Evaluation of Some Heavy Metals, Their Fate and Transportation in Water, Sediment, and Some Biota within AL-Musayyib River, Babylon Governorate, Iraq

Ashwak Falih Kaizal1, Jasim Mohammed Salman2*, Patryk Kot3

1Department of Biology, College of Science for Woman, University of Babylon, Babylon, Iraq.
2Department of Biology, College of Science, University of Babylon, Babylon, Iraq.
3Environmental Research & Study Center, University of Babylon, Babylon, Iraq.
*Corresponding author: jasimsalman@uobabylon.edu.iq
E-mail addresses: ashwak.aliraq@yahoo.com, pa.kot@ljmu.ac.uk

Abstract:

This study estimated seven heavy metals (Fe, Cu, Zn, Pb, Ni, Cd, Cr) in water (dissolved and particulate phase), sediments and some aquatic organisms including two species from aquatic plants (Ceratophyllum demersum & Phragmites australis); one species of clam (Pseudontopeses euphratics) and two species from fish (Oreochromis aureus & Leuciscus vorax) in four sites within Mashroo AL-Musayyib channel project/branch of Euphrates river, Babylon, medial of Iraq. This aims to show the concentration of these elements, their fate and the mechanisms of their transmission through the food chain in this lotic aquatic system; also in addition to examining some physicochemical properties of river water such as water temperature (WT), air temperature (AT), pH, electrical conductivity (EC), salinity, total dissolved solid (TDS), total solid suspended (TSS), dissolved oxygen (DO) and biological oxygen demand (BOD5). The occurrence in heavy metals in water was found in the order in the Dissolved phase: Zn > Fe > Cu > Ni > Pb > Cr > Cd, the zinc element recorded the highest rate in site two for spring season while the cadmium element recorded the lowest rate in site one for spring season. In the particulate phase: Zn > Cu > Fe > Ni > Pb > Cr > Cd, the zinc element recorded the highest rate in site two for spring season while the cadmium element recorded the lowest rate in site four for spring season. The sediment order was Zn > Cu > Fe > Pb > Ni > Cd > Cr where the zinc element recorded the highest rate in site two for spring season where as the chromium element recorded the lowest rate in site two for spring. In aquatic plant the order was in C. demersum: Zn > Fe > Cu > Pb > Cr > Ni > Cd, the zinc element recorded the highest rate in site four for winter season while the cadmium element recorded the lowest rate in site one for autumn season. In P. australis: Zn > Fe > Cu > Pb > Cr > Ni > Cd, the zinc element recorded the highest rate in site two for spring season while the chromium element recorded the lowest rate in site one for summer season. In clam the order was: Zn > Fe > Cu > Pb > Cd > Ni > Cr, the zinc element recorded the highest rate in site two for spring season while the chromium recorded the lowest value in site 3 through winter 2021. In fish species (O. aureas) the order was Fe > Zn > Cu > Pb > Cr > Cd > Ni. The iron element recorded as the highest rate in site 2 in spring 2021 while the element that recorded the lowest rate was Ni in site 2 for spring in L. vorax. The iron element recorded the highest rate in site one for summer season where as the Nickel was recorded a lower value in site four in spring 2021.

Keywords: Aquatic biota, Euphrates River, Heavy metals, Lotic ecosystem, Sediments, Water quality

Introduction:

Heavy metals are naturally occurring in different environmental media but their wide range of industrial, domestic, agricultural, medical, and technological applications have resulted in their widespread distribution in the environment, raising concerns about their potential efforts. Heavy
metals have been defined as elements which have an atomic number more than 20 and a density compared to water more than 5 g/cm³, which are naturally originating and spread in nature very widely. It moves between parts and components of the environment on an ongoing basis. Arroyo and Molinos-Senate mentioned the term "heavy metals" is frequently used to refer to metals and semimetals (metalloid) that have been linked to contamination, potential toxicity, or ecotoxicity. Very recently, heavy metals have occurred in the aquatic environment by natural and anthropogenic sources. Weathering of metal-bearing rocks and volcanic eruptions are natural sources of heavy metals in the environment, but global trends of industrialization and urbanization on land have increased the anthropogenic share of heavy metals in aquatic systems. Heavy metals are hazardous even in low concentrations because they are not biodegradable and accumulated in sediments and biota.

Geological and erosion processes naturally release heavy metals into the aquatic environment and these metals reach from the original natural source of rocks and sediments to the aquatic environment and these metals are dissolved or suspended in rain water that falls on the soil’s surface or suspended in the air to be transported by wind from one location to another. Volcanic activity is another natural source that contributes to the contamination of the aquatic environment. It can be reached by acid rain loaded with various pollutants, including toxic elements. In nature, excessive trace metal concentrations can be caused by geological events like volcanic eruptions, rock weathering, and water-induced leaching into rivers, lakes, and oceans. Industrial activities that have significant sources of heavy metal pollution in the environment is caused by industries such as petroleum, oil refineries, iron and steel plants, copper, glass, aluminum, tanning plants, fertilizers, pesticides, gasoline, and others. On the other hand, anthropogenic sources include the disposal of sewage waste, mining activities, agricultural activities, the release of industrial wastes into water bodies, and numerous other human activities that release metal pollutants into the aquatic environment. Heavy metals are continuously accumulated in rivers and deposited as sinks in marine sediment. The major issues associated with heavy metal persistence are toxicity, bioaccumulation, and biomagnifications, which have long-term consequences for the ecosystem, human health, and other living organisms. Most researchers agreed that heavy metals are among the dangerous groups polluting water and cause direct dangers to the lives of most aquatic organisms and humans alike by moving through the food chain to cause accumulation in the levels of that chain for life in different ecosystems. Anbuselvan et al. reached in studying some sources of environmental pollution in sediments to indicated that the physical characteristics were within the permissible limits, except for conductivity and showed that the EC and suspended solids as they exceed these limits and that the chemical properties such as calcium, sodium, potassium, magnesium, fluoride and chlorides were within the limits allowed except for sulfates, bicarbonates and phosphates. Salman et al. studied the fate of Some Heavy Metals (Cd, Cu, Pb, Fe and Zn) in water and sediments in lotic ecosystem. The findings revealed that heavy metal concentrations in water were higher in the particulate phase than in the dissolved phase. Habeeb et al. studied water quality and heavy metals in water, sediment, and aquatic macrophytes in the lotic ecosystem, with the goal of detecting potential environmental effects on the eastern Euphrates drainage in Babylon province. Al-Zughaiby et al. determined the correlation between some trace element concentrations in the Euphrates River of Iraq. Based on this research, the rates of concentration of trace element were found in water and soluble form and study sites. Hassan et al. studied the distribution of polycyclic aromatic hydrocarbons (PAHs) residues in Euphrates River by examining many physical and chemical properties.

The current study aims to examine water quality and assessing some heavy metal concentrations in Al-Musayyib project on Euphrates River in the middle of Iraq, then indicating their transmission and fate in water, sediment, and some organisms within the study area.

Materials and Methods:
Description of the Study Area
The research area includes AL-Musayyib channel, which represents Al-Musayyib Al-Kaber project and is located in the north-east of Babylon Governorate, to the east of the Mahawil and Musayyib districts. Its source is located on the Euphrates River, north of Al-Hindiyah barrage, within 9.6 km until the end of the project at (Al-Massab Al aam) that separates the Babil Governorate from Wasit Governorate, within the
limits of 49.5 km, and the project is branched into many streams with a total of 12 km / length of 12 km. The main channel is branching from the left side of the Euphrates River in the city of Al-Musayyib is 9.9 km north of Al-Hindiya, and it extends east to 49.5 km. (Fig. 1). The study area includes four sites on the river:

Site 1: Euphrates River near the city of Al-Musayyib, north of Hindiya barrage, within 9.6 km. This site is characterized by high water level in the river in most seasons, as the abundance of aquatic plants such as *Phragmites australis* and *Ceratophyllum demersum* is noted.

Site 2: AL-Musayyib channel near Hilla-Baghdad street, near the technical institute, it was high traffic density, former military, industrial zones, which represents the Mashroo Al-musayyib Al-kaber and is located in the north-east of Babil Governorate, to the east of the Mahawil and Musayyib districts and clear sediments are noted at the edge of the river and a clear spread of plants, *Phragmites australis* and *Ceratophyllum demersum*.

Site 3: located near Baghdad-Basrah highway and many agricultural areas have been noted around this site. There are some species of plants in the sediment edge of the river.

Site 4: located after the city of Jabla it is an agricultural region until the end of the Al-Musayyib channel that separates Babil Governorate from Wasit Governorate, within the limits of 49.5 km.

Figure 1. Map of the Study sites on Al-Musayyib river, Babylon governorate, Iraq. (Source: Ministry of Water resources, Baghdad-Iraq)

Sample collection

Water samples Collection

Sampling was carried out in four sites monthly, from January to December 2021. Samples were collected from the middle and the riverside to assess the physicochemical properties of water with the evaluation of some heavy metals, using the polyethylene bottles with three replicates for each sample according to 18.

Sediment sample collection

Grab sampler was used to collect benthic sediment samples from the same place where plant samples were collected preserved in marked plastic bags and frozen until analysis.

Aquatic organisms Sample

Aquatic plant collection

Aquatic plant samples were collected and then two species of aquatic plants were classified: *Phragmites australis* and *Ceratophyllum demersum* after being washed in river water to remove suspended particles, they were placed in plastic bags and transported to the laboratory.

Clam Sample collection

Clam samples were collected monthly using the Hand method. The samples were washed with river water for the purpose of getting rid of plankton and obtaining the individuals of different sizes. After that, the samples were placed in marked bags inside a cooler box until they reached the laboratory and the species of clam as *Pseontoposes euphratics* 28.

Fish Sample collection

Fish samples were collected monthly using the method of fishing and two species *Oreochromis aureas* & *Leuciscus vorax* of fish were obtained for the four sites.

Physicochemical analysis

Temperature of the water was assessed using the Multi-meter directly (manufactured by Hana company). Air Temperature (AT) was assessed using the thermometer from 0-100, while pH and electrical conductivity (EC) was calculated using Multi-Meter 20. The salinity was calculated according to the results of electrical conductivity.
results in accordance with what was stated by Mackereth et al.18.

Total dissolved solid (TDS) was assessed using multi-meter (manufactured by Hanna) and is expressed in units of mg/L. and total solid suspended (TSS) were measured by filtering19. Dissolved Oxygen DO& BOD\textsubscript{5} was measured by Winkler method19.

Heavy metal extraction methods

Measuring heavy metals in water

The concentrations of heavy metals under study were estimated according to20 where the method included the following: - 50 ml of water samples were taken, the water samples were placed inside a clean glass beaker with a capacity of 100 ml, and 5 ml of concentrated nitric acid was added to digest the samples. The beaker was heated on a hot plate, and the heating continued on the plate until it reached the stage of pre-drying, and again added to the samples 5 ml of concentrated nitric acid while continuing to heat in order to obtain a precipitate, the solution was left to cool down and then complete the volume to 25 ml with deionized water. The solution was filtered using millipore filter paper 0.45 μm. Then the samples were ready to determine the concentrations of heavy metals in them by flam atomic absorption spectrophotometer (FAAS) and expressed by mg/l

Measuring heavy metals in Sediment

Heavy metals were estimated for sediment samples collected, according to21. 2 g of air-dried sediment was weighted, placed in a clean glass flask, 10 ml was added to it from H\textsubscript{2}SO\textsubscript{4}, HNO\textsubscript{3} and HClO\textsubscript{4} and 1:1:3. The watch bottle was placed in the flask, to prevent concentrated acids from evaporating, and the samples were heated on the surface of a hot plate at a temperature of 105° for 90 minutes and on the Hot Plat, mitigated by adding deionized water to 50 ml. Absorption was estimated for each sample by the atomic absorption spectrometer, by using the slope equations of the heavy metal standard curves under study, the absorption is converted into concentration units, and the results are expressed in mg/g dry weight.

Determination of Heavy metals in sample of aquatic organisms Sample (Plant, Clam, Fish)

Heavy metals were estimated in samples (collected, dried and milled), where sample powder was digested in a way that digested acid by method of APHA20. 3 g of sample powder to be digested was placed inside in volumetric flask size 25 ml, then 3 ml of concentrated Perchloric acid (HClO\textsubscript{4}) was added to the solution and covered the cup using the watch glass bottle, and heated quietly and on a hot plate, and we gradually raise the temperature, in order to complete the digestion process and when the mixture reaches the stage of dehydration we leave the cup to cool, and add again 3 ml of the solution of concentrated nitric acid (HNO\textsubscript{3}) covering the cup and continue to heat until the digestion is finished, where we get a mixture consisting in a delicate and light color called (light colored digestive). We fumigated until approached the dry phase, and added 5 ml of diluted hydrochloric acid (HCl) solution with water by 1:1, then heating, to dissolve the remaining sample after digestion, and then distilled water was added. The filtration process was done to get rid of the remaining and non-dissolved materials, and the size of the solution was adjusted according to the expected concentration in the samples to a size 100ml, 50 ml or less, as the sample is ready for analysis, using flam atomic absorption spectrophotometer (type SHEMAZU AA 7000).

Results and Discussion

Water quality and Heavy metals in water

The river’s physicochemical characteristics are shown in (Fig.2). The air temperature ranged between 12.5 - 46 C° in site two in February and site three in July respectively, while the water temperature ranged between 14 – 38 C°, it increased during hot months and decreased during cold months. These results corresponded with other Iraqi studies22, 23. The pH values ranged between 6.6 – 8.34 in site one in may2021 and January respectively. The pH values are affected by many factors such as CO2 concentration24 and nature of climate25. Values of these parameters ranged from 1.4-6.3 mg/l in site one in September and site one in march respectively. BOD\textsubscript{5} values ranged between 0.3 – 3.9 mg/l in site four in may and January respectively. EC values ranged 369-594 μs/cm in site two in August and site four in December respectively. Salinity values ranged 0.2– 0.4 ppt in April, July, August and December respectively. TDS values ranged 250-420 (mg/l) in site two in August and site four in December respectively. TSS values ranged 3.667 – 46.667 mg/l in site two in February and site four in September respectively. Several studies have indicated that rivers are exposed to pollution with heavy metals from various sources such as household waste, mining activities, and agricultural activities such as adding fertilizers and pesticides which negatively affects the balance of the aquatic ecosystem26.The results of the current study showed that the rates of heavy metals concentrations in water for the four study sites are in the following order in dissolved phase:- Zn> Fe > Cu > Ni>Pb> Cr > Cd. In particulate phase:- Zn> Cu >Fe > Ni>Pb> Cr >Cd, the zinc element recorded the highest rate of concentration
of the studied elements in the dissolved water and particulate matter while the cadmium element recorded the lowest rate Table 1, Fig.3. The reason for the rise of the element zinc may be attributed to the diversity in the sources of pollution with this element or the difference in the quantities of polluting materials to the river or it may be caused by the difference in the water level or some of the life activities carried out by some living organisms that are affected by the amount of food, reproduction and photoperiod 27. The reason for the low concentrations of some elements such as cadmium may be due to the tendency accumulation of these elements in the bodies of plankton and aquatic plants with filter feeding and its adsorption by sediments and this agreed with 28,29. As for the higher concentrations of some elements (iron and copper) in the particulate phase than the dissolved ones this is attributed to the tendency of most elements to adsorption and bonding the water column contains clay and organic matter on the surfaces of suspended particulate matter, because when it dissolves in water it forms suspended colloids and is fixed before organo plankton or cations easily attracted by clay minerals or organic materials.

Table 1. Mean of heavy metal concentration in water of study area (µg/l)

<table>
<thead>
<tr>
<th>Heavy metal</th>
<th>Max.</th>
<th>Min.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cr</td>
<td>1.153</td>
<td>0.0367</td>
</tr>
<tr>
<td>Fe</td>
<td>1553</td>
<td>2063</td>
</tr>
<tr>
<td>Cu</td>
<td>1263</td>
<td>2083</td>
</tr>
<tr>
<td>Zn</td>
<td>30227</td>
<td>22287</td>
</tr>
<tr>
<td>Pb</td>
<td>3.593</td>
<td>1.263</td>
</tr>
<tr>
<td>Ni</td>
<td>12.71</td>
<td>5.443</td>
</tr>
<tr>
<td>Cd</td>
<td>0.88</td>
<td>0.985</td>
</tr>
</tbody>
</table>

Table 2. Mean of heavy metal concentration in Sediment of study area (µg/g)

<table>
<thead>
<tr>
<th>Heavy metal</th>
<th>Max.</th>
<th>Min.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cr</td>
<td>1.24</td>
<td>St.2 Spring 2021</td>
</tr>
<tr>
<td>Fe</td>
<td>8407</td>
<td>St.1 Autumn</td>
</tr>
<tr>
<td>Cu</td>
<td>18207</td>
<td>St.4 Autumn</td>
</tr>
<tr>
<td>Zn</td>
<td>27497</td>
<td>St.2 Spring</td>
</tr>
<tr>
<td>Pb</td>
<td>7.5367</td>
<td>St.2 Spring</td>
</tr>
<tr>
<td>Ni</td>
<td>5.9700</td>
<td>St.2 Spring</td>
</tr>
<tr>
<td>Cd</td>
<td>1.6033</td>
<td>St.1 Autumn</td>
</tr>
</tbody>
</table>

Table 3. Mean of heavy metal concentration in Aquatic plant of study area (µg/g)

<table>
<thead>
<tr>
<th>Heavy metals</th>
<th>C. demersum</th>
<th>P. australis</th>
<th>C. demersum</th>
<th>P. australis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cr</td>
<td>0.4800 St.2 spring 2021</td>
<td>0.3700 St.2 spring</td>
<td>0.0333 St.3&4 summer</td>
<td>0.0700 St.3 summer</td>
</tr>
<tr>
<td>Fe</td>
<td>12197 St.2 spring</td>
<td>18133 St.2 spring</td>
<td>4520 St.2&3 Winter</td>
<td>3497 St.1 Winter</td>
</tr>
<tr>
<td>Cu</td>
<td>10367 St.2 spring</td>
<td>11567 St.2 spring</td>
<td>4143 St.3 Summer</td>
<td>5150 St.3 Summer</td>
</tr>
<tr>
<td>Zn</td>
<td>17493 St.4 Winter</td>
<td>19067 St.2 spring</td>
<td>7160 St.3 Summer</td>
<td>10170 St.3 Summer</td>
</tr>
<tr>
<td>Pb</td>
<td>0.9233 St.3 Summer</td>
<td>1.0567 St.1 Autumn</td>
<td>0.040 St.4 Winter</td>
<td>0.0633 St.4 Winter</td>
</tr>
<tr>
<td>Ni</td>
<td>0.4333 St.2 spring</td>
<td>0.5167 St.2 spring</td>
<td>0.1033 St.3 Winter</td>
<td>0.1333 St.3 Summer</td>
</tr>
<tr>
<td>Cd</td>
<td>0.4200 St.1 Autumn</td>
<td>0.9000 St.1 Autumn</td>
<td>0.0667 St.3 Summer</td>
<td>0.2233 St.3 Summer</td>
</tr>
</tbody>
</table>

Table 4. Mean of heavy metal concentration in Clam of study area(µg/g)

<table>
<thead>
<tr>
<th>Heavy metals</th>
<th>Clam</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cr</td>
<td>0.1733 winter in st.3 2021</td>
</tr>
<tr>
<td>Fe</td>
<td>13563 winter in st.4</td>
</tr>
<tr>
<td>Cu</td>
<td>9500 spring in st.2</td>
</tr>
<tr>
<td>Zn</td>
<td>19267 spring in st.2</td>
</tr>
<tr>
<td>Pb</td>
<td>1.3167 Autumn in st.1</td>
</tr>
<tr>
<td>Ni</td>
<td>1.4633 spring in st.1</td>
</tr>
<tr>
<td>Cd</td>
<td>0.9067 spring in st.4</td>
</tr>
</tbody>
</table>
Table 5. Mean of heavy metal concentration in Fish of study area (μg/g)

<table>
<thead>
<tr>
<th>Heavy metals</th>
<th>O. aureas</th>
<th>L. vorax</th>
<th>O. aureas</th>
<th>L. vorax</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Max.</td>
<td>Min.</td>
<td>Max.</td>
<td>Min.</td>
</tr>
<tr>
<td>Cr</td>
<td>0.8667</td>
<td>0.0733</td>
<td>0.0733</td>
<td>0.0467</td>
</tr>
<tr>
<td></td>
<td>St.4 autumn 2021</td>
<td>St.2 spring 2021</td>
<td>St.2 autumn 2021</td>
<td>St.2 Winter</td>
</tr>
<tr>
<td>Fe</td>
<td>7817</td>
<td>3170</td>
<td>3293</td>
<td>1900</td>
</tr>
<tr>
<td></td>
<td>St.2 spring</td>
<td>St.1 summer</td>
<td>St.2 Winter</td>
<td>St.3 Winter</td>
</tr>
<tr>
<td>Cu</td>
<td>2067</td>
<td>380</td>
<td>290</td>
<td>3293</td>
</tr>
<tr>
<td></td>
<td>St.1 autumn</td>
<td>St.2 spring</td>
<td>St.3 Winter</td>
<td>St.3 Winter</td>
</tr>
<tr>
<td>Zn</td>
<td>4627</td>
<td>1943</td>
<td>1900</td>
<td>3293</td>
</tr>
<tr>
<td></td>
<td>St.2 spring</td>
<td>St.2 spring</td>
<td>St.3 Winter</td>
<td>St.3 Winter</td>
</tr>
<tr>
<td>Pb</td>
<td>1.0667</td>
<td>0.2267</td>
<td>0.2733</td>
<td>0.0133</td>
</tr>
<tr>
<td></td>
<td>St.2 spring</td>
<td>St.2 spring</td>
<td>St.3 autumn</td>
<td>St.3 winter</td>
</tr>
<tr>
<td>Ni</td>
<td>0.2833</td>
<td>0.0333</td>
<td>0.0133</td>
<td>0.0133</td>
</tr>
<tr>
<td></td>
<td>St.2 spring</td>
<td>St.4 spring</td>
<td>St.3&St.1 in autumn and summer respectively</td>
<td>St.3&St.1 in autumn and summer respectively</td>
</tr>
<tr>
<td>Cd</td>
<td>0.3200</td>
<td>0.0133</td>
<td>0.0133</td>
<td>0.0133</td>
</tr>
<tr>
<td></td>
<td>St.3 Winter</td>
<td>St.2 spring</td>
<td>St.3&St.1 in autumn and summer respectively</td>
<td>St.3&St.1 in autumn and summer respectively</td>
</tr>
</tbody>
</table>

Graphs showing changes in temperature (AT), water turbidity (WT), BOD5 concentration, DO, EC, and pH over different seasons.
Figure 2. Physicochemical properties (WT, AT, DO, BOD$_5$, pH, EC, salinity, TDS, TSS)
Figure 3. Iron, Copper, Zinc, Lead, Nickel, Cadmium, chromium Concentration rate µg/l in water

Heavy metals in Sediment

The sediments at the bottom of different water bodies represent a basin for the collection or storage of various water pollutants that have the ability to precipitate and adsorption on the surface of the particles that make up these sediments (mud, silt, and sand grains) and go down to the bottom area in the watery medium. As a result, heavy metals are among the most significant pollutants in the aquatic environment. Sediments play an important role in returning these pollutants to water systems. If these elements are released again to the water column when mixing occurs or they move through the food chain, then the quality of the sediment and its components are evidence of the quality and quantity of this pollution and the nature of its source tends to accumulate these pollutants gradually over time in the sediments. The average concentrations of heavy elements in the sediments were for the four study stations Fig. 4, Table 2. Zn > Cu > Fe > Pb > Ni > Cd > Cr, the zinc element recorded the highest rate of concentration of the studied elements in the sediment while the chromium element recorded the lowest rate. Tannery is a major cause of Cr pollution in sediments. Organic substances, Cr salts, chloride ions, sulfides, sulfates, and nitrogen are present in untreated tannery effluent. In addition, a significant amount of domestic and industrial wastewater is discharged into rivers which may explain the high level of Zn and Cu accumulation in sediments.

Heavy metals in Aquatic plant

Aquatic plants can accumulate biogenic elements, toxic substances, including heavy metals, and they not only have a high assimilation potential. An issue of global concern is the presence of toxic heavy metal ions in aquatic systems. Heavy metals can accumulate along the food chain and have toxic effects even at low concentrations leading to significant ecological and health issues. They are hazards due to their solubility and mobility. The average concentrations of heavy elements in the aquatic plant were for the four study sites Fig. 5, Table 3. In C. demersum Zn > Fe > Cu > Pb > Cr > Ni > Cd and in P. australis Zn > Fe > Cu > Pb > Cd > Ni > Cr, the zinc element recorded the highest rate of concentration of the studied elements in the aquatic plant while the cadmium and chromium element recorded the lowest rate respectively in C. demersum and P. australis because sediments are a major sink for heavy metals in water and are crucial for aquatic organisms’ uptake of heavy metals. Depending on the distribution of heavy metals in sediments and where the organisms were caught, the heavy metal concentrations in aquatic organisms in the three areas varied greatly. Salman et al. made a study in Euphrates river on Ceratophyllum demersum, Phragmitus australis, Typha
domingensis and Potamogeton pectinatus plants and he found that those plants had the ability to accumulate heavy metals due to rates of concentrations which were higher in the studied plants more than sediments and water, this susceptibility varies with the variability of the source of contamination and different plant type. Al-Edani et al., 39 studied the ability of three plants to accumulate some h(Fe, Cd, Cu, and Pb)in two locations along the Shatt Al-Arab River, they found that rates of elements were high C. demersum that reflected good efficiency in removing element pollutants followed by P. australis and finally in Cyperus rotundus. Al-Samarrai 40 stated that study took place in the Euphrates River to assess the ability of four aquatic plants (Ceratophyllum demersum, Phragmitus australis, Typha domingensis and Myriophyllum verticillatum) to show evidence of contamination with heavy metals (mercury, lead, nickel manganese, cobalt, copper and iron). This study found high concentrations of these metals in plant tissues, thus demonstrating their suitability as indicators.

Heavy metals in Clam

The wide range of heavy metal accumulation in bivalve with filter feeding and from different food sources give an indication that they can use it as a guide or key to determine pollution levels in the environment 41 and mentioning 42 that there are numerous factors that influence the concentration of heavy metals in bivalve tissues including, element readiness, sampling time, and hydrochemical factors of ecosystem such as size, gender, reproductive cycle and variations in the tissue composition of the organism's body. The average concentrations of heavy elements in clam were for St.4, Fig. 6, Table 4 : Zn> Fe > Cu> Ni> Pb> Cd >Cr , the concentration of heavy metals in bivalves is closely related to and indicative of the concentration of heavy metals in the sediment 43. Heavy metals in aquatic habitats tend to accumulate in biomes and biomagnify through the food chain due to their stability and persistence, and they are frequently regarded as highly potentially toxic contaminants 44. There are many studies about clam on the Euphrates River, such as 45 and 46 that study fresh water clam as a Heavy Metal Bioaccumulation Indicator Organism and diversity of molluska in the Euphrates River, Iraq.

Heavy metal in Fish

The average concentrations of heavy elements in Fish were for the four study stations Fig. 7, Table 5: Fe > Zn > Cu> Pb> Cr> Cd >Ni Non-essential metals may accumulate in fish organs while essential metals are required for normal metabolism. Essential metals include Fe, Cu, Zn and manganese (Mn), whereas nonessential metals are Hg, Pb, Ni and Cd. As a result, levels in fish typically reflect levels found in the sediment and water of the specific aquatic environment from which they are sourced, as well as the time of exposure. fish have the ability to accumulate heavy metals in their tissues at higher levels than environmental concentrations due to absorption along the gill surface and the kidney, liver, and gut tract wall. Heavy metal accumulation by organisms can be passive or selective, and differences in heavy metal accumulation by organisms can be due to differences in assimilation, egestion, or both. Many studies estimated the concentration of some heavy metals (cadmium, lead, zinc, iron, manganese, selenium and nickel) in the mussels offish species and other aquatic biota collected from Euphrates river / middle of Iraq.
Figure 4. Iron, Copper, Zinc, Lead, Nickel, Cadmium, chromium Concentration rate µg/g in Sediment
Figure 5. Iron, Copper, Zinc, Lead, Nickel, Cadmium, chromium Concentration rate µg/g in Aquatic plant
Figure 6. Iron, Copper, Zinc, Lead, Nickel, Cadmium, chromium Concentration rate µg /g in Clam
Figure 7. Iron, Copper, Zinc, Lead, Nickel, Cadmium, chromium Concentration rate µg /g in Fish

Conclusion:
The results of the physicochemical properties of Musayyib River branched from Euphrates river reveal temporal and spatial variations during the study period, as well as seasonal and site-specific fluctuations in heavy metal concentrations. Copper, Zinc & Iron concentration are higher in aquatic plant and clam and fish, and this study shows a clear transportation through food chains of river and bioaccumulation of heavy metals in aquatic biota as a potential source to pollution by heavy metals.

Acknowledgements
Authors are grateful to Department of Biology, College of science, and University of Babylon, Iraq for their support of this work.

Authors' declaration:
- Conflicts of Interest: None.
- We hereby confirm that all the Figures and Tables in the manuscript are ours. Besides, the Figures and images, which are not ours, have been given the permission for re-publication attached with the manuscript.
- Authors sign on ethical consideration’s approval
- Ethical Clearance: The project was approved by the local ethical committee in College of Science, University of Babylon.

Authors' contributions statement:
This work was carried out in collaboration between all authors. A F K diagnosis the cases then collected the samples and doing the tests. J M S, wrote and edited the manuscript with revisions idea. P K, analysis the data with revisions idea. All authors read and approved the final manuscript.

References:
5. Brodin M, Vallejos M, Opedal MT, Area MC, Carrasco GC. Lignocelluloses as sustainable resources for production of Bioplastics -A Review. J Clean

Bioaccumulation ing activities in Southern China.

Jian J, m water using a cost
organisms of
El Mullus barbatus
ons of
Li

Al

40. Peng K, Luo C, Lou L, Li X, Shen Z.Bioaccumulation of heavy metals by the aquatic plants in Shatt Al

41. Peng K, Luo C, Lou L, Li X, Shen Z. Bioaccumulation of heavy metals by the aquatic plants in Shatt Al

إن الفحص من الفيتل (النهر البابل). مثلاً، سجل عنصر الزنك أعلى معدل في الموقع الثاني لموسم الربيع بينما سجل عنصر الكروم أقل معدل في الموقع الأول لموسم الربيع. وفي الطور الذائب والدقائقي، ظل عنصر الحديد أقل معدل في الموقع الثاني لموسم الربيع وسجل عنصر الزنك أعلى معدل في الموقع الثاني لموسم الربيع. اما في المحار فقد كان الترتيب الاحيائي للاوكسجين بين فحص عنصر الحديد وهو ترتيب عنصر الزنك. مهمته ظل عنصر الحديد أقل معدل في الموقع الثاني لموسم الربيع وسجل عنصر الزنك أعلى معدل في الموقع الثاني لموسم الربيع.

الخلاصة:

تاولت هذه الدراسة تقدير سبعة عناصر ثقيلة (الحديد والنحاس والزنك والرصاص والنيكل والكادميوم والكروم) في الماء في أربعة مواقع داخل قناة مشروع المسبح / فرع من نهر الفرات، بابل، وسط العراق. وشملت الدراسة تحليل العناصر الثقيلة، التحليل الكيميائي والمحتوى في مياه مياه الصرف الصحي، والرواسب، ومواد الصلبة العالقة. وشملت الدراسة تحليل عنصر الحديد والنحاس والزنك والرصاص والنيكل والكادميوم والكروم في الماء. تشمل الدراسة تحليل عنصر الحديد والنحاس والزنك والرصاص والنيكل والكادميوم والكروم في الماء. وتضمنت الدراسة تحليل عنصر الحديد والنحاس والزنك والرصاص والنيكل والكادميوم والكروم في الماء. وتضمنت الدراسة تحليل عنصر الحديد والنحاس والزنك والرصاص والنيكل والكادميوم والكروم في الماء. وتضمنت الدراسة تحليل عنصر الحديد والنحاس والزنك والرصاص والنيكل والكادميوم والكروم في الماء. وتضمنت الدراسة تحليل عنصر الحديد والنحاس والزنك والرصاص والنيكل والكادميوم والكروم في الماء. وتضمنت الدراسة تحليل عنصر الحديد والنحاس والزنك والرصاص والنيكل والكادميوم والكروم في الماء. وتضمنت الدراسة تحليل عنصر الحديد والنحاس والزنك والرصاص والنيكل والكادميوم والكروم في الماء. وتضمنت الدراسة تحليل عنصر الحديد والنحاس والزنك والرصاص والنيكل والكادميوم والكروم في الماء. وتضمنت الدراسة تحليل عنصر الحديد والنحاس والزنك والرصاص والنيكل والكادميوم والكروم في الماء. وتضمنت الدراسة تحليل عنصر الحديد والنحاس والزنك والرصاص والنيكل والكادميوم والكروم في الماء. وتضمنت الدراسة تحليل عنصر الحديد والنحاس والزنك والرصاص والنيكل والكادميوم والكروم في الماء. وتضمنت الدراسة تحليل عنصر الحديد والنحاس والزنك والرصاص والنيكل والكادميوم والكروم في الماء. وتضمنت الدراسة تحليل عنصر الحديد والنحاس والزنك والرصاص والنيكل والكادميوم والكروم في الماء. وتضمنت الدراسة تحليل عنصر الحديد والنحاس والزنك والرصاص والنيكل والكادميوم والكروم في الماء. وتضمنت الدراسة تحليل عنصر الحديد والنحاس والزنك والرصاص والنيكل والكادميوم والكروم في الماء. وتضمنت الدراسة تحليل عنصر الحديد والنحاس والزنك والرصاص والنيكل والكادميوم والكروم في الماء. وتضمنت الدراسة تحليل عنصر الحديد والنحاس والزنك والرصاص والنيكل والكادميوم والكروم في الماء. وتضمنت الدراسة تحليل عنصر الحديد والنحاس والزنك والرصاص والنيكل والكادميوم والكروم في الماء. وتضمنت الدراسة تحليل عنصر الحديد والنحاس والزنك والرصاص والنيكل والكادميوم والكروم في الماء. وتضمنت الدراسة تحليل عنصر الحديد والنحاس والزنك والرصاص والنيكل والكادميوم والكروم في الماء. وتضمنت الدراسة تحليل عنصر الحديد والنحاس والزنك والرصاص والنيكل والكادميوم والكروم في الماء. وتضمنت الدراسة تحليل عنصر الحديد والنحاس والزنك والرصاص والنيكل والكادميوم والكروم في الماء. وتضمنت الدراسة تحليل عنصر الحديد والنحاس والزنك والرصاص والنيكل والكادميوم والكروم في الماء. وتضمنت الدراسة تحليل عنصر الحديد والنحاس والزنك والرصاص والنيكل والكادميوم والكروم في الماء. وتضمنت الدراسة تحليل عنصر الحديد والنحاس والزنك والرصاص والنيكل والكادميوم والكروم في الماء. وتضمنت الدراسة تحليل عنصر الحديد والنحاس والزنك والرصاص والنيكل والكادميوم والكروم في الماء. وتضمنت الدراسة تحليل عنصر الحديد والنحاس والزنك والرصاص والنيكل والكادميوم والكروم في الماء. وتضمنت الدراسة تحليل عنصر الحديد والنحاس والزنك والرصاص والنيكل والكادميوم والكروم في الماء. وتضمنت الدراسة تحليل عنصر الحديد والنحاس والزنك والرصاص والنيكل والكادميوم والكروم في الماء. وتضمنت الدراسة تحليل عنصر الحديد والنحاس والزنك والرصاص والنيكل والكادميوم والكروم في الماء. وتضمنت الدراسة تحليل عنصر الحديد والنحاس والزنك والرصاص والنيكل والكادميوم والكروم في الماء. وتضمنت الدراسة تحليل عنصر الحديد والنحاس والزنك والرصاص والنيكل والكادميوم والكروم في الماء. وتضمنت الدراسة تحليل عنصر الحديد والنحاس والزنك والرصاص والنيكل والكادميوم والكروم في الماء. وتضمنت الدراسة تحليل عنصر الحديد والنحاس والزنك والرصас