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Abstract: 

In this article, we propose a new deterministic primality test for the Mersenne numbers 2𝑛 − 1 which 

is introduced by the Hindi Awad test (HAT). The idea of this test is related to that of Pepin’s primality test for 

Fermat numbers 22𝑛
+ 1. In addition, a modification to solve the weaknesses in the Selfridge-Lucas Test (SLT) 

is presented and used to suggest a new modified test called Hindi Selfridge-Lucas test (HLT) with the help of 

base 3. Finally, a comparative study between some well-known primality tests and the new test is done in order 

to identify and classify them from the least to the most powerful and reliable tests according to their level of 

strength, speed, and effectiveness based on the results obtained through programs prepared and operated by 

Mathematica where the results are presented through tables and graphs. 
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Introduction: 
Prime numbers have occupied their 

significance since the beginning of civilization 

because they form the building blocks of whole 

numbers. Even today, many researchers try to 

understand their analogs since there is no valid 

formula to generate them, and their distribution is 

still considered mysterious which forms a big puzzle 

for all researchers and scientists. A primality test is a 

method used to determine whether an input natural 

number is prime or composite using some number 

theoretic rules and theorems. Primality testing is 

mostly used in the fields of cryptography and 

cybersecurity 1, 2. In general, primality tests are 

different integer factorization because they only state 

whether a number is prime or not without giving its 

prime factors of it. In addition, primality testing is 

considered one of the oldest fundamental problems 

in mathematics, and it becomes more and more 

important due to its applications in cryptography 

such as network cyber security 3, 4. 

There are two types of primality tests, 

deterministic and probabilistic tests. On one hand, a 

primality test is deterministic if its output is “True” 

when the number is a prime, yet it is “False” when 

the input is composite with a hundred percent 

probability 5. On the other hand, the primality test is 

probabilistic which is often called a pseudoprimality 

test. Furthermore, each primality test has its 

properties, and it can be applied only to special types 

of numbers and special algebraic structures. There 

are many primality tests that can be found in the 

literature; they are classified according to their 

algebraic structure and accuracy 3, 6, 7. 

In this paper, a comparative study is 

presented in order to point out the most important 

and efficient well-known primality tests. In addition, 

two new approaches for primality tests are 

introduced: The first approach is the Hindi Awad test 

(HAT) which is used to test the primality of 

Mersenne numbers. Its idea is related to that of 

Pepin’s primality test for Fermat numbers. The 
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second approach is the Hindi-Selfridge Lucas test 

(HLT) which hunts the Lucas pseudoprimes by 

Lucas sequences with special parameters. 

 

Well-Known Primality Tests: 
There is a huge set of strategies and methods 

which are valid to check and verify the primality of 

a given positive number based on given algebraic 

structures. They are classified as either probabilistic 

or deterministic tests. In the following, the most 

important and widely used primality tests are 

presented. For more details, one can see 8 and the 

references therein. 

 

The Probabilistic Tests 

Probabilistic primality tests are algorithms 

used to output whether an input number is prime or 

not within a certain probability of error. In this type 

of primality testing, the algorithm typically picks a 

random number called (witness) and verifies some 

criteria involving the tested number. Most 

probabilistic primality tests declare a witness to be 

either a definitely composite or a probable prime. A 

composite number that erroneously passes such a test 

is called a pseudoprime. There are many well-known 

probabilistic primality tests for any odd positive 

integer n that are widely used. The following 

theorems can be found in 9, 10. 

Theorem 1: (Fermat’s Test - FT) If there exist 𝑎 ∈
𝑍𝑛

∗  such that 𝑎𝑛 ≢ 𝑎(𝑚𝑜𝑑 𝑛), then n is composite. 

The weakness of FT is due to the presence 

of the pseudoprimes (Carmichael numbers), and its 

probability error is less than 50% with a running time 

of Õ(𝑘 𝑙𝑜𝑔2𝑛). For more information, one can see 10, 

and the references therein. 

Theorem 2: (Solovay-Strassen Test - SST) If there 

exists 𝑎 ∈ 𝑍𝑛
∗  such that 𝑎

𝑛−1

2 ≢ (
𝑎

𝑛
) (𝑚𝑜𝑑 𝑛), then n 

is composite where (
𝑎

𝑛
) is the Legendre symbol. 

The idea of the SST test is based on both 

Fermat’s Little Theorem and Euler’s Criterion. The 

weakness of this method is that some of Euler’s 

pseudoprimes may be reported, and its probability 

error is less than 50%. However, the running time of 

this method is of order 𝑂(𝑘 log3 𝑛). 

Theorem 3: (Miller-Rabin Test - MRT) If 𝑛 − 1 =
2𝑗𝑑 with 𝑗 > 1, d is an odd number, and if there 

exists 

𝑎 ∈ 𝑍𝑛
∗  such that 𝑎𝑑 ≢ 1 (𝑚𝑜𝑑 𝑛) and 𝑎2𝑟𝑑 ≢

−1 (𝑚𝑜𝑑 𝑛) for all 𝑟 ∈ 𝑍𝑗, then n is composite. 

MRT is also a probabilistic test based on 

Fermat’s Little Theorem with the help of the 

existence of non-trivial square roots in 𝑍𝑛.  Its 

weakness is due to some strong pseudoprimes that 

may be reported, and its running time is of order 

𝑂(𝑘 log3 𝑛) with a probability error of less than 

25%. 

Theorem 4: (Proth’s Test - PT) If 𝑛 − 1 = 2𝑗𝑑 

with d is odd such that 𝑑 < 2𝑗, and if there exists a 

positive integer 𝑎 ∈ 𝑍𝑛
∗  such that 𝑎

𝑛−1

2 ≢
−1 (𝑚𝑜𝑑 𝑛), then n is prime. 

Theorem 5: (Proth’s General Test - PGT) Let 𝑛 =
𝑘𝑝𝑚 + 1 where p is prime and 𝑔𝑐𝑑(𝑘, 𝑝) = 1. If 

there exists 1 ≤ 𝑗 ≤ 𝑚 such that 𝛷𝑝 (𝑎𝑘𝑝𝑗−1
) ≡

0 (𝑚𝑜𝑑 𝑛) and 2𝑗 > 𝑙𝑜𝑔𝑝𝑘 + 𝑚, then n is prime. 

It is noted that PT and PGT are probabilistic 

primality tests where the first is based on the 

Pocklington criterion and the second is based on the 

computation of the cyclotomic polynomials. 

 

The Deterministic Tests 

A primality test is deterministic if its output 

is “True” when the number is prime and “False” 

when the input is composite with absolute certainty. 

Lucas Sequence Primality Testing 

This test is considered a generalization for 

the SST and it is based on a special recursive 

sequence called Luca’s sequence 3, 11. If P and Q are 

any integers and if 𝛼 = (𝑃 + √𝐷)/2 and 𝛽 = (𝑃 −

√𝐷)/2 are the roots of the quadratic equation 𝑥2 −
𝑃𝑥 + 𝑄 = 0 whose discriminant 𝐷 = 𝑃2 − 4𝑄 is 

positive, then the following relations are obtained: 

𝑃 = 𝛼 + 𝛽, 𝑄 = 𝛼𝛽, and 𝐷 = (𝛼 − 𝛽)2. 

Assume that 𝐷 ≡ 0 (𝑚𝑜𝑑4), or 𝐷 ≡
1 (𝑚𝑜𝑑4). Then, the Lucas sequence is defined by 

the following two recursive sequences: {𝑈𝑛(𝑃, 𝑄)} 

and {𝑉𝑛(𝑃, 𝑄)} with 𝑛 ≥ 0 such that 

𝑈𝑛(𝑃, 𝑄) =
𝛼𝑛−𝛽𝑛

𝛼−𝛽
 and 𝑉𝑛(𝑃, 𝑄) = 𝛼𝑛 + 𝛽𝑛.    1 

For simplicity and without losing generality, 

the use of 𝑈𝑛 = 𝑈𝑛(𝑃, 𝑄) and 𝑉𝑛 = 𝑉𝑛(𝑃, 𝑄) is 

significant. It can be noted that for 𝑛 ≥ 2, 𝑈𝑛 =
𝑃𝑈𝑛−1 − 𝑄𝑈𝑛−2 and 𝑉𝑛 = 𝑃𝑉𝑛−1 − 𝑄𝑈𝑛−2 with 

𝑈0 = 0, 𝑈1 = 1 and 𝑉0 = 2,  𝑉1 = 𝑃. Special 

numbers may be obtained from Lucas’s sequence (1) 

such as Fibonacci numbers for 𝑃 = 1 and 𝑄 = −1, 

and Mersenne numbers for 𝑃 = 3 and 𝑄 = 2.  

The proofs of the following theorem and 

corollary can be found in 11. 

Theorem 6: (Lucas Theorem) Consider the integers 

P and Q and the Lucas sequence {𝑈𝑛}𝑛≥0 defined in 

Eq.1. If p is an odd prime with 𝑝 ∤ 𝑄 and (
𝐷

𝑝
) = −1, 

then 𝑈𝑝+1 ≡ 0 (𝑚𝑜𝑑𝑝). 

Corollary 1: (Lucas Test) Let n be an odd positive 

integer such that 𝛿(𝑛) = 𝑛 − 𝜀(𝑛) where 𝜀(𝑛) =

 (
𝐷

𝑛
). If 𝑛 ∤ 𝑈𝛿(𝑛) and 𝜀(𝑛) = −1 with 𝑔𝑐𝑑(𝑛, 𝑄) =

1, then n is composite. 
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Definition 1: (Lucas Pseudoprimes) Any 

composite number n with 𝑛 ∤ 𝑄 satisfying 𝑈𝛿(𝑛) ≡

0 (𝑚𝑜𝑑 𝑛) is called a Lucas pseudoprime. 
 

For example, if 𝑛 = 5559 with 𝑃 = 3 and 

𝑄 = −1, then 𝐷 = 13 and the sequence generated by 
{𝑈5559} has the form 

{0, 1, 3, 10, 33, 109, 360, 1189, . . . . , 2617}. The 

Jacobi symbol (
5559

13
) = −1 and 𝑈5559 ≡

0 (𝑚𝑜𝑑 𝑛). Nonetheless, this number can be written 

in this form 5559 = 3 × 17 × 109, and hence 5559 

is a Lucas pseudoprime. However, if 𝑛 = 19 with 

𝑃 = 3 and 𝑄 = −1, then (
19

13
) = −1 and 𝑈20 ≡

0 (𝑚𝑜𝑑 𝑛). Thus, 19 is Lucas probable prime. 

Now, in order to modify the above method, 

P and Q should be chosen more effectually and 

rapidly such that (
𝐷

𝑛
) = −1. The first method is 

proposed by Selfridge when 𝑃 = 𝑄 = 1 11. It is based 

on skipping −3 from the odd numbers as a 

consequence of the appearing periodic results first, 

then selecting 𝐷 to be the first element in 

{5, −7, 9, −11, . . . } such that 𝑔𝑐𝑑(𝐷, 𝑛) = 1 and 

(
𝐷

𝑛
) = −1. In this case, 𝑃 = 1 and 𝑄 = (1 − 𝐷)/4. 

For example, if 𝑛 = 5559, which is Carmichael 

number, then Selfridge’s method selects 𝐷 = 13 and 

{𝑃, 𝑄} = {1, −3}. This modifies that 𝑈5560 ≢
0 (𝑚𝑜𝑑 𝑛) and hence n is composite. However, for 

𝑛 = 2017, which is prime, the method selects 𝐷 = 5 

and {𝑃, 𝑄} = {1, −1} which gives that 𝑈2018 ≡
0(𝑚𝑜𝑑𝑛) and implies that 2017 is prime. The second 

method is suggested by Baillie 12. It is based on 

selecting the discriminant 𝐷 as the first element in the 

sequence of the odd positive numbers with common 

difference 4 and (
𝐷

𝑛
) = −1. Then, 𝑃 is selected to be 

the least odd number greater than 𝐷
1

2 and 𝑄 = (𝑃2 −
𝐷)/4. For example, if 𝑛 = 5559, it selects 𝐷 = 13 

and {𝑃, 𝑄} = {3, −1} where the Lucas test fails. 

It is well known that the results obtained by 

the Selfridge-Lucas test (SLT) are weak. The SLT 

cannot be considered a good deterministic method 

for hunting primes because some composite numbers 

(Lucas pseudoprimes) satisfy Corollary 1. This study 

suggests a new approach that can be used to solve 

this problem by doing some modifications on SLT to 

present a new modified test called Hindi Selfridge 

Lucas test (HLT) with the help of FLT using base 

3. Also, the selection of the Lucas sequence criteria 

and 𝐷 are based on Selfridge’s method 11, 12. 

The following lemma can be found in 11. 

Lemma 1: If n is odd and {𝑈𝑛}𝑛≥0 is a Lucas 

sequence so that (
𝐷

𝑛
) = −1 and 𝑛|𝑈𝑛+1, then 

𝑔𝑐𝑑(𝑛, 𝑄𝐷) = 1. 

Proof: Assume that 𝑝|𝑔𝑐𝑑(𝑛, 𝑄𝐷). Then, 𝐷 = 𝑃2 −
4𝑄 = 𝑃2 − 4(𝑘𝑝) ≡ 𝑃2 ≢ 0 (𝑚𝑜𝑑 𝑝) which 

implies that 𝑝 ∤ 𝐷 and ∤ 𝑃 . Consider the sequence 

𝑈𝑛 = 𝑃𝑈𝑛−1 − 𝑄𝑈𝑛−2 with 𝑈0 = 0 and 𝑈1 = 1. 

Then, by induction on 𝑛 ≥ 2, it is obtained that 𝑝 ∤
𝑈𝑛 for all 𝑛 ≥ 1 which is a contradiction. Thus, 

𝑔𝑐𝑑(𝑛, 𝑄𝐷) = 1.         
 

Theorem 7: (Hindi Selfridge-Lucas Test - HLT) 

An odd number 𝑛 > 11 is prime if 𝑛|𝑈𝑛+1 with 𝑛 ∤
𝑉𝑛+1 such that 3𝑛−1 ≡ 1 (𝑚𝑜𝑑 𝑛) by using the 

Selfridge method for the selection of 𝑃 and 𝑄. 

Proof: Suppose that 𝑛 is an odd composite number, 

then 𝑛 is either Luca’s pseudo prime or a Carmichael 

number. Hence, 𝑛|𝑈𝑛+1 with (
𝐷

𝑛
) = −1 and by 

Selfridge method 𝑃 = 𝑄 = 0 whenever 𝜀(𝑛) ≠ −1. 

This proves that 𝑛 has at least one factor. Thus, from 

Lemma 1 we obtain that gcd(𝑛, 2𝐷𝑄) = 1 and 𝑛 

does not satisfy the FLT. Now, define the function 

𝜓𝐷(𝑛) with 𝐷 > 1 for 𝑛 = ∏𝑖=1
𝑟 𝑝𝑖

𝛼𝑖 as follows: 

𝜓𝐷(𝑛) =
1

2𝑟−1
∏ 𝑝𝑖

𝛼𝑖−1
𝛿(𝑝𝑖)𝑟

𝑖=1 . 

So that, 𝜓𝐷(𝑛) = 𝛿(𝑛) and thus n is prime which is 

a contradiction. 

Case 1: if 𝛼 > 1 and 𝑛 = 𝑝𝛼, then 𝜀(𝑛) = 𝑛 is not a 

multiple of 𝑝. It follows that, 𝜓𝐷(𝑛) = 𝑝𝛼 −
𝑝𝛼−1 𝜀(𝑝) and note that, 𝜓𝐷(𝑛) ≥ 𝑛 −  𝜀(𝑛) ≥
𝑝𝛼 − 1. But, 𝑝𝛼 − 𝑝𝛼−1 < 𝑝𝛼 − 1 which implies 

that 𝜀(𝑝) = −1 and 𝛿(𝑛) = 𝑝𝛼 ± 1 is a factor of 

𝜓𝐷(𝑛) and this is impossible. Hence, 𝑛 is prime. On 

the other hand, we have 𝑄
𝑛−1

2 ≢ (
𝑄

𝑛
) (𝑚𝑜𝑑 𝑛), which 

implies that 𝑄𝑛−1 ≢ 1 (𝑚𝑜𝑑 𝑛) because (
𝐷

𝑛
) = −1 

and 𝑔𝑐𝑑(𝑛, 2𝑄𝐷) = 1. Now, by using the algebraic 

fact that 𝑉𝑛+1
2 = 𝐷𝑈𝑛+1

2 + 4𝑄𝑛+1 and if n is a factor 

of 𝑈𝑛+1, which implies that 𝑉𝑛+1
2 ≡

4𝑄𝑛+1(𝑚𝑜𝑑 𝑛) ≢ 2𝑄2(𝑚𝑜𝑑 𝑛). Thus, 𝑛 must be 

prime. 

Case 2: if 𝑟 > 1, then 𝑛 = ∏𝑖=1
𝑟 𝑝𝑖

𝛼𝑖 and 𝜓𝐷(𝑛) ≤

2𝑛 ∏
1

2
(1 +

1

𝑝𝑖
)𝑟

𝑖=1 < 𝑛 − 1 ≤ 𝛿(𝑛) as 𝑛 > 11, 

which contradicts the hypothesis. Hence 𝑛 must be 

prime.      

       

For example, if 𝑛 = 35207 with applying 

Selfridge method and selecting 𝐷 = 1, and {𝑃, 𝑄} =
{1, −1}, then 𝑈35208 ≡ 0 (𝑚𝑜𝑑 35207) and 

335207−1 ≢ 1 (𝑚𝑜𝑑 35207). Hence, it is obtained 

by HLT that n is a composite number. On the other 

hand, if  𝑛 = 1829, then by applying Selfridge 

method and selecting             𝐷 = −15 and {𝑃, 𝑄} =
{1,4}, as such the sequences 𝑈 = {1, 33, 33, 33,
470, 470, 470, 449, 865} (𝑚𝑜𝑑 1829) and 𝑉 =
{1822, 1882, 1882, 1882, 1265, 1265, 1265,
1370, 533, 901} (𝑚𝑜𝑑 1829) are obtained. 
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Hence, 𝑛 = 1829 is a Lucas pseudoprime. But, 

31829−1 ≢ 1 (𝑚𝑜𝑑 1829) which implies that 𝑛 =
1829 is not prime. 

Remark 1: The overall time complexity of the HLT 

approach is twice the time needed for the 

computation of 𝑎𝑛(𝑚𝑜𝑑 𝑚). So, by using matrix 

representation 11, 12, it is acquired that the time 

complexity is of order 𝑂(𝑛4 log3 𝑛). This result is 

tested on all numbers until 800,000 digits and none 

of them satisfies Theorem 7. 
 

Baillie-PSW Primality Testing -PSWT 
This test has been presented in 1980 by 

Baillie, Pomerance, Selfridge, and Wagstaff known 

as the BPSW or BSW test  

13, 14. The process of this 

test begins with the trial division test which checks 

for small prime divisors 𝑝 < 1000, then continues 

with the Miller-Rabin test and terminates with the 

Lucas sequence test using either Baillie’s method or 

Selfridge’s method for selecting 𝑃, 𝑄, and 𝐷 (see 15). 

The trial division test is an easy test proposed 

by Fibonacci and its idea is based on the following 

essential theorem 5. 

Theorem 8: (Trial Division Test) A positive integer 

n is said to be composite if it has a prime divisor 𝑝 ≤

 √𝑛. 
 

Theorem 9: (Strong-Lucas Test 13, 14) Let n be an 

odd positive integer, and let {𝑈𝑛}𝑛≥0 and {𝑉𝑛}𝑛≥0 be 

Lucas sequences with 𝑛 − (
𝐷

𝑛
) = 2𝑠𝑑 for 𝑠 > 1 and 

𝑑 is odd. If 𝑈𝑑 ≢ 0 (𝑚𝑜𝑑 𝑛) and 𝑉2𝑖𝑑 ≢ 0 (𝑚𝑜𝑑 𝑛) 

for 𝑖 = 0, 1, . . . , 𝑠 −  1 with 𝑔𝑐𝑑(𝑛, 𝐷) = 1, then n is 

not prime. 

Lucas pseudoprimes are those odd 

composite numbers that proceed the test as primes. 

For example, if 𝑛 = 25199, 𝐷 = −7, and {𝑃, 𝑄} =
{1,2} are chosen by Selfridge’s method such that 

(
−7

25199
) = −1, then by using successive divisions for 

𝑛 + 1 = 24 × 575, it is obtained that 𝑈1575 ≡
24980 ≢ 0 (𝑚𝑜𝑑 25199) and 𝑉2𝑖1575 ≡
{18406, 23869} (𝑚𝑜𝑑 25199). This implies that n 

is a Lucas prime. However, 25199 = 113 × 223 is 

a Strong-Lucas pseudoprime. 

The next deterministic test that is based on 

the generalization of FLT 16, 17 by using the 

polynomial extension as shown below as lemma 

Lemma 2: If p is an odd number and if 𝑎 ∈ 𝑍 with 

𝑔𝑐𝑑(𝑎, 𝑝) = 1, then p is prime if and only if 

(𝑥 + 𝑎)𝑝 ≡ (𝑥𝑝 + 𝑎) (𝑚𝑜𝑑 𝑝) in 𝑍[𝑥]. 
Also, the double module notation for polynomial 

congruency and perfect power number is introduced 

in the following definitions: 

Definition 2: Let 𝐾 be a ring and let 

𝑓(𝑥), 𝑔(𝑥), ℎ(𝑥) ∈ 𝐾[𝑥] with 𝑛 ∈ 𝑁. Then, 𝑓(𝑥) ≡

𝑔(𝑥)(𝑚𝑜𝑑 ℎ(𝑥), 𝑛) if there exists 𝑃 (𝑥), 𝑄(𝑥) ∈
𝐾[𝑥] such that 𝑓(𝑥) − 𝑔(𝑥) = 𝑛𝑃(𝑥) + 𝑄(𝑥)ℎ(𝑥). 

Definition 3: A positive integer 𝑛 is called a perfect 

power of 𝑎 if 𝑛 = 𝑎𝑏 where 𝑎 and 𝑏 are greater than 

1. 

 

AKS Primality Test 

This method is the newest deterministic 

polynomial algorithm for primality testing which 

appeared in 2002 and has been suggested by 

Agrawal, Kayal, and Saxena 16. It is based on a 

generalization for Fermat’s Little Theorem 16, 17. 

Lemma 3: If p is an odd number if 𝑎 ∈ 𝑍 with 

𝑔𝑐𝑑(𝑎, 𝑝) = 1, then p is prime if and only if 
(𝑥 + 𝑎)𝑝 ≡ (𝑥𝑝 + 𝑎) (𝑚𝑜𝑑 𝑝) in 𝑍[𝑥]. 

Lemma 3 is not efficient and not practical to 

use as a primality test due to its huge running time 

during the evaluation of (𝑥 + 𝑎)𝑛 (𝑚𝑜𝑑 𝑛). To 

eliminate the polynomials of higher-degree, it is 

suggested to use the nth-degree cyclotomic monic 

polynomials. This leads to introducing of the double 

modulo notation in the polynomial congruency class 

in 𝑍𝑛[𝑥]/(ℎ(𝑥)) where ℎ(𝑥) is a monic irreducible 

polynomial. 

Definition 2: Let 𝐾 be a ring and let 

𝑓(𝑥), 𝑔(𝑥), ℎ(𝑥) ∈ 𝐾[𝑥] with 𝑛 ∈ 𝑁. Then, 𝑓(𝑥) ≡
𝑔(𝑥)(𝑚𝑜𝑑 ℎ(𝑥), 𝑛) if there exists 𝑃 (𝑥), 𝑄(𝑥) ∈
𝐾[𝑥] such that 𝑓(𝑥) − 𝑔(𝑥) = 𝑛𝑃(𝑥) + 𝑄(𝑥)ℎ(𝑥). 

Hence, if 𝑓(𝑥) ∈ 𝑍𝑛[𝑥] is an arbitrary monic 

polynomial, then (𝑥 + 𝑎)𝑛 ≡ (𝑥𝑛 +
𝑎) (𝑚𝑜𝑑 𝑓(𝑥), 𝑛) for every integer 𝑎 which leads to 

a rapid check if the 𝑑𝑒𝑔(𝑓(𝑥)) is not too large. In the 

following, denote by 𝑇(𝑎, 𝑛, 𝑟)(𝑥) 𝑡𝑜 𝑏𝑒 (𝑥 + 𝑎)𝑛 −
𝑥𝑛 − 𝑎 ≡ 0 (𝑚𝑜𝑑 𝑥𝑟 − 1, 𝑛) with 𝑟 ≤ 𝑛 and 

𝑔𝑐𝑑(𝑟, 𝑛) = 1. 
 

Definition 3: A positive integer 𝑛 is called the 

perfect power of 𝑎 if 𝑛 = 𝑎𝑏 where 𝑎 and 𝑏 are 

greater than 1. 
 

The AKS primality test is based on the 

following theorem found in 17, and its proof can be 

found in 16. 

Theorem 10: (AKS test) If 𝑛 and 𝑟 are two 

relatively prime positive integers greater than 1 with 

𝑜𝑟𝑑𝑟(𝑛) > log2 𝑛 in 𝑍𝑟
∗, and if 𝑇(𝑎, 𝑛, 𝑟)(𝑥) ≡

0 (𝑚𝑜𝑑 𝑥𝑟 − 1, 𝑛) holds for all 𝑎 ∈

[0, √𝜙(𝑟) 𝑙𝑜𝑔 𝑛], then 𝑛 is prime if and only if 𝑛 is 

not a perfect power and has no prime factors in 

[1, √𝜙(𝑟) 𝑙𝑜𝑔 𝑛]. 
For example, let 𝑛 = 2017, 𝑎 ∈ [0, log 𝑛], 

and 𝑟 = 107 such that 𝑂𝑟(𝑛) > log2 𝑛. It is easy to 

verify that 𝑛 is not a perfect power of 𝑥 for all 𝑏 ∈
[2, log2 𝑛] and 𝑥 > 1. In addition, if 𝑎 = 5 then 

𝑇(5, 2017, 107)(𝑥) = (𝑥 + 5)2017 − 𝑥2017  − 5 ≡
 0 (𝑚𝑜𝑑 𝑥107 − 1, 2017) which confirms that 2017 
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is prime by the AKS test. However, if 𝑛 = 561, then 

𝑇(7, 561, 3)(𝑥) = (𝑥 + 7)561 − 𝑥561 − 7 ≢
0 (𝑚𝑜𝑑 𝑥3 − 1, 561). Hence, 𝑛 = 561 is not prime. 

In addition, the AKS team left a conjecture 

which reduces the number of steps in the 

computation process 16. 

Conjecture 1: If 𝑟 is a prime number such that 𝑟 ∤ 𝑛 

and if 𝑇(−1, 𝑛, 𝑟)(𝑥) ≡ 0 (𝑚𝑜𝑑 𝑥𝑟 − 1, 𝑛), then 𝑛 

is either prime or 𝑛2 ≡ 1 (𝑚𝑜𝑑 𝑟). 

Remark 2: If Conjecture 1 is valid, then a small 

method can be modified for suitable 𝑟 ∈ [2, 4 𝑙𝑜𝑔 𝑛] 
such that 𝑟 ∤ 𝑛2 − 1 and of order 𝑂(𝑟 log2 𝑛) for the 

congruence computation steps. Thus, the overall 

complexity is of order 𝑂(log3 𝑛). In addition, it is 

obtained that searching for 𝑟 can be excluded by 

using the following new conjecture. 

Conjecture 2: If 𝑡 is the number of digits for the 

positive integer 𝑛 > 1 and if 𝑟 = ⌊√𝑡⌋, then 𝑛 is 

considered prime if 𝑇(1, 𝑛, 3𝑟 − 1)(𝑥) ≡
0 (𝑚𝑜𝑑 𝑥3𝑟−1 − 1, 𝑛). 

 

Analysis of the AKS Test 

To analyze the correctness of the AKS 

algorithm presented and proved in 16, we have to use 

the following theorem presented in 18. 

Theorem 11: AKS algorithm returns “True” if and 

only if 𝑛 is prime. 

The demonstration of the correctness of the 

AKS algorithm starts by using Theorem 10 by 

verifying that 𝑛 is not a proper power. Then, the 

algorithm is used in order to find 𝑟 for checking 

whether 𝑛 has a factor over the interval 

[2, √𝜑(𝑟) log 𝑛] or not. If so, then the algorithm 

reports “False”. Otherwise, the last step is performed 

by checking the binomial congruence that must hold 

for all 𝑎 in [1, √𝜑(𝑟) log 𝑛] in case 𝑛 is prime. The 

next scenario is about even if Theorem 10 holds for 

all 𝑎 ∈ [2, √𝜑(𝑟) log 𝑛] and whether 𝑛 has prime 

factors 𝑝 > √𝜑(𝑟) log 𝑛 or not. Consequently, 𝑛 

must be proper power which is already checked in 

the first step. If so, 𝑛 must be prime. 

The analysis of this method is continued by 

selecting a suitable value for r which must be 

bounded in a polynomial time of order 𝑂(𝑙𝑜𝑔 𝑛). 

The proof of the following lemma can be found in 18, 

19. 
 

Lemma 4: Let 𝑛 be a positive odd number. Then, 

there exists a prime number 𝑟 ∤ 𝑛 such that 𝑟 ≤
⌈16 log5 𝑛⌉ and 𝑂𝑟(𝑛) > 4 log2 𝑛. 

In the literature, there are some 

improvements for the AKS in order to reduce its 

complexity time by choosing the suitable value of 𝑟 

(see 18). Lenstra 20 has changed the bound for 

appropriate 𝑟 by reducing its bound to 𝑂𝑟(𝑛) >

4 log2 𝑛. Despite that, the algorithm is still inefficient 

since its complexity is still exponential. After that, 

the time complexity for choosing the appropriate 𝑟 

has been reduced by using the following theorem 

(see Cao 19). 

Theorem 12: (AKS-Bernstein test 21) Assume that 

𝑞 and 𝑟 are prime numbers such that 𝑞|(𝑟 − 1) and 

𝑛
𝑟−1

𝑞 ∉ {0, 1} (𝑚𝑜𝑑 𝑟) and (
𝑞+𝑠−1

𝑠
) ≥ 𝑛2√𝑛 where 

𝑆 = {𝑎, 𝑏 ∈ 𝑍|𝑎 ≠ 𝑏 𝑎𝑛𝑑 𝑔𝑐𝑑(𝑛, 𝑎 − 𝑏) = 1} is 

finite of |𝑆| = 𝑠 integers. If 𝑛 has no prime factor less 

than 𝑠 and 𝑇(𝑎, 𝑛, 𝑟) ≡ 0 (𝑚𝑜𝑑 𝑥𝑟 − 1, 𝑛) for all 

𝑎 = 0, 1, … , 𝑠 –  1, then 𝑛 is a perfect prime power. 

The above theorem is hypothetically more 

efficient because the powers for any integer can be 

obtained using Newton’s iterations by solving 𝑎𝑏 −
𝑛 = 0 which is achieved in a polynomial time. But, 

the binomial congruence can be processed in 

𝑂(𝑠𝑟 log2 𝑛) steps using the Fourier transformations 

algorithm. Furthermore, it is obtained that the 

binomial congruence can be summarized in only two 

steps with the use of Theorem 12. In the following, a 

conjecture is exhibited which may enhance the 

behavior of the AKS test. 

Conjecture 3: Assume that there exist two positive 

integers 𝑞 and 𝑟 such that 𝑞 is the largest factor of 

𝑟 − 1, and 𝑛
𝑟−1

𝑞 ≢ {0, 1}(𝑚𝑜𝑑𝑟) with (
𝑞+𝑠−1

𝑠
) ≥

𝑛2√𝑛. If 𝑇(𝑎, 𝑛, 𝑟)(𝑥) ≡ 0(𝑚𝑜𝑑 𝑥𝑟 − 1, 𝑛) for 𝑎 =
2, 3, then 𝑛 is prime. 

 

Primality Testing for Special Numbers 

In this part, a discussion of three different primality 

tests is presented for those numbers of the form 𝑡𝑛 =
𝑘2𝑚 + 𝑏 where 𝑛, 𝑘, 𝑏, and 𝑚 = 2𝑛 are positive 

integers with 𝑘 < 2𝑚. These tests are the Lucas-

Lehmer test, Proth’s test, and the new primality 

testing for Mersenne numbers (HAT). 
 

Remark 3: The above form of 𝑡𝑛 gives special 

numbers by choosing special values for 𝑘, 𝑏, and 𝑚. 

In particular, if 𝑘 =  𝑏 =  1, and 𝑚 = 2𝑛, then 𝑡𝑛 is 

a Fermat number 𝐹𝑛. Also, if 𝑘 is odd and 𝑏 = 1 such 

that 𝑘 < 2𝑚, then 𝑡𝑛 is a Proth’s number 𝑃𝑛. 

Moreover, if 𝑘 = 1 and 𝑏 = −1, then 𝑡𝑛 is a 

Mersenne number 𝑀𝑛. 
 

Lucas-Lehmer Test for Mersenne Numbers 22 

This test is considered a deterministic primality test 

for Mersenne numbers. It is based on the recursive 

Lucas sequence in the special case {𝑃, 𝑄} = {4,1}. 
 

Definition 4: (Lucas-Lehmer sequence) Let 
{𝑉𝑘}𝑘>0 be a recursive sequence with {𝑃, 𝑄} = {4,1} 

such that 𝑉0 = 4 and 𝑉𝑘+1 = 𝑉𝑘2 − 2 for 𝑘 =
 0, 1, …  
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Remark 4:10, 23, If 𝛿 = (1 ± √3)/√2, then 𝛼 = 𝜀2 =

2 + √3 and 𝛽 = 𝛿2 = 2 − √3 with 𝜀𝛿 = −1, and 

𝜀 + 𝛿 = 2√6. Hence, 𝛼𝛽 = 1 and 𝛼 + 𝛽 = 4. 

Therefore, 𝑉𝑘 = 𝛼2𝑘−1
+ 𝛽2𝑘−1

 is true for every 𝑘 >
0, and thus {𝑉𝑘}𝑘>0 is a Lucas sequence associated 

to {𝑃, 𝑄} = {4,1}. 

The proof of the following lemma and 

theorem can be found in 23, 24. 

Lemma 5: If 𝑀𝑛 ≡ 7 (𝑚𝑜𝑑 24) is prime, then 

𝛼
𝑀_𝑛+1

2 ≡ −1 (𝑚𝑜𝑑 𝑀𝑛) with 𝑛 > 2. 
 

Theorem 13: (Lucas-Lehmer Test – LLT 24) Let 
{𝑉𝑘}𝑘>0 be a Lucas sequence presented in Definition 

4, then 𝑀𝑛 is prime if and only if 𝑀𝑛|𝑉𝑛−2 for 𝑛 ≥
2. 
 

For example, if 𝑛 = 31 with {𝑃, 𝑄} = {4,1} 

and 𝐷 = 12, then 𝑉29 ≡ 0 (𝑚𝑜𝑑 𝑀31). This means 

that 𝑀31 is a prime number. However, 𝑀97 is not 

prime since 𝑉95 ≢ 0 (𝑚𝑜𝑑 𝑀97). 
 

HAT For Mersenne Numbers 

The HAT is a novel approach for primality 

testing of Mersenne numbers. The idea of this test is 

the same as that of Pepin’s primality testing for 

Fermat numbers. 

Theorem 14: (Pepin’s Test 25) The Fermat number 

𝐹𝑛 = 22𝑛
+ 1 is prime if and only if 3

𝐹𝑛−1

2 ≡
−1(𝑚𝑜𝑑 𝐹𝑛). 

Conjecture 4: (HAT) The Mersenne number 

𝑀𝑛with 𝑛 > 3 is prime if and only if 3𝑀𝑛−1 ≡
1(𝑚𝑜𝑑 𝑀𝑛). 
 

The sufficient condition is a direct 

application of Fermat’s Little Theorem. However, 

the necessary condition needs an algebraic 

construction to be proven. A simulation has been 

done for around 900,000-digit Mersenne numbers 

using Mathematica and it has proved to be perfect in 

its outcomes and output running time compared to 

the Lucas-Lehmer test. 
 

Example 1: If 𝑛 = 17, then 3𝑀17−1 ≡ 1(𝑚𝑜𝑑 𝑀17) 

which implies that 𝑀17 is prime. However, if 𝑛 =
11, then 3𝑀11−1 ≢ 1 ( 𝑚𝑜𝑑 𝑀11) which implies that 

𝑀11 is not prime. 

 

 

 

Comparative Study: 
This study is based on computing the area 

under the smooth cubic spline interpolated curve 

where each (𝑥𝑖, 𝑓(𝑥𝑖)) value is determined. Then, a 

comparison of the graphs of the curves is done by 

comparing the areas under the curves to decide the 

most and the least powerful primality tests. This 

study is done by selecting random primes in the 

intervals 𝐼𝑛 = [10𝑛, 10𝑛+1] where 𝑛 ∈ 𝑍+. Then, 

running time (time required for each test) is taken 

down for each chosen input by using the 

Mathematica built-in function AbsoluteTiming[.]. 

In addition, the study is divided into three parts 

according to the natural property and algebraic 

structure of the primality test under the study. Also, 

each part is divided into many branches depending 

on a given scale after changing the size of 𝐼𝑛 to be 

𝐼𝑛,𝑘 = [10𝑛𝑘, 10𝑛𝑘+1] for 𝑛 ∈ 𝑍+, and 𝑘 is fixed 

which is entered by the end user. Finally, the 

collected data are represented in a graph to point out 

the results. 
 
 

Probabilistic Primality Tests 

The comparative analysis of this study is 

based on the computation of norms for smooth 

functions by determining the area under the curve 

using cubic splines interpolation. This analysis is 

considered a good reference because it aims at 

ordering the smooth curves as well as comparing 

them. First, a simulation is done using the 

deterministic algorithms (FT, SST, MRT) with a 

modification on the base 𝑎 = 𝑟(𝑚𝑜𝑑 (𝑛 − 1)) + 1, 

where 𝑟 is a fixed positive integer for both; the SST 

and the MRT. In addition, new modified tests called 

the SST* and the MRT* are performed to determine 

the errors based on the percentage of the 

pseudoprimes which may show up. This simulation 

is done on random bases 𝑎 ∈ [2, 𝛽] with 𝛽 > 106 

and by the help of the Mathematica function 

PrimePi[.].Then the Pseudoprime average for each 

algorithm is determined and the results are 

summarized and presented as shown in Fig. 1. This 

proves that, even if the bases are special, there will 

be a high percentage of errors in reporting the 

composite numbers as primes. Moreover, it can be 

noticed that the MRT is the most powerful algorithm 

relative to pseudoprimes. 

 

 
Figure 1. Average number of Pseudoprimes for 

each primality test from digit 1 to 106. 
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Random Primality Tests  

By choosing random primes using the built-

in function PrimeQ[.] in order to select new primes 

taking into consideration the number of digits of the 

input in the interval 𝐼𝑛. The following graph is 

obtained as shown in Fig. 2: 
 

 
Figure 2. Running time for PSWT, HLBT, 

MRBT, MRT, SST, and FT. from digit 1 to 2000 

It is clear from Fig. 2 that the running time 

data of the tests are so closed and periodic. Thus, to 

be more specific, subintervals are used in order to get 

clear observations and conclusions and obtain the 

Figs.3- 5: 

 

 
Figure 3. Running time for HLT, PSWT, HLBT, 

MRBT, MRT, SST, and FT with width 50 for 𝑰𝒏. 

 
Figure 4. Running time for PSWT, HLBT, HLT, 

MRBT, MRT, SST, and FT with width 100 for 

𝑰𝒏. 

 

 
Figure 5. Running time for HLT, PSWT, HLBT, 

MRBT, MRT, SST, and FT with width 200 for 𝑰𝒏. 

 

Based on Fig. 5, it is noticed that HLBT is 

the least powerful primality test with an exponential 

shape. However, PSWT is the most powerful test 

with log2 𝑛 shape. In order to be more precise in 

arranging the primality tests, the researchers used 

both 𝐿1 and 𝐿∞ norms. The results are collected in a 

table after each simulation. Then, the area under the 

curve is measured by using the 𝐿∞ norm in order to 

check how much time each primality test takes. This 

process is repeated for those with the least powerful 

results. The results obtained show that HLBT is the 

least powerful primality test while the PSWT test is 

the most powerful one during this experiment. Also, 

FT is considered one of the least powerful (slowest) 

tests, whereas the MRT is considered the most 

powerful (fastest) test in the case of the randomized 

category algorithm. In addition, to get rid of all the 

doubts about HLBT and MRT, 𝐿1 norm is used on 

continuous subintervals 𝐼𝑛 where all the curves have 

the same endpoints. The results are shown in Fig. 6. 

 

 
Figure 6. Curves for the cubic spline interpolation 

of the data points obtained from the PSWT, 

HLBT, MRBT, MRT, SST, and FT from digit 1 

to 1500. 

 

Although the numerical approach of the 𝐿1 

is so exhausting and uncertain for the computer to 

give outputs when the table consists of more than 
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1400 rows, it is considered more accurate than other 

norms. So, the next observations are used for the tests 

according to the 𝐿1 norm up to 2000 digits and the 

results are shown in Figs. 7 and 8. 

 

 
Figure 7. Curves for the cubic spline interpolation 

of the data points obtained from the PSWT, 

MRBT, MRT, SST, and FT from digit 1 to 1750. 

 

 
Figure 8. Curves for the cubic spline interpolation 

of the data points obtained from the PSWT, MRT, 

SST, and FT from digit 1 to 1800. 

Now, by skipping the algorithms that reach 

the maximal limited running time, it can be obtained 

from Figs. 6 and 7 that MBRT and HLBT should be 

canceled from the study. 

 
Figure 9. Curves for the cubic spline interpolation 

of the data points obtained from the PSWT, MRT, 

and SST from digit 1 to 1870. 

 

 
Figure 10. Curves for the cubic spline 

interpolation of the data points obtained from the 

PSWT and MRT from digit 1 to 2000. 

 

Now, it is obvious from Figs. 9, 10 that SST 

and MRT approximately have the same running 

time, and the difference between their areas under the 

curve is approximately 10.0143 𝑢2. Hence, it is 

obtained that MRT is better than SST according to 

its accuracy, smoothness, and rapidness. In addition, 

it can be observed that PSWT is the most powerful 

primality test, yet SST and MRT are so not accurate 

and can be considered the least powerful primality 

tests in doing their task. To be more specific and 

accurate, the same study is repeated but with 

different fixed variable k which is added after 

observing that the computations of the 𝐿1 norms are 

demanding and exhausting to the computer which 

yields using new subintervals 𝐼𝑛,𝑘. In this way, the 

speeding up of the experiment becomes more 

powerful in investigating and testing new primes. 

Moreover, the shape of the timing curve becomes 

clearer and smoother. The analysis starts by taking 

𝑘 = 100 and the endpoint of the interval is 10000. 

In addition, in Table 1, the 𝐿∞ norm is used 

in 7 rounds, where in each round the least powerful 

test is skipped from the list and a new round is done 

with the remaining tests. Then, in the new round, the 

least powerful from the new list of tests are skipped 

from the list, and so on. After seven successive 

rounds, the tests are arranged from the least powerful 

test to the most powerful one. In addition, the 

frequency of each curve in each round is computed 

by using the formula % =
max 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

𝑇𝑜𝑡𝑎𝑙 max 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑐𝑎𝑠𝑒 
× 100, and the test of 

the least frequency in such round is skipped in the 

second round, and so on. 
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Table 1. Norm max from digit 1 to 10000 with the length size 𝑰𝒏 equals 100. 
Type Round 1 Round 2 Round 3 Round 4 Round 5 Round 6 Round 7 

FT 3 29 39 22 8 0 0 

SST 0 4 24 40 31 2 0 

MRT 1 3 14 36 27 20 0 

MRBT 31 46 21 3 0 0 0 

HLT 28 17 3 0 35 18 0 

HLBT 38 2 0 0 0 0 0 

PSWT 0 0 0 0 0 61 40 

Total 101 101 101 101 101 101 40 

Max 38 46 39 40 35 20 40 

% HLBT  

17.4311 

MRBT 

21.1009 

FT 

17.8899 

SST 

18.3486 

HLT 

16.0550 

MRT 

9.17431 

PSWT 

FT: Fermat test; SST: Solovay-Strassen Test; MRT: Miller-Rabin test; MRBT: Miller Rabin test with binary 

representation for 𝑛; HLT: Hindi Lucas Sequenced test; HLBT: Hindi Lucas sequence with binary representation for n 

test; PSWT: Baillie–PSW primality test. 

 
 

Based on Table 1, it can be claimed that 

HLBT is the least powerful primality test however 

PSWT is the most powerful one. Moreover, if 

computations of 𝐿1 are continued for the other 

primality tests, Fig. 11 is obtained. 

 

 
Figure 11. Curves for the cubic spline 

interpolation of the data points obtained from the 

PSWT, MRBT, MRT, SST, and FT from digit 1 

to 10000. 

 

To sum up, the first part of this analysis is 

done when 𝑘 = 100, and from Fig. 11, it can be 

declared that PSWT is the most powerful and 

effective algorithm for primality testing, while 

MRBT and FT are the least powerful and exhausting 

algorithms since they consume lots of time. In 

addition, even if the binary representation for 𝑛 as the 

method is used, it is no longer helpful and effective 

for HLBT and MRBT. 

 

Now, if 𝑘 = 5000 with an interval endpoint 

which is 20000 is taken, then Fig. 12 is obtained. 

 

 
Figure 12. Curves for the cubic spline 

interpolation of the data points obtained from the 

PSWT, MRBT, MRT, SST, and FT from digit 1 

to 20000. 

 

From the results which have been obtained 

in Figs.11 and 12, it can also be declared that FT is 

the least powerful primality test and PSWT is the 

most powerful one. Moreover, MRT dominates SST 

in the different area 13464.8 𝑢2. Finally, it can be 

deduced that PSWT is the most reliable, and 

straightforward primality test, while HLT and 

HLBT are the least reliable and demanding primality 

tests. 

 

AKS Primality Test 

The AKS primality test is removed from this 

study because of the following reasons: First, 

technically it requires a large space in the memory of 

the computer during the computation process which 

is of polynomial congruency 1. Second, there are 

insufficient improvements for reducing the 

demanding iterations for the computer speed and 

memory.  Finally, its curve is unclear compared with 

the curves of the other primality tests such as FT, 

SST, MRT, and PSWT (see Fig. 13). 
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Figure 13. Evidence of painful loops on the computer. 

 

Mersenne Primality Tests 

In the following section, a study for 

Mersenne primality tests is done. In fact, a survey 

about which primality test is the most reliable in 

hunting Mersenne primes is performed. So, all the 

primality tests in this study are processed in order to 

hunt the Mersenne numbers less than 895932. In 

Table 2, the 𝐿∞ norm is used as in Table. 1 but it took 

nine successive rounds to arrange them from the least 

powerful test to the most powerful one. 

 

Table 2. Norm infinity from digit 1 to 895932. 
Type Round 1 Round 2 Round 2 Round 3 Round 4 Round 5 Round 6 Round 7 Round 9 

LLT 1 0 1 1 3 2 10 13 3 

HAT 0 1 0 1 1 2 1 10 18 

FT 0 6 11 2 1 6 3 0 0 

SST 2 2 4 15 9 0 0 0 0 

MRT 1 2 3 9 14 3 0 0 0 

MRBT 6 17 3 2 1 0 0 0 0 

HLT 1 0 8 3 2 16 3 0 0 

HLBT 23 5 0 0 0 0 0 0 0 

PSWT 0 1 3 0 1 3 12 6 7 

Total 34 34 33 33 32 32 29 29 28 

Max 23 17 11 15 14 16 12 13 18 

Test HLBT  MRBT FT SST MRT HLT PSWT LLT HAT 

% 19.0082 14.0495 9.0909 12.3966 11.5702 13.2231 9.9173 10.7438 0 

LLT: Lucas Lehmer test; HAT: Hindi Awad test; FT: Fermat test; SST: Solovay-Strassen Test; MRT: Miller-Rabin test; 

MRBT: Miller Rabin test with binary representation for 𝑛; HLT: Hindi Lucas Sequenced test; HLBT: Hindi Lucas 

sequence with binary representation for n test; PSWT: Baillie–PSW primality test. 

 

From the results in Table. 2, it can be 

observed that the least powerful algorithm in hunting 

Mersenne primes is HLBT, whereas the most 

powerful one is HAT. So, the study is focused only 

on PSWT, LLT, and HAT. It may be inferred that 

HAT (new approach) is the most reliable primality 

test for Mersenne primes. In addition, the 𝐿1 norm 

test is used for more accuracy, and the results are 

shown in Fig. 14. 
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Figure 14. Curves for the cubic spline 

interpolation of the data points obtained from the 

PSWT, HLBT, HLT, MRBT, MRT, SST, FT, 

HAT, and LLT from digits 1 to 39750. 

 

From the results in Fig. 14, HLBT certainly 

has the largest area compared with the areas of other 

tests, and as such HLBT, FT, and SST are not the 

good least powerful tests for Mersenne primes. 

However, LLT and HAT are the more reliable ones. 

Now, if the width of the interval is extended to 

420921, it is obtained that PSWT is a powerless test 

and consumes lots of time compared with HAT and 

LLT, whereas HAT is the most powerful one in this 

interval. Based on the mentioned observation, 

PSWT and HLT are not reliable, deficient, and 

affect negatively the study. So, these tests are 

skipped from the study, and the results are shown in 

Figs.15- 17. 

 

 
Figure 15. Cubic Spline for LLT, HAT, SST, 

MRT, HLT, and PSWT from digit 1 to 420921. 

 

 
Figure 16. Curves for the cubic spline 

interpolation of the data points obtained from the 

PSWT, HLT, HAT, and LLT from digit 1 to 

420921. 

 

The experiment continues normally and 

smoothly for more than two weeks without stopping 

after digit 895932 until a termination in the program 

occurs without any noticed output. 

 

 
Figure 17. Cubic spline for HAT and LLT from 

digit 1 to 895932 
 

In addition, from Fig. 17, it is clear that LLT 

exceeds HAT by an area equal to 1.90468 × 107 𝑢2. 

Hence, it can be declared that LLT and HAT are the 

most powerful Mersenne primality tests. 
 

Proth’s Primality Test 

In this part, Proth’s primality test is studied 

to find Proth’s prime numbers 𝑛 = 𝑘2𝑛 + 1, where 

𝑘 = ∑ 2𝑖𝑛
𝑖=19 . As done in Tables 1, and 2, the 𝐿∞ 

norm is used in nine successive rounds to arrange the 

tests from the least powerful test to the most 

powerful one. The results are presented in Table. 3, 

and Figs.18- 20 are shown below. 
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Table 3. Norm infinity from digit 1 to 32907. 
Type Round 1 Round 2 Round 3 Round 4 Round 5 Round 6 Round 7 Round 8 Round 9 

PT 0 1 0 0 1 2 8 13 10 

PGT 0 11 9 6 1 0 0 0 0 

FT 0 3 3 3 7 6 4 9 0 

SST 0 0 2 5 9 15 4 0 0 

MRT 0 1 9 20 2 3 0 0 0 

MRBT 11 13 10 0 0 1 0 0 0 

HLT 0 0 0 1 14 4 11 5 0 

HLBT 24 6 2 0 0 0 1 0 0 

PSWT 0 0 0 0 1 4 7 6 17 

Total 35 35 35 35 35 35 35 33 27 

Max 24 13 9 20 14 15 11 13 17 

Test HLBT  MRBT PGT MRT HLT SST FT PT PSWT 

% 20.16806 10.9244 7.5630 16.8067 11.7647 12.6050 9.2437 10.9244 0 

PT: Proth’s test; PGT: Proth’s general test; FT: Fermat test; SST: Solovay-Strassen Test; MRT: Miller-Rabin test; MRBT: 

Miller Rabin test with binary representation for 𝑛; HLT: Hindi Lucas Sequenced test; HLBT: Hindi Lucas sequence with 

binary representation for n test; PSWT: Baillie–PSW primality test. 
 

From Table 3 it can be obtained that HLBT 

is the least powerful primality test, while PT and 

PSWT are the most powerful primality tests. To be 

more precise, the 𝐿1 norm is used to arrange the 

mentioned primality tests from the least to the most 

powerful tests. The obtained results are presented in 

Figs.18-20. 

 
Figure 18. Curves for the cubic spline 

interpolations of the data points obtained from 

the PSWT, HLBT, HLT, MRBT, MRT, SST, FT, 

PGT, and PT from digits 1 to 15811. 

 

 
Figure 19. Curves for the cubic spline 

interpolation of the data points obtained from the 

PSWT, HLBT, HLT, MRBT, MRT, SST, FT, and 

PT from digit 1 to 29754. 

 

 
Figure 20. Curves for the cubic spline 

interpolation of the data points obtained from the 

PSWT, HLT, MRBT, MRT, SST, FT, and PT 

from digits 1 to 32907. 

 

From Figs. 18- 20, it can be observed that 

HLBT, PGT, and MRBT are the least powerful 

Proth’s primality tests, while PSWT exceeds PT by 

an area equal to 3.76154 × 106 𝑢2. 

Therefore, PSWT is the most powerful and 

reliable primality test for any number. 
 

Conclusion: 
Throughout this study, it is proved 

numerically that PSWT is the most powerful and 

reliable primality test on any number. Moreover, 

MRT is the least powerful and unreliable primality 

test algorithm in the randomized algorithms for any 

input. In conclusion, it is declared that LLT, HAT, 

and PT are the most powerful and reliable primality 

tests depending on specific inputs. However, it 

cannot be predicted what will happen for LLT and 

HAT if the interval is extended to the largest 

discovered Mersenne primes. 
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 تداولةالم أوَليَّةِ العددِ ختبارات إو الأولية مرسينلأعداد  حتمي جديد ختبارإدراسة مقارنة بين 
 

  2,3هيسم شحاده   1رامز الهندي    1يحيا عواض
 

 لبنان.البقاع، ، قسم الرياضيات والفيزياء، كلية الآداب والعلوم، الجامعة اللبنانية الدولية 2
 ، لبنان.صيدا، قسم الرياضيات والفيزياء، كلية الآداب والعلوم، الجامعة اللبنانية الدولية 2
 ، لبنان.، بيروتقسم الرياضيات والفيزياء، كلية الآداب والعلوم، جامعة بيروت الدولية 2

 

 الخلاصة:
Mersenne numbers 2𝑛أوَليَّةِ العددِ جديد لأعداد مرسين ) اختبارفي هذا البحث، نقدم  − عواض -هندي تحت إسم إختبار (1

(HAT)بيبين  إختبار في   إعتمدت لتلك التي  مشابهه   فكرة  الجديد على الإختبار   . تقوم فكرة هذا  (Pepin’s test)  لأعداد فيرمات

(Fermat numbers 22𝑛
+  مكامن الضعف في إختبار سلفريدج و لوكاسعلاوة على ذلك يتضمن هذا البحثُ إقتراح تعديل جديد لمعالجة  (.1

(SLT)   لأوَليَّةِ العددِ من اجل التخلص من الاعداد الاولية الكاذبة عبر إقتراح إختبار معدل جديد بعنوان هندي سلفريدج و لوكاس(HLT) 

والإختبار الجديد من أجل تحديد الأفضلِ بينهم ان كان مقارنةً إختبارات أوَليَّةِ العددِ المعروفة دراسة ل وفي الختام، تم تقديمbase 3. بمساعدة ال 

 عدادها وتشغيلها بواسطة برنامج إعليها عبر برامج تم  ناوالفاعلية وذلك بناءً على النتائج التي حصل، من حيث مستوى القوة، السرعة

Mathematica.هذه النتائج تم عرضها في الدراسة عبر جداول ورسومات بيانية . 

 

 أعداد بروث.إختبار إحتمالي،  ،أوَليَّةِ العدد ختبارإ، أعداد ميرسين ،إختبار حتميمفتاحية: الكلمات ال

 

 


