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Abstract

The topological parameters of the metal-metal and metal-ligand bonding interactions in a trinuclear
tetrahydrido cluster [(Cp*Co) (CpRu)2 (u3-H) (u-H)3]1 (Cp* =15 -C5Me4Et), (Cp =15 -C5Meb), was
explored by using the Quantum Theory of Atoms-in-Molecules (QTAIM). The properties of bond
critical points such as the bond delocalization indices 6 (A, B), the electron density p(r), the local kinetic
energy density G(r), the Laplacian of the electron density V2p(r), the local energy density H(r), the local
potential energy density V(r) and ellipticity &(r) are compared with data from earlier organometallic
system studies. A comparison of the topological processes of different atom-atom interactions has
become possible thanks to these results. In the core of the heterometallic tetrahydrido cluster, the
Ru2CoH4 part, the calculations show no existence of any bond critical points (BCP) or identical bond
paths (BPs) between Ru-Ru and Ru-Co. Electron densities are determined by the position of bridging
hydride atoms coordinated to Ru-Ru and Ru-Co, which significantly affects the bonds between these
transition metal atoms. On the other hand, the results confirm that the cluster under study contains a 7¢c—
11e bonding interaction delocalized over M3H4, as shown by the non-negligible delocalization index
calculations. The small values for electron density p(b) above zero, together with the small values, again
above zero, for Laplacian V2p(b) and the small positive values for total energy density H(b), are shown
by the Ru-H and Co-H bonds in this cluster is typical for open-shell interactions. Also, the topological
data for the bond interactions between Co and Ru metal atoms with the C atoms of the cyclopentadienyl
Cpring ligands are similar. They show properties very identical to open-shell interactions in the QTAIM
classification.

Keywords: AIM approach, Bonding analysis for the trinuclear cluster, DFT calculation, Topological

properties, and trinuclear tetrahydrido cluster.

Introduction

Due to their possible uses in catalytic or
stoichiometric reactivity, there has been much
investigation into the activation of transition metal
clusters in the inorganic and organometallic
chemistry disciplines due to their potential benefits
in catalytic or stoichiometric reactivity!. Cluster
complexes differ from mononuclear complexes in
their reactivity in that they can coordinate with

substrate molecules many times and form a multi-
electron transfer to the substrate 2% Releasing
bridging hydrido ligands from the polyhydrido
cluster spontaneously produced multiple unoccupied
coordination sites on the neighboring metal centers*-
¢, Because of the very high electron density at the
transition metal atoms of the plolyhydrido clusters
having cyclopentadienyl ligands, the reactivity was
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increased toward splitting inactive chemical bonds,
such as the C—C and C—H bonds of alkanes’. In
modern quantum chemistry, Bader’s theory of atoms
in  molecules (QTAIM)® is a good and
complementary tool to the molecular orbital theory
for interpreting the bonding and predicting the
properties of the molecular structures®®, The key
concept in the QTAIM theory is the distribution
function of the electron density p(r). The topological
properties of p(r) and its derivatives play a significant
role in the metal-metal and metal-ligand interaction
in organometallic compounds through valence bonds
and non-valence interactions %, Unfortunately,
few publications have been published on the
topology of the electron density in trinuclear
heterometallic clusters. Therefore, to offer a rather
satisfying interpretation of the bonding interactions
in these important classes of clusters, more QTAIM
studies are needed. This paper aims to study the
bonding by analyzing the electron density
distributions and comparing different topological
indicators for M-M, M-H ,and M-C bonds in
trinuclear  heterometallic  tetrahydrido cluster:
[(Cp*Co) (CpRu)2 (k*-H) (p-H)s]1 (Cp* = n° -
CsMe4Et), (Cp =n° -CsMes)™, as displayed in Fig. 1.

Materials and Methods

Computational Methods

The structure of X-ray diffraction for the
heterometallic tetrahydrido cluster 1, prepared by
Suzuki and his co-workers'4, was used as starting
point for geometrical optimization, which was
carried out using the GAUSSIAN09*® program. The
PBE1PBE functional® has been used with the 6-31G
(d,p) as a basis set for C and H atoms in addition to
the LANL2DZ basis set, which is based on

Results and Discussion

Electron Density Topological Analysis

Using the QTAIM method, we first investigate
the presence of bonding interactions in the trinuclear
heterometallic tetrahydrido cluster [(Cp*Co) (Cp
Ru)2 (us-H) (u-H)s] 1 by using the QT AIM approach.
Applying this method to cluster 1 gives the complete
set of bond critical points (BCPs) together with the
bond paths (BPs) that relate the bonded atoms and
ring critical points (RCPs). Fig. 2 presents the
molecular graph of the cluster.

This trinuclear heterometallic cluster, which has
bridging hydride ligands, offers an excellent
possibility to probe fascinating comparisons between
the several topological properties (local and integral)
of the electron density of M-M interactions and the
influence of the bridging hydride atoms on the
different interactions. This study presents an
excellent chance to investigate the topological
characteristics of various bonding interactions inside
this cluster.

Figure 1. (1) the geometrical optimization
structure of cluster 1 by chem craft, (I1) by
ChemDraw.

calculating Ru and Co metal atoms. QTAIM
topological parameters have been performed with the
AIM2000 program packages!’. These calculations,
applied to the theoretically optimized geometries,
were carried out by using the PBE1PBE functional.
The large all-electron “well-tempered basis set”
WTBS 819 was used for the Ru and Co atoms,
whereas the 6-31G (d, P) basis set was for other
remaining atoms 22,
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Figure 2. The Molecular graph of the Trinuclear
heterometallic  tetrahydrido cluster 1 is
represented by a graph that highlights gray lines
(bond paths BPs) with small red circles (bond
critical points BCPs between two atoms), yellow
circles (ring critical points RCPs) and green
circles (cage critical points CCPs).

The BCPs and their BPs for the Co-H, Ru-H, C-H,
Co-C, Ru-C, and C-C bonds were founded using the
molecular graph. The Ru2CoH4 core hasn’t BCPs
and BPs between the hydride-bridge transition metal
atoms, Co, Ru (1), and Ru (2). Then, we can assume
that no direct M-M bonding exists?2. Other ligands in
bridging sits, such as carbonyl?*?*, Borylenes?, and
Alkynes?®, have also shown this loss of M-M bond
paths. Also, RCPs located slightly closer to the
geometrical centers of each M-H-M-H and Cp ligand
were observed for cluster 1. A significant point of
interest in this cluster is no direct bond-bond
interaction between the transition metal atoms
because there are no bond critical points, and bond
paths are observed between the metal atoms. The
absence of bond paths (BCPs) is hence no direct
bonding interaction between these Ru-Ru and Ru-Co
metallic atoms.

Figure 3. Gradient trajectories in the Co-H(3)-
Ru(1)-H(1)-Ru(2)-H(2) plane mapped on an
electron density plot, with atomic basins (BP’s)
and (BCP’s), are indicated.

In Fig. 3, a gradient map for core plane Ru(1)-H(1)-
Ru(2)-H(3) and (us-H) with Ru(1), Ru(2), and Co, all
BCPs and BPs with the atomic basins in the chosen
planes are seen. In addition, the electron density
distribution is very similar. It shows a significant
charge density distribution around transition metal
atoms Ru and Co, but no BCPs and BPs between Ru-
Ru, and Ru-Co, were found. The BPs and BCPs
located between Ru-H and Co-H are also shown.
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Figure 4. Gradient trajectories in the Cp ligand-
Ru(1) plane with atomic basins (BCP’s) and
(BP’s) are indicated.

Fig. 4, shows the BPs, BCPs, and RCPs associated
with the tetrahydrido ligand attached to the
ruthenium atom, Ru(l), and an electron density
gradient map in this plane. The BCPs and BPs, found
between Ru(1) with the five carbons CP atoms (C(1),
C(2), C(3), C(4), and C(5)), located in and out this
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plane, can also be observed. Additionally, H(1) and  Atoms in Molecules Analysis

H(3) are shown on this plane. The computed topological properties of the

interactions between coordination bonds in the
trinuclear heterometallic tetrahydrido cluster 1 are
summarized in Tablel.

Table 1. The topological parameters at BCPs [ (p» ) electron density, (V2py ) Laplacian, (Hp ) ratio of
total energy density, (Gp ) ratio of kinetic energy density, (Vp ) viral energy density, and (&) ellipticity].

Bond po(eA?) V2pp(eA®) Gp(he?) Hy(he) Vp(he) €b

Rul-H1 0.089 0.193 0.079 -0.031 -0.109 0.197
Rul-H3 0.096 0.214 0.088 -0.035 -0.123 0.106
Rul-H4 0.063 0.193 0.062 -0.014 -0.076 0.165
Ru2-H1 0.093 0.196 0.082 -0.033 -0.114 0.159
Ru2-H2 0.093 0.218 0.087 -0.032 -0.119 0.147
Ru2-H4 0.064 0.197 0.064 -0.015 -0.078 0.149
Co-H2 0.084 0.210 0.079 -0.026 -0.105 0.139
Co-H3 0.086 0.204 0.078 -0.027 -0.106 0.133
Co-H4 0.065 0.227 0.070 -0.014 -0.084 0.076
Rul-Ccp? 0.077 0.250 0.080 -0.018 -0.098 0.992
Ru2-Ccp? 0.081 0.246 0.082 -0.021 -0.103 0.647
Co-Ccp+? 0.072 0.265 0.081 -0.014 -0.095 1.317
Ccp-Cep? 0.284 -0.688 0.091 -0.263 -0.355 0.218

aAverage values.

M-M interactions in clusters 1 spanned by bridging hydride ligands (strong
interaction). Depending on what is mentioned above,
we conclude that there is no bond between transition
metal atoms in this cluster. The absence of BCP
between the metal-metal atoms has been observed,
such as in bridged M...M interaction in the
compounds [Mns(u-H)3(CO)12], [Tca(u-H)3(CO)12],
[Res(u-H)3(CO)12]** and bridged Os...Os in clusters
[Oss(1-H)(I-CI)(CO)10] and [Oss(1-H)(I-
OH)(C0)10]**. However, BCPs and BPs between the
metal-metal atoms have also been observed when

Bader’s quantum theory of atoms in molecules
approach is a powerful tool to provide information
about atoms and the nature of chemical bonding
interaction?’:?, Based on the QTAIM theory?, the
investigation of topological properties like Zpp, the
Laplacian of p, the electron density pp, and the total
energy density Hy, at the BCPs are a helpful tool for
the classification of chemical bonds®,

The negative values of V2p, and Hy, and large values

o ' ) ’ . P, as in the case of Mo-Mo in the cluster [Mos(u?-
positive values of V<pp, and Hy are typical of the S)s(1Z-S)Cly(PHa)q]* ¥
Closed shell (ionic or van der Waals) interactions. M SRRl
The total energy density Hy(r) is defined as Hy(r) =
Go(r) + VDb(r), where Gy(r) and Vy(r) are the kinetic M-H interactions in cluster 1

and potential energy density and has been identified For Co-H and Ru-H interactions, according to

as a more appropriate |3r;dex than Laplacian 1o rpp)e 1, the electron density values at the BCPs are
characterize an interaction®s. The important point for small, >1, within the range 0.063 to 0.096 eA3

M-M interactions is the total absence of any BCPs though the Laplacian values are also small, again >1,

between any pair of the transition metal atoms 0.193 to 0.227 e A5 These results added to the
bridged by hydride ligands. Thus, according to these negative values for Hs, which are in the range of -

results, we may say that there is no localized electron 0.014 to -0.035 he %, are in line with that of a typical
density between the M'.M bond. Accordlng to the open-shell bond (intermediate between ionic and
QTAIM “model, defining and characterizing a o010y bonds) 313738, But the bonds of M-H4, the
ch'?ml::al P"t”g |_Is_has§00|e}teq V\I"tlt]/l al\zoznd dbond central hydride bridge, have noticeable topolectal
3” ;ca %Omh ' the op? :)gtlca it ¢ ond was properties. For instance, it is lower in the electron
estroyed when the metal transition atoms were density and higher in the Hy values. In addition, the
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values, slightly greater than zero, of the ellipticity for
each of the Ru-H and Co-H bonds are typical of the
straight bonding interactions between M and H
atoms.

The Laplacian map computed to plane containing
(Ru2CoH,) is very useful for the analysis of the
M..M, and M-H interactions, displayed in Fig. 5. The
pseudo-octahedral coordination of the Ru and Co
atoms in this cluster is further evident in this figure,
which also demonstrates how their valence shell
charge depletion (VSCD) is almost perfectly cubic.
Also, the VSCCs of hydrido bridge ligands are
directed toward the midpoint between two atoms of
transition metal to which they are bonded. The
reasons for the absence of BPs and BCPs in the shape
of the Laplacian distribution between Ru...Ru and
Ru...Co suggests that there are no bonding electron

Figure 5. Laplacian map showing the electron
density of Ru(1)-H(1)-Ru(2)-H(2)-Co-H(3) with
H(4) plane in the trinuclear cluster 1.

M-Cp Interactions in cluster 1

The five BPs were given their BCPs between Ru
and C atoms of the Cp ligand, which is a most notable
aspect of the topological analysis for the Rul-C
interactions in this cluster, as shown in Fig. 2. Thus,
it is fair to say that there is real chemical bonding
between Ru metal and the carbon atom of Cp ligands
and not just ‘interactions’ as has been previously
found in other M-Cp interactions *. The calculated
topological parameters for Ru-C and Co-C bonds are
summarized in Table 1. As anticipated, the Ru-C,
and Co-C bonds interactions, belong to the transit
closed-shell category with positive values for pp
(between 0.077 and 0.081e A®), the positive and
small values of V2py, (between 0.246 and 0.265 e A~5)

and negative, near-zero values of Hy, (between -0.014
and -0.021 he™?). These numbers align with those
previously published in the literature*. Finally, the
calculated ellipticities for the M-C bonds showed
that the ellipticities average values of Co-Cp*
interactions 1.317 are in most cases higher than the
Ru-Cp bonds (ranging from 0.647-0.992). Large
calculated values for the ellipticities indicated that
the M-C bonds have a i character and are consistent
with earlier research based on the MO theory *..
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Figure 6. Laplacian map showing the electron
density in the Ru-Cp plane.

Delocalization Indices.

The delocalization index, 6(A—B), is one of the
best tools to estimate the number of delocalized
electron pairs between two atoms “2%%, Therefore, as
listed in Table. 2, we calculated these indices as a
tool to analyze a multicenter bonding in this cluster
from one side and to describe different M...M
interaction modes from another side®.

Table 2. Delocalization indices of atom pairs
interactions in cluster 1.

Atom pairs Atom pairs

(AandB) MBI Aangp)  0(AB)
Rul-H1 0.53 RUl-Ccp 0.468
Rul-H3 0.561 Ru2-Ccp 0.485
Rul-H4 0.375 Co-Ccp+ 0.409
Ru2-H1 0.551 Rul...Ru2 0.417
Ru2-H2 0.556 Rul...Co 0.342
Ru2-H4 0.384 Ru2...Co 0.349
Co-H2 0.468 Ru2...Ccp 0.407
Co-H3 0.463 Co...Ccp= 0.301
Co-H4 0.371
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The computed delocalization indices of
M...M interaction values for this cluster (between
0.342 and 0.417) are higher than the reported
hydride-bridged M...M nonbonding interaction
values obtained in numerous other published
QTAIM investigations. These studies showed that
BCPs and BPs are not founded in several bridged
M...M nonbonding interactions giving 6(A, B) values
of 0.169-0.246, 0.177, and 0.208 for [Rus(p-H).-
(u*MelmCH)(CO)q]*#,  [Oss(u-H)(u-Cl)(CO)10]*,
and [Fes(u-H)(u-COMe)(CO)10]*®, respectively.
Alternatively, the calculated values of delocalization
indices of the nonbonding M...M interaction of
cluster 1 are comparable in magnitude to values
found in many bridged M-M bond interactions (weak
metal-metal interaction) such as Os-Os of the cluster
[Oss(u-H)2(CO)10]® (0.362). As a result, it is
possible to say the value of 3(A—B) for each of the
M...M bonds in cluster 1 is large enough to confirm

Conclusion

The Quantum Theory of Atoms-in-Molecules
(QTAIM) approach is used to investigate the
bonding in the trinuclear heterometallic tetrahydrido
cluster [(Cp*Co) (CpRu)z (u*-H) (u-H)s] 1. The
metal-ligand and metal-metal bond critical points
(BCPs) properties the electron density (p» ),
Laplacian (V?py ), total energy density (Hy ), kinetic
energy density (Gp ), viral energy density (Vs ), and
ellipticity (ep), as well as the delocalization indices
3(A, B), correspond with the computed data in the
former organometallic systems studies. These results
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