Covering Theorem for Finite Nonabelian Simple Groups

Shaimaa Salman Abd Mohsen*

Date of acceptance 3/10/2006

Abstract

: In this paper, we show that for the alternating group An , the class C of n - cycle, CC covers A_{n} for n when $n=4 k+1>5$ and odd. This class splits into two classes of A_{n} denoted by C and $\mathrm{C}^{\prime}, \mathrm{CC}=\mathrm{C}^{\prime} \mathrm{C}^{\prime}$ was found.

Introduction:

Let G be a group. We say α and β are conjugate in G (and all β a conjugate of α) if $\lambda^{-1} \alpha \lambda=\beta$ for some λ in G . The conjugacy class of α is the set $\left\{\lambda^{-1} \alpha \lambda: \lambda \in G\right\} .[2,3]$
Now, let C be any non trivial conjugacy class $(C \neq 1)$ of G, we say C covers G if there exists a positive integer number m such that $\mathrm{C}^{\mathrm{m}}=\mathrm{G}$. [4]
We denote to the symmetric group of finite set $\mathrm{H}=\{1,2, \ldots ., \mathrm{n}\}$ by P_{n} and to the alternating group by A_{n}. The problem of covering is determining the minimal value of m which is as yet unsolved completely [1]. But there are many authors have worked on this field and they have many interesting results. One of them is Bertram [1] who proved that for $\mathrm{n} \geq 5$, every permutation in A_{n} is the product of two L - cycles for every [$\frac{3 n}{4}$] $\leq \mathrm{L} \leq \mathrm{n}$. Hence $\mathrm{A}_{\mathrm{n}} \mathrm{Can}$ be covered by products of two n - cycles and also by products of two (n - 1) - cycles. But Bertram also showed that if n is odd is the n - cycles in A_{n} fall into two conjugate classes $\mathrm{C}, \mathrm{C}^{\prime}$, and similarly for the $(\mathrm{n}-1)$ - cycles if n is even, so that the quoted results does not decide whether

$$
\mathrm{CC}=\mathrm{A}_{\mathrm{n}} \ldots \ldots .
$$

Theorem 1: For $\mathrm{n}=4 \mathrm{k}+1>5$, the class C of the cycle ($12 \ldots . . \mathrm{n}$) has property (1).
To prove this theorem, this required (The case when $\mathrm{n}=9$ and Lemma 1):
The Case $n=9$: Let $\mathrm{a}=$ (123456789). For every class in A^{9}, a conjugate b of a can be found such that ab represents (line in) that class. This assertion is the substance of the table below

b	ab
a^{-1}	1 (1 is the identity)
(193248765)	(14)(38)
(176235894)	(13)(25)(48)(79)
(132987654)	(193)
(134765289)	(18)(24)(379)
(132798465)	(174)(369)
(184523796)	(135)(274)(698)
(137259486)	(15)(276)(3849)
(123794865)	(1384)(2769)
(132798654)	(17693)
(189623574)	(13)(25)(47986)
(132869745)	(18764)(359)
(132845697)	(18746)(359)
(159348726)	(162495)(38)
(186974532)	(3598764)
$(12345789)=\mathbf{a}$	(135792468)
(125678934)	(157924683)

[^0]Lemma 1: If $\mathrm{n}=4 \mathrm{k}+1, \mathrm{CC}$ contains the type $2^{2 \mathrm{k}} 1^{1}$.
Proof:

1. If $\mathrm{n} \equiv 1(\bmod 8), \mathrm{n}>9$ then
$\mathrm{x}=(\mathrm{nn}-3 \mathrm{n}-2 \mathrm{n}-1 \mathrm{n}-4 \mathrm{n}-7 \mathrm{n}-6$
$n-5 \ldots \ldots 967852341$) is conjugate
to a and
$\mathrm{ax}=(13)(24)(57)(68) \ldots .(\mathrm{n}-4 \mathrm{n}-$
2) $(n-3 n-1)$
$\mathrm{n} \equiv 1(\bmod 8)$
$\Rightarrow \mathrm{n}-1=8 \mathrm{k}$
$\Rightarrow \mathrm{n}=8 \mathrm{k}+1$
$\mathrm{n}=8 \mathrm{k}+1, \mathrm{n}>9$
If $\mathrm{k}=1 \Rightarrow \mathrm{n}=9$
$\therefore \mathrm{x}=(967852341)$ is conjugate to a and
$\mathrm{ax}=(13)(24)(57)(68)$
If $\mathrm{k}=2 \Rightarrow \mathrm{n}=17$
$\therefore \mathrm{x}=\left(\begin{array}{llllllll}17 & 14 & 15 & 16 & 13 & 10 & 11 & 12\end{array}\right.$ 967852341) is conjugate to a and $\mathrm{ax}=(13)(24)(57)(68)(911)(1012)(13$ 15)(14 16)

If $\mathrm{k}=3 \Rightarrow \mathrm{n}=25$
$\mathrm{x}=\left(\begin{array}{ll}25 & 22 \\ 23 & 2421181920171415\end{array}\right.$
1613101112967852341) is conjugate to a and
$\mathrm{ax}=(13)(24)(57)(68)(911)(1012)(13$
15)(14 16)(17 19)(18 20)(21 23)(22 24)
2. If $n=5(\bmod 8), n>13$ then
$y=(n n-3 n-2 n-1 n-4 n-7 n-6$
n-5....... 1396101278115234 1)
is conjugate to a and
ay $=(13)(24)(510)(68)(711)(912)(13$
15)..... $(n-4 n-2)(n-3 n-1)$.
$\mathrm{n} \equiv 5(\bmod 8)$
$\Rightarrow \mathrm{n}-5=8 \mathrm{k}$
$\Rightarrow \mathrm{n}=8 \mathrm{k}+5$
$\mathrm{n}=8 \mathrm{k}+5, \mathrm{n}>13$

If $\mathrm{k}=2 \Rightarrow \mathrm{n}=21$
$\therefore y=(2118192017141516139610$ 12781152341) is conjugate to a and ay $=(13)(24)(510)(68)(711)(912)(13$ 15)(14 16)(17 19)(18 20)

If $\mathrm{k}=3 \Rightarrow \mathrm{n}=29$
y $=\left(\begin{array}{ll}29 & 26 \\ 27 & 28 \\ 25 & 22 \\ 23 & 24 \\ 21 & 18 \\ 19\end{array}\right.$
2017141516139610127811523
41) is conjugate to a and
ay $=(13)(24)(510)(68)(711)(912)(13$
15)(14 16)(17 19)(18 20)(21 23)(22 24).

If $\mathrm{k}=4 \Rightarrow \mathrm{n}=37$
$\mathrm{y}=\left(\begin{array}{ll}37 & 34353633303132292627\end{array}\right.$
28252223242118192017141516
13961012781152341).
ay $=(13)(24)(510)(68)(912)(711)(13$
15) $(14 \quad 16)(17 \quad 19)(18 \quad 20)(21 \quad 23)(22$
24)(25 27)(26 28)(29 31)(30 32)(33
35)(34 36).

If $\mathrm{n}=13$ we use the last 13 letters of y , when
$\mathrm{y}=(\mathrm{nn}-3 \mathrm{n}-2 \mathrm{n}-1 \mathrm{n}-4 \mathrm{n}-7 \mathrm{n}-6$ $\mathrm{n}-5 \ldots \ldots . .13961012781152341$).
The pattern of y differs from that of x only in the last 8 letters between $139 \ldots$. 11 , in which the number of reversals is odd, whereas in every other such 8 letters in either x or y, the number of reversals is even).

The Induction:

The induction proceeds from $\mathrm{n}-$ 4 to $\mathrm{n}=4 \mathrm{k}+1$. The induction hypothesis is:
For every permutation T in $\mathrm{A} \mathrm{n}-4$, there are two $(n-4)$ - cycles Z_{1} and Z_{2} both in the class of the ($n-4$) - cycle (123...n-6n-5n-4) and also two other ($n-4$) - cycles Z_{1}^{\prime} and Z_{2}^{\prime} both in the class of ($123 \ldots \ldots n-6 n-4 n-5$), such that $T=Z_{1} Z_{2}=Z_{1}^{\prime} Z^{\prime}{ }_{2}$.
Let $\mathrm{P} \neq 1$ be a permutation in A_{n}. To show that CC contains S we consider several cases. In each case we find a
conjugate P lof P , and a certain permutation g in An , such that $\mathrm{T}=\mathrm{P} 1 \mathrm{~g}-1$ fixes the letters $\mathrm{n}, \mathrm{n}-1, \mathrm{n}-2, \mathrm{n}-3$ and thus its restriction to $1,2, \ldots ., n-4$ lies in An -4.
Case1. P contains a cycle with 5 or more letters take

$$
g=(n n-1 n-2 n-3 n-4)
$$

Case2. P contains no cycle with 5 or more letters, but P contains at least one cycle with 4 letters, take

$$
\mathrm{g}=(\mathrm{n} \mathrm{n}-1 \mathrm{n}-2 \mathrm{n}-3)(\mathrm{n}-4)
$$

($\mathrm{n}-5$).
Case3. P contain no cycle with more than 3 letters, but P does contain two 3 cycles, take

$$
\begin{equation*}
g=(n n-1 n-2)(n-3 n-4 n \tag{-5}
\end{equation*}
$$

Case4. P is of type $3^{1} 2^{2 \mathrm{k}-2} 1^{2}$, take

$$
g=(n n-1 n-2)
$$

Now, if P contains no cycle longer than transposition (permutation is a cycle of length 2), either P is of type $2^{2 k} 1^{1}$, whence CC contains P by the lemma, or we have
Case5. P fixes 5 or more letters, take

$$
\mathrm{g}=1
$$

the proof in case5 is simple, since P fixes 5 or more letters P has conjugate P1 that fixes $\mathrm{n}, \mathrm{n}-1, \mathrm{n}-2, \mathrm{n}-3$ and by the induction hypothesis.
$P_{1}=Z_{1} Z_{2}$, where Z_{1} and Z_{2} both fix n, n $-1, \mathrm{n}-2, \mathrm{n}-3$ and can be expressed
$Z_{1}=(\mathrm{a} 1 \mathrm{a} 2 \ldots .$. an $-5 \mathrm{n}-4)$
$Z_{2}=(b 1 b 2 \ldots . . b n-5 n-4)$.
Where the permutation ai \rightarrow bi is an even permutation of the letters $1,2, \ldots ., n-5$. Then $P_{1}=Z_{3} Z_{4}$ with
$\mathrm{Z}_{3}=(\mathrm{a} 1 \mathrm{a} 2 \ldots .$. an $-5 \mathrm{n} \mathrm{n}-1 \mathrm{n}-2 \mathrm{n}-3$
n-4)
$\mathrm{Z}_{4}=(\mathrm{b} 1 \mathrm{~b} 2 \ldots . . \mathrm{bn}-5 \mathrm{n}-4 \mathrm{n}-3 \mathrm{n}-2 \mathrm{n}$ -1 n).
and $\mathrm{Z}_{3}, \mathrm{Z}_{4}$ belong to the class, be it C or C^{\prime}. if the other part of the induction hypothesis is used in a similar fashion, the assertion that CC contains P follows.

The details for casel are as follows, since $\mathrm{T}=\mathrm{P}_{1} \mathrm{~g}^{-1}$ move at most the first $\mathrm{n}-$ 4 letters
By the induction $\Rightarrow \mathrm{T}=\mathrm{Z}_{1} \mathrm{Z}_{2}=\mathrm{Z}_{1}^{\prime} \mathrm{Z}_{2}^{\prime}$, $\mathrm{Z}_{1}, \mathrm{Z}_{2}\left[\mathrm{Z}_{1}^{\prime}, \mathrm{Z}_{2}^{\prime}\right]$ are from the same class in $\mathrm{An}-4$
Writing $\mathrm{Z}_{1}=(\mathrm{a} 1 \mathrm{a} 2 \ldots .$. an $-5 \mathrm{n}-4)$

$$
Z_{2}=(b 1 b 2 \ldots . . b n-5 n-4)
$$

The permutation ai \rightarrow bi is an even permutation of $1,2, \ldots \ldots, n-5$.

Now
$\because \mathrm{T}=\mathrm{P}_{1} \mathrm{~g}^{-1} \Rightarrow \mathrm{P}_{1}=\mathrm{T}_{\mathrm{g}}$
$\because \mathrm{P}_{1}=\mathrm{Z}_{3} \mathrm{Z}_{4} \Rightarrow \mathrm{P}_{1}=\mathrm{Tg}=\mathrm{Z}_{3} \mathrm{Z}_{4}, \quad \mathrm{~g}=(\mathrm{n} \mathrm{n}$ $-1 n-2 n-3 n-4)$
and $Z_{3}=(\mathrm{a} 1 \mathrm{a} 2 \ldots$. an $-5 \mathrm{n}-2 \mathrm{nn}-3$ $\mathrm{n}-1 \mathrm{n}-4$)
$\mathrm{Z}_{4}=(\mathrm{b} 1 \mathrm{~b} 2 \ldots . . \mathrm{bn}-5 \mathrm{nn}-3 \mathrm{n}-1$
$n-4 n-2$)
Z_{3} and Z_{4} are in the same class, be it C or C^{\prime} in A_{n}.

By again using Z_{1} and Z_{2} in place of Z_{1} and Z_{2}, the proof is completed in this case.
In case 2, P has a conjugate P_{1} such that $\mathrm{T}=\mathrm{P}_{1} \mathrm{~g}^{-1}$ fixes at least 5 letters. Hence without loss of generality the factors $\mathrm{Z}_{1}, \mathrm{Z}_{2}\left[\mathrm{Z}_{1}^{\prime}, \mathrm{Z}_{2}^{\prime}\right]$ can be chose so that $\mathrm{T}=\mathrm{Z}_{1} \mathrm{Z}_{2}=\mathrm{Z}_{1} \mathrm{Z}^{\prime}{ }_{2}$ with
$\mathrm{Z}_{1}=(\mathrm{a} 1 \ldots \ldots . \mathrm{an}-6 \mathrm{n}-5 \mathrm{n}-4), \quad \mathrm{Z}_{1}^{\prime}=$ (a/1 $\ldots \ldots . . a / n-6 n-5 n-4$)
$Z_{2}=(b 1 \ldots \ldots . b n-6 n-4 n-5), \quad Z_{2}^{\prime}=$ (b/1 $\ldots \ldots . . . b / n-6 n-4 n-5$)
and where $a_{i} \rightarrow b_{i}\left[a_{i}^{\prime} \rightarrow b_{i}^{\prime}\right]$ is an odd permutation of the letters $1,2, \ldots . ., n-6$.

Now $T_{g}=Z_{3} Z_{4}$ where
$\mathrm{Z}_{3}=(\mathrm{a} 1 \mathrm{a} 2 \ldots$. an $-6 \mathrm{n}-1 \mathrm{n}-5 \mathrm{n}-3$
$\mathrm{n}-2 \mathrm{n} \mathrm{n}-4$)
$\mathrm{Z}_{4}=(\mathrm{b} 1 \mathrm{~b} 2 \ldots . . \mathrm{bn}-6 \mathrm{n}-5 \mathrm{n}-2 \mathrm{nn}-$ $3 n-4 n-1$)
The permutation Z 3 and Z 4 belong to the same class in An. Priming the ai and bi completes the proof in this case.

In case 3, P has at least two 3 - cycles, and has a conjugate P_{1}, such that $\mathrm{T}=\mathrm{P}_{1} \mathrm{~g}^{-1}$ fixes the letters $\mathrm{n}, \mathrm{n}-1, \mathrm{n}-2$, $n-3, n-4, n-5$.
By the induction permutations Z_{1} and Z_{2} exist such that $T=Z_{1} Z_{2}$ with $Z_{1}=(n-4$ a1.......ak $n-5 a k+1 \ldots \ldots$ an -6) $Z_{2}=(n-4 b 1 \ldots \ldots .$. bh $n-5$ bh $+1 \ldots . .$. bn -6$) \backslash$
And where Z_{1} and Z_{2} are in the same in A_{n}.

Now $P_{1}=Z_{1} Z_{2}$ where $Z_{3}=Z_{1} f$,

$$
\mathrm{Z}_{4}=\mathrm{f}^{-1} \mathrm{Z}_{2} \mathrm{~g}
$$

and $f=(n-5 n-3 n-2)(n-4 n-1 n)$. Then Z_{3} and Z_{4} are both $n-$ cycles and in the same class in An. It has only to be checked that they are in the same class in A_{n}, to do this is tedious, but straightforward. To complete the proof in this case we observe that since P contains two 3- cycles and $\mathrm{P}_{1}=\mathrm{Z}_{3} \mathrm{Z}_{4}$, the decomposition $\mathrm{P}_{1}=\mathrm{Z} / 3 \mathrm{Z} / 4$ can be obtained by applying a certain outher automorphism of A_{n}.
In the only remaining case (case 4), P fixes 2 letters, and therefore has a conjugate P_{1} such that $T=P_{1} g^{-1}$ fixes n, $\mathrm{n}-1, \mathrm{n}-2, \mathrm{n}-3, \mathrm{n}-4$. Again we have $\mathrm{T}=\mathrm{Z}_{1} \mathrm{Z}_{2}$, where we can write
$Z_{1}=(a 1 \ldots .$. an $-6 n-4 n-5)$
$Z_{2}=(b 1 \ldots . b n-6 n-5 n-4)$
and where the permutation ai \rightarrow bi is an odd permutation of the letters $1,2, \ldots$, n -6 . Then $P_{1}=T_{g}=Z_{3} Z_{4}$, with $\mathrm{Z}_{3}=(\mathrm{a} 1 \ldots$ an $-6 \mathrm{n}-1 \mathrm{nn}-3 \mathrm{n}-2 \mathrm{n}-$ 4n-5)
$\mathrm{Z}_{4}=(\mathrm{b} 1 \ldots \mathrm{bn}-6 \mathrm{n}-5 \mathrm{n}-4 \mathrm{nn}-2 \mathrm{n}-$ $3 n-1$)
and these belong to the same class. By priming we again conclude CC contains P , and the proof is complete in all cases. Hence theorem 1.

References:

1. Bertram, E. A., 1972. 'Even Permutation as a product of two Conjugate cycles', (1972) J. Combinatorial Theory (A) 12:368-380.
2. Burton David, M.,1967.'Introduction to Modern Abstract Algebra', Addison - Wesley Publishing Company
3. Surowski, D., 2002. 'Work Book in Higher Algebra'.
www.geocities.com/alek-stef/mylist. Html.
4. Arad, Z., and M. Herzong, 1985. 'Product of Conjugacy Classes In Groups' Lecture Notes in Mathematics, Vol. 1112, Springer.

نظرية الغظاء للزمر المنتهية غير الابدالية البسيطة

شيمـاء سلمـان عبد محسن

* قسم الرياضيات ، كلية التربية- أبن الهيثّ، جامعة بغداد.

الخلاصــة:
في هذا البحث نبين أن في الزمرة المتناوبة An ،ان صف التكافؤ C الذي ينكون من n من الدورات، أستنتجنا أن ي يغطي CC

[^0]: *Department of Mathematics, College of Education, Ibn Al-Haithm, Baghdad University.

