—-spline  functions B(x), take
k=2 ineq. (13) to obtain;

control parameters

these

values  in B — spline

i) /){,/1’(_';(_\‘) i !)lfb',?(_\') +
by By(x), D<x<]

In this case, the control parameters
vector b’ = {bé,b,’,bé} 1s evaluated as
follows:

(21)

716

. dw (0
by w0y b i L by aund
2. dx
by = n (1),
The  control  parameters Ay are

cvaluated from the initial conditions
(15) while the control parameters &,
are evaluated by putting x = 0into eq.
(14) to get:
U = fro =gty

fe= 1.2 o, m (22)
ulO s uf(o) » ﬁO :ﬁ(O) ?
Po=P(0)and u, =u (0).

The values u,, P, and f, are

!

where

!

known . therefore u,, can be found.

Alter substituting by, b and eq. (21)
in eq. (14) and take x =1, the control
parameters b, can be found with the
aid of trapezoidal rule. When the
values of the contro! parameters b, b

/
|

and ) are substituted into ey, (21,

the solution to (X x?) is obtained.
o Take k=3 in eq. (13) to get an
expansion for u, (x) using third order
B —spline functions B’ (x), that is:
1,(x) !l(’.)ii’(}(.\') | hl'h’,?(,\') !
BLBI(x)+ bi Bi(x)., Ogx<l
were the control parameters
b =1kl BB} can be
obtained as follows:

(23)

vector

! | !H 0 ;
S T by = Ly + by
3 ax
1 d%u (0 )
by = — —'52 =ty 2 and
6 dx
by =u,(1).

The control  parameters B
1=12,....m, are evaluated using the
initial conditions (15}, b :
i=12,....m. are computed using eq.
(22) while the wvalues of b
f=12....,m, are obtained afler
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ditferentiated eq. (14) wer.t. x then put
v =010 get:

L L ]

o =fo =Py ig—P, u,,, + Zk (0.0)u ,
J=1
- . (24)
The last control parameters b!;
f=12,...,m, arc obtained using after

substituting b, &/, b, and eq. (23) in
eq. (14) and take x =1 with the aid of
trapezoidal rule. When the values of
the control parameters b;, &, by and

b, are substituted into eq. (23), the

solution to O(x") is obtained.
Similarly, for the fourth order

B - spline functions and other higher

orders.

From the above formulas we can

concluded that as the order of
B —spline functions is increased, a
large number of substitutions is

required.
4. Convergence and Stability
for the B- spline functions
The B-spline method is of

general applicability, and it is the
standard to which we compare the
accuracy of the wvarious other
approximate  methods  for  solving
LVIODEs. It can be devised to have
any specified degree of accuracy. We
start by reformulating B - spline
functions in a form that is suitable for
solving LVIODEs.

* To find the error for B — spline

method, we can see for 1% order
B = spline functions that,

B'(x)=b,(1 = x)+bx, 0<x<l
= Biehslb P

and by substituting x=0, in this
equation. we obtain B'(0)=h,. Then
differentiate  B'(x}with respect to

xand substitute x = 0. vields

4%

dB [ x) -
e =. ) -
Therefore.
Bi(x)= B'{{HTM o
dy
Similarly. Tor the 2™ arder 8 - spline,
we have

B (x)=by(1 = x)* +2b,(1 - x)x + b,x°,

O0<x<l

= by +(~2by +2b))x + (b, - 2b, + b,)x’

and bn:HE(U} _.-}b +..’h .dﬂ_{,-}l.}|r{:.
dx
10
Ay -t TR
ax”
That is,
; . AR | 282 ()
B (x) = 8°{0) + {‘}|I=u I+'£—‘mT“|.r=tJ A

For the 3" order B - spline , we obtain

By = 80y L& “‘5 ‘Fﬂz["”’l

i“” 3

s | n:lr';.f:l':ﬁ\'] 1

v i P
j! u’_-,;"

and soon, for the k™ order B — spline ,

we have

AL d B (x)

2! ix?

dii’ {r}

8 (x) = B(0)+ | v=0 * [ v=0

J' L.
I AR
J+ of [RY] &

X '“_'___l v=l) X

K gt

‘()=

i=0

or

d'B (x), x
dx_, .r:ﬂ}

By convergence, we mean that the
results of k" order B — spline formula
approaches o the exact solution as
Ko,

Assume wec'[01], that u
exists on [0.1]. for every xe[0]1]
there exists a number g(x) between 0
and x with
u(x)= B*(x)+ R (x)

(k1)

(25)

T
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whewe BUvy as B apline Tunctions
that can be used to approximate
wxyaic.,
; o d’
w(x) = B (x) = Z—B*m)— (26)
,.,-,d.r
The term R, (x) has the Fnrrn
dl.'4l " ir I
R = BN G 2D
Where R, (x)is called the

reminder term (or truncation error) of
“order & associated with 8% (x). It's the
u(xy— B (x)
B'(x)is used to approximate u(x)
near x =0. When The infinite series
obtained by taking the limit of
RBivyas k »enis called B
series for w(x) about 0.
Corollary:

If B*(x)is the B- spline functions
of order k given in eq. (26), then
B*(0) = u(0) for all &

Sinee the accuracy ol any given

polynomial will generally decrease
when we choose k& large as the value of

xmoves away from the center 0;
hence we must choose kJarge enough

difference where

splinne

and restrict the maximum value |x| so

that the error does not exceed a
specified bound.

I we choose the interval width
to be 2Rand 0Oin the center (i.e.,

x| <R ), the absolute value of the

error satisfies the relation
Mﬁi..l

(k<1

[ermrE = }R*{x}| < (28)

where

M < max a f“‘”(:}[: —R<z%< R}. If
Nis fixed and the derivatives are
unilormly bounded, the error bound in
(28) is proportional to R*'/(k +1)!

and decreases if Rpgoes to zero as
N gets large.

(

We now disenss the stability of the
B — spline functions. We will show
that the formula (16) 1s unconditionally
stable.

e Using the first order B - spline, we

set
h, = R'(0)
| (29)
b, = B'(l)
Eq. (29) can be rewritten as
[1 u] bn]_ B'(0))
0 1\ B
where the vector 2 (B'() . B'(1n' .

is known vector.
e Using the second order B - spline,
we get

b, = B(0)

h, | B () 1 (30)
2 dx

h; = BE(I]

These equations can be put together
into a single matrix equation as
follows:

Lo oyhy [ PO )
-1 1 0||p = .80 )
2 dx

0 0 1 b:},; B":(-i]
where the vector

1 dB*(0)

o . H‘[l}],n

known vector,
e Successive applying Akrh order
- spline, eq. (16), will establish the

1 [H (0).

following:

' va 0 o 0 By Y [ rF )
@y 10 { e Of B ¢
a3 | 0 e B M ¢
gy iy k-2 1 0 bi‘—l 4o

" " w 0 1A & ) (8

(31)
or Ab=c¢
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where the matrix A is
k+1xk+1lower triangular matrix
band ¢ are & +1x1 matrices.

Now the stability of (31) requires
(Von Neumann condition) that all the
eigen values of Alie on the interval
[-11]. Since A4 is a lower triangular

matrix, so we need only to show that
a,|<1 for all i=12,..,/, where a,
denotes the diagonal element of A in
row /. Since the diagonal elements of
A isequal to 1, thatis, a, =1 for all

i=12,...,I, therefore; we have shown
that the scheme is unconditionally
stable.
5. Numerical Example

The performance of the proposed
method described in this paper will be
compared using the following test
xample with various orders of
B —spline.
Consider the following LVIODEs

computations we will use x =ih;
0l,..., 10 with h=0.1.

The resulting variables w,(x,) and
u,(x,); i=12,...,10 are displayed in
tables (1) and (2) respectively. Also,
the exact solution is listed in the tables
for both u{x) and u,(x).

What is important in practice is
the speed of convergence associated
with various k (the order of B - spline
functions). In general, we want k be as
the

convergence is calculated depending

large as possible. Here |,
on the least square errors (L.S.E.).

Let the least square errors for u

denoted by (L.S.E.), and the least

if;r{x}-l-.xul{,t] = filx)+ EEUS[XE +,|':|"IU},2‘;*f{x_;}uzt;.?ﬁllﬂ.re errors for u, denoted b}’
0

0
3 (x) = ug(x) = folx)+ fn + x5 Jua (1)t
0
(32)
where

. ] ¥
filx) = =sin(x? + x) - 5 xeos .. sin

§ .
L.;z + 2x) 4 Ism 2 3 SiNX = X+ Xc05%

2

Sa(x)=dcosx +2x% cosx -~ 2 - 2x% - 2sinx

with #,(0) =2, u,(0)=0

The exact solution is given by

u(x)=1+cosx, wu,(x)=2sinx
When  applying  the B -spline

functions of orders k=1,2,3.4, the

numerical solution to eq. (32) will be

computed at the discretization points,

x, where x, €[0,1]. In the present

719

(L.5.E.), , then the least square errors
for eq. (32) is equal to

LS.E.=max ((L.S.E),,
{L.S.E.}"i )

The results in table (3) show that,

the error decreases substantially as the

spline order is increased.
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Table (1): The resulting variable u;(x)
Exact Spline Oreders
! mivi—1icosy | » ; 1
; 2000000000 2.000000000 2000000000 2000000000  2.000000000
] 1 995004163 1.954014275 1995401427  1.995040142  1.995004014
% . 980066577 1.908028550 1981605710 1980331142  1.980064228
5.3 L 955336489 1.862042825  1.958612847 1956083854  1.955325156
€2 | 921060994 1.816057100 1926422840 1922569136  1.921027654
inF 877382561 L.770071375  1.&R5035687 1 8B0017843 1 877508921
L §23335614 1724085650  1.834451390 1828670834 1.825202500
6.~ 1764842187 1678099926  1.774669948  1.768768963  1.764638274
8 | 696706709 1.632114201 1705691361  1.700553088 1696442471
0% | 621609968 1586128476  1.627515628  1.624264065  1.621337659
! 540302305 1.540142751  1.540142751 1540142751  1.540142751
Table (2) ):'The resulting variable ua(x)
Exact Spline Grders
¥ u.(x)=2sinx | 2 3 4
0 0 0 0 0 0
0.1 0.199666833 0.168251387  0.196825138  0.199682513  0.199668251
0.2 D IWTITROG] 0336502774 0. 387300551 (LADTAO0T 1) DIDTISHOER
03 0.591040413 0.504754161 0.571426248 0.591427874 0.591128362
0.4 0.778836684 0.673005548  0.749202219  (.779680887  0.779072355
0.5 0.958851077 0.841256935  0.920628467  0.960314233  0.959323783
0.6 1.129284946 1.009508322 1085704993  1.131422996  1.130053797
0.7 1288435374 1177759709 1244431796 1291102257 1289471580
0.8 |.434712181 1346011096 |.396808877 1.437447101 1.435824348
(o | S666SI819 1514262483 1542836235 1.S6RSS2GIL 1.567397350
| 168294 1969 LOB2S13870  LOS2SI3870  LOB2313870  1.082513870
Table (3):Error test
Spline | . 3 4
Orders
(LSE), 61364732 107 392842 1070 S723733% 10 1 2353996 107
(LSE), 74370141107 8.672188x 10  2597061x 10"  3.925006x 10~
(LSEY  74310141% 107 8672188107 5723733% 107 3.925006x 10~

Notice that, every order k increases the accuracy by one digit.

6. Conclusion order o(x""'). where kis the order of

We  have  presented  an B - spline functions. Hence kcan be
approximate  method 10 solve chosen as large as necessary to make
LVIODEs. The solution is obtained by this error as small as desired. That is
introducing B —spline  functions the accuracy of B — spline functions is
which we showed to be

increased when we choose k large.
Numerical results were presented to
verity  our  theoretical results and (o

unconditionally stable and has the
[raperty that the final E[ulull errar is ol

720
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demonstrate  the usefulness of the

method.
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