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Abstract

This study focuses on studying an oscillation of a second-order delay differential equation. Start work,
the equation is introduced here with adequate provisions. All the previous is braced by theorems and
examplesthat interpret the applicability and the firmness of the acquired provisions.
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Introduction

Nowadays, one of the most dominant
connotations in mathematics is the delay differential
equations (are denoted here by DDE's), which have
received a lot of attention from the authorsthree
decades ago. For instance, some interested authors
are in the resources *. Furthermore, this field of
science is rivetedalso in various scientific
disciplines as in °. A new discussion on this subject
is in S.Moreover, the authors in"have studied the
oscillation of third and fourth-order delay DDE's.
Where the author in® is ascertain the oscillation of
the 1% order DDE's with constant delay, in addition
to the integral conditions are provided. While

Materials and Methods

Onset sheds light on studying the specific solutions,
called oscillation, of the below DDE of the 2M
order.
Definition. 1: Let the DDE

ty"(t) — Jp(t)y(t — r(t)) =0,t=>Tyl
Where T, is a positive real number, a constante €
R, p,v € C([Ty, ), (0,0)),0 < r(t) < t.

Now, here is an account of some important

theorems with their proof that illustrates the purpose
of work in oscillations.

thesolutions behavior is discussed actually in *°,
Besides, the motif oscillatory solution is in .

While in 2 is discussed the oscillation of a
2" order mixed and multiple delay differential
equations under a canonical operator. This work is
divided into four sections, where section one is
called the introduction, while section two is named
after materials and methods which concludes
introducing a DDE withadequate provisions.
Moreover, the results are braced by theorems. And
examplesinterpret the applicability and the firmness
of the acquired provisions in the third section.
Where the last section is the conclusion.

Theorem. 1:Ify(t) is a solution of Eqg.1, which is
eventually positive, then for sufficiently large t, >

j () (s—r(s))

t
<2ty(t) -2 jy(s)ds, t

t—T

>ty + 3t
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Proof:

Firstly, (t—7(t)) >0, t >t +7 . So, dividing
Eq.1 by y(t) for t >ty + 2t and integrating from
t — tto t plainly

fttT (s)ds—af _,p(s )y(s r(s))ds t>

y(s)
to + 3t 2
The first integral is solved by supposingy(t) =
tan 6, and after a couple of steps, which leads to:

| f tyy"(f)) ds = 2t[y(t) — y(t — ]
- 2= DO ~ ¥~ )

- | 2y - ¥ = Dlds,
t—1
> to + 37.
Actually, because of y is an increasing function, so
y(t) — y(t — 1) < y(t), which is giving that

f YO 45 < 209(0) - 206 — D)y(0)

2o Y t
-2 j y(s)ds
= 2;;1:(0
-2 jy(s)ds, t >ty + 3.
Over here, from Eq.2 o
o oD [ L0

¢
< 2ty(t) -2 fy(s)ds, t

St+3
Hence
t
o [roXrOy,
t—1

t

<2ty(t) -2 fy(s)ds,

t—7T

~

>ty + 31,

Theorem. 2:Lety(t) be aneventually positive
solution of Eq.1, then

Uft p(s )y(sy(g 9) ds < otp(t) —

of __w'(s)ds, t>ty+3t 3
Proof:
Here starting proof by supposing u = p(s),dv =
y_(s;]—(zgs)) and continue substituting, do not forget

the fact that y(t) is an increasing function to get the
following result

y(s — r(s))
f PO~

< otp t(t)

t—7

-0 frp’(s)ds, t >ty +3rt.

Definition. o 2:LetA(t) = atp(t) —
o [__tp'(s)ds, t>to+3t. As well
as, suppose that the following
assumptions are verified.

(Al) p € Cl([TO ) oo), (0' OO))

(A2)

AT, € (n— Dr,nr),n €N, s.t. p'(t) >

0, whent € (T,, — 7, T,), andp’(t) < 0, whent €
(T, nt]

(As) sup{otp(t) — aftt_T p'(s)ds} >0

(Aa) p((n - 1)T) =0, neN

Theorem.3:If the four cases of Definition2 are
satisfied, then
sup{A(nt)} > 0,n €N

Proof:
nt

p'(s)ds

(n-1)7

A(nt) = otp(nt) — o

sup{A(nt)} = sup orp(n1)

nt
-0 frp’(s)ds.

(n-1)7
Visibly, sup{A(nt), n € N} > 0 by As

Theorem. 4:If the assumptions of Definitionl are
hold here, p(t) is periodic with period nt,n € N
and

p't—1)>0, te((T,nt),ne
N 4
tll_{g infaftt_Tp(s)ds >0 5
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then, Eq.1 has only an oscillatory solution.
Proof
One basically uses contradiction in this proof by
supposing that Eqg.1 has eventually positive solution
y(t),so

A'(t) =otp'(t) —otp'(t) + otp'(t — 1), t
>ty + 37

A'(t) = otp'(t — 1), t>ty+ 3.

Under A, which is giving thatd'(t) >0, t €
(T,—1,T,),nEN
Obviously, A(t) is an
on(T,,nt],n € N.
To discuss the other cases, that is; A(T,,) < 0, when
p(t, —1)<0,t, € (Ty,nt],n € N. Add to that
A(T,) =0, when p(t, — 1) =0,t, € (T, nt],n €
N.

increasing function

Again A5 gives right here sup{nt — T, ,n € N} >
0.
Moreover, from putting () =p(t—1),t €

(T, nt],n € N, then by 4,
B'(t)=p'(t—1)<0,t € (T,,nt],n € N.
Besides, Ausinforms that pB(nt) =pnhr—r1) =

p((n—1)7)=0,,n€N.
It is going obviously from A; that
p(t—1)>0 6
So let's go by assuming that t,, < x,, = nt —
ginfl0<e<nt—T,},n€eN.
Then Eq 3 helps to write the following step

f ()y(s— (S))

Xp—T
Xn

<omp(x,) —o f p'(s)ds,
Xn—T

Xp = to + 37, neN.

y(t-r®)

YO is bounded.

Around here Eq.5 shows that

y(t-r(©)) Y Gl))
y©) T oy
Hence there exist a positive constant M such

thateD < YO oyt > 7> 420
Yo = 0

o 17 K g <
afx:_rp(s)Mds, X, =T ,nE€E

N 7
By Eq.6 and the periodicity of p(t), which leads to

Because of

[ =r®)
f PO~

Xn

>0 fp(s)Mds, xpn =T ,n

Xn—T
€ N.
Unfortunately, it is a contradiction with Eq.7

Xn—T

Let {t,} be a sequence s.t. t,—->nrasn-—
o, t, € (Ty,nt],n € N. Then
nt
A(nt) = otp(nt) — o p'(s)ds
(n-1)7T
Tn
A(nt) = otp(nt) — g ' (s)ds
(n-1)t
nt
+ f ' (s)ds]
Ty
Tn (n—-1)T
=otp(nt) — o f p'(s)ds — f ' (s)ds
th—T tn—T
tn nt
+ f p'(s)ds + f p'(s)ds]
Tn tn
tn (n-1)t
=otp(nt) — o f p'(s)ds — f ' (s)ds
th—T tn—T
nt
+ f p'(s)ds]
tn
[ (n-1)7
=ogtp(nt) —o j p'(s)ds+o j p'(s)ds
th—T tn—T
nt
-0 f ' (s)ds
tn

One can easily check when t, »>nrtasn-—
o ft(:__rl)r p’(s)ds = 0 and
Gf:frp’(s)ds =0, where the first term is also
equal zero after some simplified steps and using the
assumption As . From all of these, the result is

A(nt) = 0, which contradicts Theorem 3.
Finely, this ends the proof.

o0, then

Theorem 5:Ifall presumptions of def.lare hold
here, p(t) is periodic with period nt,n € N and
p't—1)>0, te(((T,nt),neEN
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and

th_)r?o sup aftt_rp(s)ds >1 8
then, Eq.1 has only an oscillatory solutions.

The proof of the above theorem is clear by tracking
the same steps in the proof of Theorem 4.
Implementation:

1e Let the following DDE

ty" (t) — (cost)y (t — g) =0, t

>0 9
Here, when compare the above equation with Eq.1
to get the corresponding results T, =0, p(t) =

cost,o =1,andr(t) =71 =§

Clear that assumption A, is hold, where to satisfy
A, in some few steps

N\m
T=(n-3)3
Where
p'(t) = —sint > 0,t
€ ((n

3n( 1>n> e N
27 \n73)z)mEN

Taking the angle located in the third and fourth
guadrants and ignoring the case of the other two
guadrants. The opposite of this case applies to the
following:

,mEN.

') <0,te ( 1)” o
p ’ "T2)272
To verify As

t

s T

sup 4 > cos t— f > (—sins)ds
i /s T

= sup{zcost—zcost

+ gcos (t - g)}
T T T
= sup {E (cos t cos > + sint sin E)}}

= sup {E (sin t)} > 0.
2
Finally, to check A4
p((n — 1)1) = cos ((n -1 g) =0, n € Niseven.
Clear to verify Eq.4
p't—1)= —sin(t —E) =cost>0, t
2 )

€ (T, Cn+ D1),n
€ N,nis even,

and

t t
gim inf f p(s)ds = tlim inf f cos(s)ds
t—> t—=
. . . . n
= th—g}; 1nf{51n t —sin (t - E)}
= tlim inf {sint + cost} < 0.

So, condition in Eq.5 is not verified.

While
t

tlim sup fp(s)ds
t

= tlim sup f cos(s)ds
t—2 -
= tILrg sup {sm t—sin (t — E)}
> 1.
Therefore condition in Eq.8 is satisfied here.

Hence Eq.9 in its entirety solutions are oscillatory
by Theorem 5.

2e Suppose that the DDE

" 1 . T
ty''(t) — (E+55mt)y(t—§) =0 t
>0 10

Comparing this DDE with Eq.1. Inasmuch the

corresponding  values areT, =0, p(t) = % +

dsint, 6 € (0, %],a = 1,andt = %
HereA is hold, where to satisfy A, below

T
T, = (2n+05)7
p'(t) = 8cost > 0,t

s
€ <(2n — 0.5)5, (2n

T
+ 05) E),Tl

€ N ,nis even.

T T
p'(t) <0, te <(2n + O.S)E,n—>,n

2
€ N ,nis odd.
Now to satisfyAas
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t
T ity —5 f”( )d
sup 2(ne sint) 2 coss)ds
t__
2

- {” L | sint)— 6 sint
= sup 2(7re sint) 5 Sin

+ 6§sin (t —g)}

T 1
= sup {E (E - 6cost)} > 0.
At last, to check A4
p((n — 1)‘[) = % + 6 sin(n — 1)% =0,
wheren = 2n € N,and niseven, § = % :
The next step is to verify Eq.4

s
p'(t —1) = bcos (t — E) =4sint >0, t
€ (T, 2n+ 1D)1),n
€ N,nis odd,

and

t t
- o 1 :
tll_)rg inf f p(s)ds = tlgg inf I(E + 6sin(s))ds

s T
t—> t—>

= li 'f{l(t t+2) ~ 8(cost
= lim infy— > (cos

t—oo

(=)

Conclusion

Recently, many authors are interested in
studying the oscillation of DDE. In this paper, are
kept going on studying the oscillation solution
behavior of DDE of second order. Furthermore, we
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