Covering Theorem for Finite Nonabelian Simple Groups

Shaimaa Salman Abd Mohsen*

Date of acceptance 3/10/2006

Abstract:

In this paper, we show that for the alternating group An, the class C of n- cycle, CC covers A_n for n when n = 4k + 1 > 5 and odd. This class splits into two classes of A_n denoted by C and C', CC= C'C' was found.

Introduction:

Let G be a group. We say α and β are conjugate in G (and all β a conjugate of α) if $\lambda^{-1}\alpha \lambda = \beta$ for some λ in G. The conjugacy class of α is the set $\{\lambda^{-1}\alpha \lambda: \lambda \in G\}$.[2,3]

Now, let C be any non trivial conjugacy class (C \neq 1) of G, we say C covers G if there exists a positive integer number m such that C^m = G. [4]

We denote to the symmetric group of finite set $H = \{1, 2, ..., n\}$ by P_n and to the alternating group by A_n . The problem of covering is determining the minimal value of m which is as yet unsolved completely [1]. But there are many authors have worked on this field and they have many interesting results. One of them is Bertram [1] who proved that for $n \ge 5$, every permutation in A_n is the product of two L – cycles for every $[\frac{3n}{4}]$

 $\leq L \leq n$. Hence A_n Can be covered by products of two n - cycles and also by products of two (n - 1) - cycles. But Bertram also showed that if n is odd is the n - cycles in A_n fall into two conjugate classes C, C['], and similarly for the (n - 1) - cycles if n is even, so that the quoted results does not decide whether

 $CC = A_n \dots (1)$

Theorem 1: For n = 4k + 1 > 5, the class C of the cycle $(1 \ 2 \ \dots \ n)$ has property (1).

To prove this theorem, this required (The case when n = 9 and Lemma 1):

The Case n = 9: Let a = (123456789). For every class in A⁹, a conjugate b of a can be found such that ab represents (line in) that class. This assertion is the substance of the table below

b	ab
a^{-1}	1 (1 is the identity)
(193248765)	(14)(38)
(176235894)	(13)(25)(48)(79)
(132987654)	(193)
(134765289)	(18)(24)(379)
(132798465)	(174)(369)
(184523796)	(135)(274)(698)
(137259486)	(15)(276)(3849)
(123794865)	(1384)(2769)
(132798654)	(17693)
(189623574)	(13)(25)(47986)
(132869745)	(18764)(359)
(132845697)	(18746)(359)
(159348726)	(162495)(38)
(186974532)	(3598764)
(12345789) = a	(135792468)
(125678934)	(157924683)

^{*}Department of Mathematics, College of Education, Ibn Al-Haithm, Baghdad University.

Lemma 1: If n = 4k + 1, CC contains the type $2^{2k} 1^{1}$. Proof: 1. If $n \equiv 1 \pmod{8}$, n > 9 then x = (n n - 3 n - 2 n - 1 n - 4 n - 7 n - 6n – 5...... 9 6 7 8 5 2 3 4 1) is conjugate to a and $ax = (1 \ 3) \ (2 \ 4) \ (5 \ 7) \ (6 \ 8) \dots \ (n-4 \ n-4)$ 2) (n-3 n-1) $n \equiv 1 \pmod{8}$ \Rightarrow n - 1 = 8k \Rightarrow n = 8k +1 n = 8k + 1, n > 9If $k = 1 \implies n = 9$ \therefore x = (967852341) is conjugate to a and ax = (13)(24)(57)(68)If $k = 2 \implies n = 17$ $\therefore x = (17 \ 14 \ 15 \ 16 \ 13 \ 10 \ 11 \ 12$ 967852341) is conjugate to a and $ax = (1 \ 3)(2 \ 4)(5 \ 7)(6 \ 8)(9 \ 11)(10 \ 12)(13 \ 4)(13 \ 12)(13)(13 \ 12)(13)(13 \ 12)(13)(13)(13 \ 12)(13)(13)(13)(13)($ 15)(14 16) If $k = 3 \implies n = 25$ x = (25 22 23 24 21 18 19 20 17 14 15 16 13 10 11 12 967852341) is conjugate to a and 15)(14 16)(17 19)(18 20)(21 23)(22 24) 2. If $n = 5 \pmod{8}$, n > 13 then y = (n n - 3 n - 2 n - 1 n - 4 n - 7 n - 6n - 5..... 13 9 6 10 12 7 8 11 5 2 3 4 1) is conjugate to a and $ay = (1 \ 3)(2 \ 4)(5 \ 10)(6 \ 8)(7 \ 11)(9 \ 12)(13)$ 15)..... (n-4 n - 2)(n - 3 n - 1). $n \equiv 5 \pmod{8}$ \Rightarrow n - 5 = 8k

If $k = 2 \implies n = 21$

n = 8k + 5, n > 13

 \Rightarrow n = 8k + 5

 $\therefore y = (21 \ 18 \ 19 \ 20 \ 17 \ 14 \ 15 \ 16 \ 13 \ 9 \ 6 \ 10$ 12 7 8 11 5 2 3 4 1) is conjugate to a and ay = (1 3)(2 4)(5 10)(6 8)(7 11)(9 12)(13 15)(14 \ 16)(17 \ 19)(18 \ 20)

If $k = 3 \Rightarrow n = 29$ y = (29 26 27 28 25 22 23 24 21 18 19 20 17 14 15 16 13 9 6 10 12 7 8 11 5 2 3 4 1) is conjugate to a and ay = (1 3)(2 4)(5 10)(6 8)(7 11)(9 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24).

If $k = 4 \Rightarrow n = 37$ $y = (37 \ 34 \ 35 \ 36 \ 33 \ 30 \ 31 \ 32 \ 29 \ 26 \ 27$ 28 25 22 23 24 21 18 19 20 17 14 15 16 13 9 6 10 12 7 8 11 5 2 3 4 1). $ay = (1 \ 3)(2 \ 4)(5 \ 10)(6 \ 8)(9 \ 12)(7 \ 11)(13 \ 15)(14 \ 16)(17 \ 19)(18 \ 20)(21 \ 23)(22 \ 24)(25 \ 27)(26 \ 28)(29 \ 31)(30 \ 32)(33 \ 35)(34 \ 36).$

If n = 13 we use the last 13 letters of y, when

y = (n n - 3 n - 2 n - 1 n - 4 n - 7 n - 6 n - 5..... 13961012781152341).The pattern of y differs from that of x only in the last 8 letters between 139.... 11, in which the number of reversals is odd, whereas in every other such 8 letters in either x or y, the number of reversals is even).

The Induction:

The induction proceeds from n - 4 to n = 4k + 1. The induction hypothesis is:

For every permutation T in A n - 4, there are two (n - 4) – cycles Z_1 and Z_2 both in the class of the (n - 4) – cycle (123...n - 6 n - 5 n - 4) and also two other (n - 4) – cycles Z'_1 and Z'_2 both in the class of (123n - 6 n - 4 n - 5), such that T = $Z_1Z_2 = Z'_1Z'_2$.

Let $P \neq 1$ be a permutation in A_n . To show that CC contains S we consider several cases. In each case we find a conjugate P1of P, and a certain permutation g in An, such that T = P1g-1 fixes the letters n, n - 1, n - 2, n - 3 and thus its restriction to 1, 2,, n - 4 lies in An -4.

Case1. P contains a cycle with 5 or more letters take

g = (n n - 1 n - 2 n - 3 n - 4).

Case2. P contains no cycle with 5 or more letters, but P contains at least one cycle with 4 letters, take

g = (n n - 1 n - 2 n - 3) (n - 4)(n - 5).

Case3. P contain no cycle with more than 3 letters, but P does contain two 3 - cycles, take

g = (n n - 1 n - 2) (n - 3 n - 4 n - 5).

Case4. P is of type $3^1 2^{2k-2} 1^2$, take g = (n n - 1 n - 2).

Now, if P contains no cycle longer than transposition (permutation is a cycle of length 2), either P is of type $2^{2k} 1^1$, whence CC contains P by the lemma, or we have

Case5. P fixes 5 or more letters, take g = 1

the proof in case5 is simple, since P fixes 5 or more letters P has conjugate P1 that fixes n, n - 1, n - 2, n - 3 and by the induction hypothesis.

 $P_1 = Z_1Z_2$, where Z_1 and Z_2 both fix n, n - 1, n - 2, n - 3 and can be expressed

 $Z_1 = (a1 \ a2....an - 5 \ n - 4)$

 $Z_2 = (b1 \ b2 \dots \ bn - 5 \ n - 4).$

Where the permutation ai \rightarrow bi is an even permutation of the letters 1, 2, ..., n – 5. Then P₁ = Z₃Z₄ with

 $Z_3 = (a1 \ a2....an - 5 \ n \ n - 1 \ n - 2 \ n - 3 \ n - 4)$

 $Z_4 = (b1 \ b2.... \ bn - 5 \ n - 4 \ n - 3 \ n - 2 \ n - 1 \ n).$

and Z_3 , Z_4 belong to the class, be it C or C'. if the other part of the induction hypothesis is used in a similar fashion, the assertion that CC contains P follows.

The details for case1 are as follows, since $T = P_1g^{-1}$ move at most the first n - 4 letters By the induction $\Rightarrow T = Z_1Z_2 = Z'_1Z'_2$,

 Z_1 , Z_2 [Z'_1 , Z'_2] are from the same class in An – 4

Writing $Z_1 = (a1 \ a2.... an - 5 \ n - 4)$ $Z_2 = (b1 \ b2.... bn - 5 \ n - 4)$

The permutation ai \rightarrow bi is an even permutation of 1, 2,, n - 5.

Now

 $\begin{array}{l} \because \ T=P_1g^{-1} \Longrightarrow P_1=T_g \\ \because \ P_1=Z_3Z_4 \Longrightarrow P_1=Tg=Z_3Z_4, \ g=(n\ n \\ -1\ n-2\ n-3\ n-4) \end{array}$

and $Z_3 = (a1 \ a2....an - 5 \ n - 2 \ n \ n - 3$ $n - 1 \ n - 4)$

 $Z_4 = (b1 \ b2.... \ bn-5 \ n \ n-3 \ n-1 \\ n-4 \ n-2)$

 Z_3 and Z_4 are in the same class, be it C or C^\prime in $A_n.$

By again using Z_1 and Z_2 in place of Z_1 and Z_2 , the proof is completed in this case.

In case2, P has a conjugate P₁ such that $T = P_1g^{-1}$ fixes at least 5 letters. Hence without loss of generality the factors $Z_1, Z_2 [Z'_1, Z'_2]$ can be chose so that $T = Z_1Z_2 = Z'_1Z'_2$ with $Z_1 = (a1....an - 6 n - 5 n - 4), Z'_1 = (a/1 ...an - 6 n - 5 n - 4)$ $Z_2 = (b1....bn - 6 n - 4 n - 5), Z'_2 = (b/1 ...bn - 6 n - 4 n - 5)$

and where $a_i \rightarrow b_i \ [a'_i \rightarrow b'_i]$ is an odd permutation of the letters 1, 2,, n – 6.

Now $T_g = Z_3 Z_4$ where $Z_3 = (a1 \ a2.... an - 6 \ n - 1 \ n - 5 \ n - 3 \ n - 2 \ n \ n - 4)$ $Z_4 = (b1 \ b2.... bn - 6 \ n - 5 \ n - 2 \ n \ n - 3 \ n - 4 \ n - 1)$

The permutation Z3 and Z4 belong to the same class in An. Priming the ai and bi completes the proof in this case.

In case3, P has at least two 3 – cycles, and has a conjugate P₁, such that $T = P_1g^{-1}$ fixes the letters n, n – 1, n – 2, n – 3, n – 4, n – 5. By the induction permutations Z₁ and Z₂ exist such that $T = Z_1Z_2$ with $Z_1 = (n - 4)$ a1.....ak n – 5 ak +1.....an – 6) $Z_2 = (n - 4) = 1$

+1..... bn -6 \ And where Z_1 and Z_2 are in the same in A_n .

Now
$$P_1 = Z_1 Z_2$$
 where $Z_3 = Z_1 f$,
 $Z_4 = f^{-1} Z_2 g$

and f = (n - 5 n - 3 n - 2)(n - 4 n - 1 n). Then Z₃ and Z₄ are both n – cycles and in the same class in An. It has only to be checked that they are in the same class in A_n, to do this is tedious, but straightforward. To complete the proof in this case we observe that since P contains two 3- cycles and P₁ = Z₃ Z₄, the decomposition P₁ = Z/3Z/4 can be obtained by applying a certain outher automorphism of A_n.

In the only remaining case (case 4), P fixes 2 letters, and therefore has a conjugate P₁ such that $T = P_1g^{-1}$ fixes n, n - 1, n - 2, n - 3, n - 4. Again we have $T = Z_1Z_2$, where we can write $Z_1 = (a1...an - 6n - 4n - 5)$

 $Z_2 = (b1....bn - 6n - 5n - 4)$

and where the permutation $ai \rightarrow bi$ is an odd permutation of the letters 1, 2, ..., n -6. Then $P_1 = T_g = Z_3Z_4$, with

 $Z_3 = (a1...an - 6n - 1nn - 3n - 2n - 4n - 5)$

 $Z_4 = (b1... bn - 6 n - 5 n - 4 n n - 2 n - 3 n - 1)$

and these belong to the same class. By priming we again conclude CC contains P, and the proof is complete in all cases. Hence theorem 1.

References:

1. Bertram, E. A., 1972. 'Even Permutation as a product of two Conjugate cycles', (1972) J. Combinatorial Theory (A) 12:368-380.

2. BurtonDavid,M.,1967. 'Introduction toModernAbstract Algebra', Addison – WesleyPublishing Company

3. Surowski, D., 2002. 'Work Book in Higher Algebra'.

www.geocities.com/alek-stef/mylist. Html.

4. Arad, Z., and M. Herzong, 1985. 'Product of Conjugacy Classes In Groups' Lecture Notes in Mathematics, Vol. 1112, Springer.

نظرية الغطاء للزمر المنتهية غير الابدالية البسيطة

* قسم الرياضيات ، كلية التربية- أبن الهيثم، جامعة بغداد.

الخلاصة:

في هذا البحث نبين أن في الزمرة المتناوبة A_n ، ان صف التكافؤ C الذي يتكون من n من الدورات، أستنتجنا أن C يغطي A_n عندما تكون n = 4k + 1 و n = c < c و n عدد فردي وينقسم صف التكافؤ هذا على قسمين ويرمز C لهذين القسمين بالرمز C وC وبينت بأنه C'C = C'C.