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Abstract

This paper considers a new Double Integral transform called Double Sumudu-Elzaki transform DSET.
The combining of the DSET with a semi-analytical method, namely the variational iteration method
DSETVIM, to arrive numerical solution of nonlinear PDEs of Fractional Order derivatives. The
proposed dual method property decreases the number of calculations required, so combining these two
methods leads to calculating the solution's speed. The suggested technique is tested on four problems.
The results demonstrated that solving these types of equations using the DSETVIM was more

advantageous and efficient.

Keywords:
Numerical Solution, Variational Iteration Method.

Introduction

Based on the idea of fractional calculus, which
originated more than three decades ago. The study
and use of arbitrary order integrals and derivatives
using real or complex number powers of the
differential and integral operators are the subjects of
the mathematical analysis branch known as
fractional calculus. Models of real-world problems
may be more accurately represented using fractional
derivatives than integer-order derivatives'3.

Integral transform methods are essential for the
solution of many different varieties of problems.
Multiple integral transforms, including the Laplace,
Sumudu, Fourier, Natural, Mellin, and Elzaki, have
been used for the solution of PDEs*”, as a result of
the rapid developments in research and engineering.
Therefore, notice that several academics are
attempting to create new methods that allow us to
solve this form of problem. These attempts, which
are still continuing, have resulted in the promotion
of these studies in numerous ways, including the

Double Sumudu-Elzaki transform, Fractional

Calculus, Fractional nonlinear PDEs,

Homotopy analysis method (HAM), Adomian
decomposition method (ADM), and Variational
iteration method (VIM)®° which have become
well-known among a significant number of
researchers in this field. A new approach has just
been developed, which combines the Laplace
transform, Sumudu transform, Natural transform, or
Elzaki transform, with these techniquest!4,

The properties and theories of double integrals,
such as®™?', are novel. Some authors have used
these transforms in conjunction with other
mathematical techniques, such as the HAM, ADM,
and VIM®2' to solve linear and nonlinear
fractional differential equations.

In all applied science and engineering. Partial
Differential Equations (PDEs) of fractional order
are utilized to explain various situations. Finding
exact or approximate solutions to these kinds of
equations has received a lot of attention in recent
research??24,
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Many nonlinear phenomena are major parts of
applied research and engineering®3’. Nonlinear
equations of fractional order have been found in a
variety of real-world problems. Different
phenomena may be described with the help of
nonlinear PDEs of fractional order. Nonlinear PDEs
of fractional-order derivatives computed with
unknown functions of two variables are challenging
to solve, such equations are more difficult to solve
than linear PDEs. The fact that these equations are
so widely used has made mathematicians aware of
them. Nonetheless, solving these mathematical
problems is neither numerically nor conceptually
simple.

In this paper, the DSETVIM has been used to
solve nonlinear time-fractional derivatives NT-
FDPDEs. Our current article has been structured as
follows: Definitions of the Sumudu transform and
the ELzaki transforms in the context of fractional
calculus are presented in Section 2. Our proposed
analysis of the revised approach with the
convergence theorem will be presented in Section 3.
There are four examples of how this method was
employed were provided in Section 4. The last part
is the conclusion.

Basic definitions:

With the use of the Sumudu and ELzaki
Transform, the fundamental ideas and features of
the fractional calculus theory are given in this part.
Definition 1:* A real function ®(#),# > 0, is said
to be in the space Cy,9 € R, if there exists a real
number gq,(q >9), such that ®(¢) = 19, (1),
where @, (%) € C[0, =), and it is said to be in the
space Cg* if ®(™ € Cg, m € N.

Definition 2:2 The Riemann-Liouville fractional
integral 1*f of order (a = 0) of a function ®(%) is
defined as:

1 ot dOdE

a =
(I Cb)(t) - F((Z) 0 (t—f)l_a,

(I°®P)(t) = d(£),a = 0.

Additionally, the Riemann-Liouville fractional

integral has the following property:

j2y = LOHD  aty
I(a+y+1)

Where I'(z) = fo 7 le=tdt, z > 0, is called the
gamma function.

Theorem 3:3 In the sense of Caputo meaning, the
fractional derivative of ® (%), is as follows:

cpa __ 1t oM™©ag
( D q))(t) - r(m-a) f() (t—f)“‘m+1’

Form—-1<a<mmeN,t>0e€C™.

t>0,a>0,

)

The operator “D* has the following fundamental
characteristics:

CDC( CDO'CD(;L_) - CDa+O'CD(;t_).

¢ Y =
D¢ r(l—-a+y)

‘DEIYD(t) = D(2).

1 D (£) = D(8) — TP 2 (0) <.

Definition 4:% The Sumudu Transform ST of the
function ®(z) for all z > 0 is defined as:

S,(0@) =2 [ 0@ e W ax=B(p), p e

(p,,p,), Where the operator S, is called the
Sumudu transform operator.

Definition 5:% The Elzaki Transform ET of the
function ®(t) for all t = 0 is defined as:

0 —(£ —
E((@@) =1/, ®(@)e ) dt = (1), TE
(p,,p,), where the operator E. is called the
Elzaki transform operator.

These functions are of exponential order, and they
take into consideration functions in the set G
described by:

Il
= {f(T) EIQﬁpllpZ > 0! |f(T)| < eri,ifT €

(4&me%

Definition 6:° The DSET of S,E.[Y(z,£)] =
Y(y, 6) is defined as:

SE Wz, )] = @(V.tf?) =

f e t)e‘G*E) dzdt.

The linearity of the DSET may be shown very
clearly in the following relationship, which can be
seen below:

S,EpW(z, )] +tx(2,%)] =
‘f Iy e -G 5)[PLIJ(Z t) + tx(z,¢)]dzdt,

‘;/—5 fooo fo (;+E)L|J(Z t)dzdt +

76 (o0 (00
20,

e _(?+3) x(z,¢)dzdt,

Page | 1088


https://doi.org/10.21123/bsj.2022.7289

2023, 20(3 Suppl.): 1087-1098
https://dx.doi.org/10.21123/bsj.2023.7802
P-ISSN: 2078-8665 - E-ISSN: 2411-7986

g

Baghdad Science Journal

pS Ec[W(z, )] + tS,Ec[x(2,6)] = pyp(y, ) +
Xy, 6).
Definition 7:2” The inverse of DSET, i.e. IDSET

S.E: M9y, 8)] = Y(z, £) is defined by:
S Efl[i(y. O] =) =
el oy —f:tlo Se”5 Y(y, 8)ds.

2mi J—io y

Basic derivative properties of the DSET*:
0
S.Ee [222] = 29, 8) - —Et(w(o 0),

S,F [0 = L5y, 6) - SE($(0,6)) -

0z2

1 aY(0,£)
;Et( 0z )’
S,Ee [Ph2] = —w(y. 5) = 55,((z,0)),

S,E¢ [T229] = L3y, 6) - 5,(w(z 0)) -

S, [T229] = 257, 6) — S B, ((z.0)) -
S,E, (ToL29) = iy, ) -

S y-mek, (24309)
S.F, (28 = 57y, 6) -

Zn 15 ntj+2g, (611(!:5.0)),

vY(z1) v
SEe [ =y Py, 8) —
1. k(o)
Z?:oly v+kEt( )’

azk

oty(ze —-uT
S.Ee [ ] = 5749y, 6) -

n—1 c—p+j+2 9y (z,0)
Tjzs 67mHIves, (0 5%).
For the Existence condition and the properties of

DSET see 0.

Principle of the DSETVIM:
This paragraph will use the suggested method
DSETVIM for solving NT-FDPDEs pu,(n—1 <
u<nn= 1.2,...).

‘D p(z,t) + Rp(z,t) + No(z,t) =

f(z,0),
1
Depending on the initial conditions (1.Cs):
" o(z,t)
[W ey = 912, 2

where f(z,%) is the source term, R denotes the
linear differential operator, N stands for the generic

*o(z1)
ot*

nonlinear differential operator, and CDf =
is the Caputo fractional derivative.
Applying the DSET on both sides of Eq.1,
S.E¢[ ‘Dio(z,1)] + S.E¢[Rp(z, )] +
S Et[N(p(Z 1)] = S,E([f (2, )]
3
Depending on the derivative properties of DSET,
the Eq.3 becomes _
B(r,0) = £ 67775, (Zha) +
6HS,Ec[f (z,8)] — 6#S,EL[Rep(z, %) +
No(z,t)]. 4
Where S, is a single ST.
The results of this calculation, which uses the
IDSET on both sides of Eq.4, are as follows:

0(z,1) = Mz, 1) — S,E,~1[6"S,E.[Rp(z, 1) +

No(z,t)]],
5

 one1 g 3/ y(2,0)
where A(z, %) = Z?:olyﬂsz( PYs ) t

§1S,Eelf (2, £)].
Now, by putting % including both sides of Eq.5

2020 + 2 S,E, L [64S,E[R(z, 1) +

at
IA(z,
No(z,t)]] — % = 0.

By applying the variational iteration technique®,
which can then be used to create the correct
functional, as shown below:
p £ 09, (z1)
Ppss(2) = 0,2 )=y [ e+
-1
5525,5 [S“SZEt[R(pm+N(pm]] 5] ds.
6
Or alternately

0, (@) = Az #) — S,E,~ [8“SZE¢[R(pm +

N, 7
Recall that ¢(z,t) = lim ¢,,(z, t).
m—oo
The limit stated above will determine whether the

equation under consideration has an exact solution
ES or an approximate solution AS.

The Convergence Theorem
The convergence theorem of DSET is shown in this
section.
o _t
Theorem 8: If the integral & [~ e 5Yi(z ¢)dt,

converges at § = 6§, then the integral converges for
§ < 6.
Proof: for the proof see .
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Theorem 9: If the integral h(z6)=
w I
8 [, e 3Y(z t)dt, converges at & < &, and the
integral ]l/foooh(z, 8)e vdz converges at y = y,,
. 1 o0 _Z

then the integral . fo h(z,8)e vdz converges for
Y <Yo.

Proof: for the proof see *2.

Theorem 10: Let the function Y(z, %) is
continuous in the positive quadrant of the zz-

. 6§ oo oo —(2+%
plane. If the mtegral;f0 Jy Wiz t)e (Y 5)dtdz
converges at y =v,,6 =98, then the integral,
z t
gfow fooo Y(z, t)e_(7+3)dtdz converges for y <

Y0, 0 < &g .
Proof:

& oo (o0 _(?4+%
;f() fo lIJ(Z' t)e (y+6)dtdZ =
%fooo e (8 fooo e syY(z, t)dt) dz,

8 oo (oo —(24% w -Z
211w e (ﬁs)dtdz:% [ eV h(z t)dz,

1
Where h(z,6) = & [, e sy(z,¢)dt,

By using  Theorem 8  the integral
o _t

6[0 e s(z,¢)dt converges for § < &,

and by wusing Theorem 9 the integral

%fow e v h(z, 8)dz converge for y < y,,

we see the integral % f0°° e vh(z, t)dz is converges
fory <y, 8 < &, hence the integral

z t
g Iy Iy vz, t)e_(7+3)dtdz converge for y < v,
5 < 8.

Applications:

The techniqgue mentioned in the preceding

paragraph will be used to solve the following NT-

FDPDEs in the following cases:

Example 1: Starting with the NT-FDPDE*,
Dip(z,1) + 9(2,4)9,(2,4)—¢,(2,4) =0, 0 <

u<1. 8

Depending on the 1.C: ¢(z,0) =z + 1.

If u=1,Eq.8becomes:

Pe(2,8) + 0(2,y)0,(2,%) — 9,(2,2) = 0,0 <

u<1

The ES of Eq.8 is

z
(p(Z,f) =1 +m.

Applying DSET, including both sides of Eq.8:

s 225

SEelo(z,£)9,(2,£)]-S,Eclp.(2,£)] = 0,
9

Depending on the derivative properties of DSET,
Eqg.9 becomes: _
57HD(y, 8) — Xjo 67HI2s, (T ¢
SZEy[tp(Z,y)tpz(z,y)]—SZEy[th(z,y)] =0,
where S, is a single ST.
D(y,8) — 62S,(0(2,0)) +
84S, Eclo(z, )@, (2,£)]-6"S;Ec [, (2, £)] = 0,
D(y,8) =82+ 68%y +
§"S,E¢lo(z,1)9,(2,1)]-6"S,EL[9,(2,£)] = 0.

10
Now, taking IDSET on each side of Eq.10:

S,Ee 7 (B, ) = S,E.7 (82 + 6%y) -

S,Ee T (6S,E[(9(2,1) — Do, (2,1)]),
The formula shown below may be created using
Eq.7:
(pm+1(zﬂt) =z+1-—
SoEe ™ (6#S,E¢ [(pm(z6) = D(om(z 1)), ])
11

Using the iteration formula, Eq.11 becomes:
Qo(z,t) =z+1,
01(z,8) =2+ 1—=S,E, ' (y6**2) =z +1 -

P

z )
(p+1) .
t
(pz(Z,t) =z+1 —Zm—
-1 2u+2 _ y53”+2F(2ﬂ+1)
S,E, ((2)/6 e ) ,
tH 12K
p,(z,t)=z+1—- 2D + 2z T
reu+1) +3#
rz2(u+1) r(u+1)’ . »
t t
(pg(Z,t) =z+1 _Zl"(u+1) + sz_
, 3#( 1 )r(2u+1)
r2u+1) T(u+1)2/TBu+1)
oy ( 4 2I'(2u+1) )r(3u+1) _
z Tt DI+ | TGt DI+ 1)2) Tap+1)
45K ( 2r(2p+1) 4 )r(4#+1)
z TGt DI+ | T2u+D2) T(p+1)
;L_G[J. ( )F(Sl'H'l) _
r@u+1)r(u+1)2/ r(6u+1)
7u reu+1)? r(6u+1)
zt (F(3u+1)21“(u+1)4) r(7u+1)’ 12

i:rom Eq.12, the AS of Eq.8 is
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24 1l-z— 27
o(z,t)=z+ —Zr(#+1)+ Zr(zﬂ_‘_l)—

3u 4 1 r(2u+1)
zt (F(2u+1) F(u+1)2)r‘(3y+1)
L4 ( 4 2r(2p+1) )F(3u+1) _
z T+ DI+ D) | TG+ DI (a4 D2) Tap+ 1)
5#( 2I(2p+1) 4 )F(4u+1)
r@Eu+1)r(u+1)3  ru+1)2/rGu+l)

6u 4 r(5u+1) _
zt (F(3u+1)F(y+1)2) r(eu+1)
zt7H ( + -,

r2u+1)? )I‘(6y+1)
ru+1)2r(u+1)*/ r(7u+1)
And in the special case 4 = 1, Eq.12, becomes:
Pz t)=1+z(1—t+£2—£3+2¢4 2454
o _Ly7 o
9t 63t + ) ]
Recall that the ES of Eq.12 is calculated by

p(z,%) = nllim Pm(z,1).

Then,
o(z,t) =1 +ﬁ ,l#] < 1. Fig. 1 shows the
Numerical solution: (a) the ES and (b) the AS of

Eq.8 in case u =1, while Fig. 2 illustrated the
absolute error between the ES and AS.

(&) Exact solution

{b) Approximation salution

X

Figure 1. In the case u = 1, (a) the ES and (b)
the AS

Absolute Error

X

Figure 2. The Absolute Error when u =1

Example 2: Consider the following NT-FDPDE®,

DEp(2,8) =2 (@r(z, )P, =2, 2<u <3,
13
Depending on the I.C:

0(2,0) = —=22,0,(2,0) = 22°,04(2,0) = 0.
The following result is obtained by employing the
differentiation property and applying DSET,
including both sides of Eq.13:

5,8 [2229) - 5,8, [ (922, 0)") | =
s.Ee [1¢]. 14

Depending on the derivative properties of DSET,
Eqg.14 becomes

8THD(y, 8) — XIzd 572, (ahgg,o)) —

S.Ec[3 (022 0)°) | = S,Ec[3¢],

where S, is a single ST.

B(y,8) - 625,(9(z,0)) - 635, (9 (2,0)) -
58, (06 (2, 0)) = 84,Ey [ (022 0))) | =
S.Ee [5t],

0@, 8) + 8S,E. [ (022 0)") | =S,Ec [3¢]
D(y,8) = —6%y2 +28%° +

1S, E, [E (((pzz(z, t))z)z]] +353m,

15
Now, taking IDSET on each side of the Eq.15:

S,E, 1 (E(y, 5)) =S,E,* (—62)/2 +268%3 +
253 + 5,E, ! (S#SZEt [E (¢ t))Z)Z]D.

The formula shown below may be created using
Eq.7:
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u+1

Om+1(2,1) = ——Z +_ 3t +EF(H+2) *
S,E,L <6usZEt “g ((onz1),,) ) ”)
16

Using the iteration formula Eq.16 becomes:
Qo(z,t) = —%Zz + §Z3t,

01(z,t) = —%22 + §z3t +S,E, " (6ysHt) =
£ht2

F( +3) '
©,(z,t) = —%zz +273¢ + 62

1 1

— =724+ 273t + 62
2 3

£Ht2

r(u+3)’

LHH2

r(u+3)’ 17

<p3(z t) = ——Z + = Z3t+ 6z

From Eq.17, the AS of Eq.13, is
1 B £ht2
p(z,%) = Z += Z’t’+6Zr( ek
And in the speC|aI case u = 3, the ES of Eq.13 is:
p(z,%) = %Z}L’S + §Z3t - %Zz.
The AS of some of 4-order approximate solutions

for Eq.13 for different values of u are included in
Table 1.

Table 1. The AS of Example 2 uses four terms DSETVIM.

Z t =292 pu=295 u=298 Exact
0.2 0.2 -0.0194 -0.0194 -0.0194 -0.0194
0.5 -0.1166 -0.1166 -0.1166 -0.1166
0.7 -0.2221 -0.2221 -0.2221 -0.2221
1.0 -0.4333 -0.4333 -0.4333 -0.4333
0.2 0.4 -0.0188 -0.0188 -0.0188 -0.0188
0.5 -0.1080 -0.1080 -0.1080 -0.1080
0.7 -0.1988 -0.1988 -0.1988 -0.1989
1.0 -0.3660 -0.3660 -0.3661 -0.3661
0.2 0.6 -0.0174 -0.0175 -0.0175 -0.0176
0.5 -0.0976 -0.0978 -0.0979 -0.0980
0.7 -0.1731 -0.1733 -0.1735 -0.1736
1.0 -0.2953 -0.2956 -0.2959 -0.2961
0.2 0.8 -0.0140 -0.0142 -0.0144 -0.0145
0.5 -0.0821 -0.0826 -0.0831 -0.0834
0.7 -0.1401 -0.1409 -0.1416 -0.1420
1.0 -0.2142 -0.2152 -0.2163 -0.2169
0.2 1.0 -0.0058 -0.0064 -0.0069 -0.0073
0.5 -0.0546 -0.0561 -0.0574 -0.0583
0.7 -0.0905 -0.0925 -0.0944 -0.0956
1.0 -0.1093 -0.1122 -0.1149 -0.1166

Example 3: Consider the following NT-FDPDE*,
CDf(p(z,t) = 22—2<pzz(z,t), oO<u<l.
18
Depending on the I1.C: ¢(z,0) = z2.
The following result is obtained by employing the
differentiation property and applying DSET,

including both sides of Eq 18:

Mozt
$,E [2229] = 5,8, [Z 9,2 1)), 19
Depending on the derivative properties of DSET,
EQg.19 becomes:

5HB(y,8) — Xjsa 67HHI*2s, (LLE) -

atJ
S.E¢ [2 00(2,0)]
where S, is a single ST.

5(]/, 6) - 6252(@@: 0)) =
813, e [[§ 0222, t)]],

J— 2

q)()/l 6) = 262)/2 + S‘uSZEt |:|:Z? (pZZ(ZI t)]:|,
20

Now, taking IDSET on each side of the Eq.20:

S,E 7 (@(r,8)) = 2677 +

2
S, <6HSZEt [[% e t)]D,
The formula shown below may be created using
Eq.7:
Pm+1(z,y) = 2% +

SzEy_1 <8#SZE’t [[?‘pzz(zit)]])r 21

Using the iteration formula Eq.21 becomes:
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(pO(Z!t) ::ZZ'

91(z,t) = 2% + S,E, 1 (26*2y?) = 22 +
rH

2

r(p+1)’
p,(z,t) = 2% + 22

©3(z,t) = z% + z2
34

2

Z —
riu+1)’

And so on...
Proceeding in this manner, gaining

Zztku

£2u
T'(u+1) ru+1)’

£2u
r'(u+1) r(eu+1)

This can be assumed to be the m" AS of Eq.22. The
ES when u = 1 of Eq.18 is given by:
o(z,t) = lim @,,(z,t) = z%e?.

m—oo

The comparison between the suggested method
with the method that combines Yang transform with
the variational iteration method described in
reference** to some of the 4-order approximate
solutions for Eq.18 for various values of u and
various values of z, %, as well as the absolute error
between the ES and AS when u = 1 are included in
Table 2, also Fig. 3 illustrates the Numerical
solution: (a) the ES and (b) the AS in the case of

¢m(2,1) = Ekzotgmn 22 1 =1, while Fig. 4 illustrated the absolute error
between the ES and AS.
Table 2. AS and ES for the different values of 4 in Example 3
Z t u=0.5 u=0.7 u=0.9 Exact Absolute
DSET Yang DSET Yang DSET Yang Error
VIM transform?3! VIM transform3! VIM transform3!
0.25 0.2 0.1107 0.1119 0.0910 0.0911 0.0800 0.0800 0.0763 5.7183e-09
0.5 0.4430 0.4479 0.3642 0.3647 0.3201 0.3201 0.3053 2.2873e-08
0.75 0.9967 1.0079 0.8194 0.8207 0.7202 0.7202 0.6870 5.1465e-08
1.0 1.7719 1.7919 1.4568 1.4591 1.2802 1.2805 1.2214 9.1493e-08
0.25 0.4 0.1440 0.1489 0.1168 0.1178 0.0994 0.0995 0.0932 3.7693e-07
0.5 0.5760 0.5959 0.4672 0.4713 0.3977 0.3983 0.3729 1.5077e-06
0.75 1.2960 1.3409 1.0514 1.0605 0.8947 0.8962 0.8391 3.3924e-06
1.0 2.3040 2.3839 1.8691 1.8855 1.5906 1.5934 1.4918 6.0309e-06
0.25 0.6 0.1765 0.1877 0.1449 0.1481 0.1222 0.1229 0.1138 4.4250e-06
0.5 0.7059 0.7509 0.5798 0.5925 0.4887 0.4916 0.4555 1.7700e-05
0.75 1.5883 1.6895 1.3045 1.3331 1.0995 1.1062 1.0249 3.9825e-05
1.0 2.8237 3.0036 2.3191 2.3700 1.9547 1.9666 1.8221 7.0800e-05

(&) Exact solution

X

Figure 3. In the case u = 1, (a) the ES and (b) the AS

- e

o
—O = tn kA i

(b) Approximation solution
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S,E T (@, ) = S,E.7(8%) +

2
S,Ee 7 (64S,E, [2Z 0(2,)9,(2, 1)),
The formula shown below may be created using
Eq.7:
(Pm+1(Z, t) =zt +

S,E (845, [2Z 92, )0, (2 1)) ).

Absolute Errar

26
Using the iteration formula Eq.26 becomes:
Po(z,t) = zt,
t 0 . ©1(z,t) = zt + S,E,~1(12y36#*3) = 2zt +
i ZZStu+1
Figure 4. The Absolute Error when u =1 TR
223tu+1 1625t2”+1
Example 4: Let's examine the NT-FDPDE®, p2(z,2) =2t + rr2) T Taur2) 21
cpM z? _ :
Deo@t) =25 9@ D¢, (2,4) =024 So, the AS of Eq.23 is calculated by:
0,1<u<?. Y PRTES SR h SRt
23 9@ 1) =2t + oyt T
Depending on the I.C: ¢(z,0) = 0,¢,(z,0) = z. 24T(2u+2)z7 £31+1
The following result is obtained by employing the r(3u+2)r2(u+2)
differentiation property and applying DSET,  And in the special case u— 2, is
N 343 545 747
mclud;r:gp?g)h sides of EqZ.223. o(z,t) = 2t +° : + 221: + 173z15t .
SaEe [ atk ] ~ SaBe [27"’(2’ )2 (2, t)] =0 Recall that the ES of Eq.23 is calculated by:
24 9(z,£) = lim @n(z,1),
Depending on the derivative properties of DSET, m-oo
the Eq.24 becomes ¢(z,1) = tan(zt).
e n-1 s—p+j+2c (9020 Which is an ES to the NT-FDPDE when u = 2.
6 ”Cb(y,26) ~ Lj=o 871 SZ( ati ) B The comparison between the suggested method
S,E, [zz?(p(z,t)qu(z, t)] =0, with the method that combines Elzaki transform
where S, is a single ST. with Ado4rt_)n|an decomposition method descrlb_ed in
_ 5 s reference® to some of the 4-order approximate
P(y,8) — §%S,(¢(2,0)) - 5°5, (‘Py(z' 0)) - solutions for Eq.23 for various values of z and # =
SHS,E, [zﬁfp(z’ e, (2, t)] =0, 1.1, along with the absol_ute error_between the I_ES
. t ) and AS when u = 2 are included in Table 3, while
d(y,8) = 63y + SHS,E, [Zz?go(z, £)p,(z, t)]. Fig. 5, illustrates the Numerical solution: (a) the ES
25 and (b) the AS in the case of u = 2.

Now, taking IDSET on each side of the Eq.25

Table 3. The AS of Example 4 uses four terms DSETVIM.

zZ t u=194 u=1.96 u=1.98 u=2

DSET EADM32 DSET EADM32 DSET EADM32 DSET EADM32 Exact

VIM VIM VIM VIM Absolute Error
0 11 0 0 0 0 0 0 0 0 0 0
0.1 0.1104 0.1105 0.1104 0.1105 0.1104 0.1105 0.1104 0.1104 0.1104 5.1821e-11
0.2 0.2238 0.2239 0.2237 0.2238 0.2237 0.2237 0.2236 0.2236 0.2236 2.6930e-08
1.3 0.3434 0.3435 0.3431 0.3432 0.3428 0.3429 0.3425 0.3425 0.3425 1.0618e-06
0.4 0.4732 0.4735 0.4724 0.4726 0.4715 0.4718 0.4707 0.4709 0.4707 1.4668e-05
0.5 0.6183 0.6197 0.6165 0.6176 0.6147 0.6156 0.6129 0.6137 0.6131 1.1478e-04
0.6 0.7858 0.7906 0.7822 0.7862 0.7788 0.7820 0.7754 0.7781 0.7761 6.3109e-04
0.7 0.9853 0.9993 0.9789 0.9906 0.9728 0.9824 0.9669 0.9745 0.9696 2.7390e-03
0.8 1.2303 1.2659 1.2196 1.2493 1.2094 1.2337 1.1995 1.2190 1.2096 1.0087e-02
0.9 1.5396 1.6208 1.5226 1.5902 1.5062 1.5616 1.4905 1.5348 1.5236 3.3143e-02
1.0 1.9389 2.1086 1.9127 2.0540 1.8876 2.0033 1.8636 1.9560 1.9647 1.0118e-01
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(a) Exact solution

t x

w

[
5]

(b) Approximation solution

o

Figure 5. In the case u = 2, (a) the ES and (b) the AS

Conclusion

Combining Sumudu-Elzaki Transforms and the
Variational Iteration Method is an effective strategy
for solving NT-FDPDEs. The suggested method is
very effective and appropriate for these types of
problems. The results demonstrate that the
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