DOI: https://doi.org/10.21123/bsj.2023.7951

Acute Toxicity of Chlorpyrifos on the Freshwater Bivalves (Unio Tigridis) and Effects on Bioindicators

Nihal Suhail Hanna*问

Yahya Ahmed Shekha

Environmental Science and Health department, College of Science, Salahaddin University, Erbil, Iraq. *Corresponding author: <u>nihal.hanna@su.edu.krd</u> E-mails address: <u>yahya.shekha@su.edu.krd</u>

Received 14/10/2022, Revised 18/12/2022, Accepted 20/12/2022, Published Online First 20/5/2023, Published 01/1/2024

This work is licensed under a <u>Creative Commons Attribution 4.0 International License</u>.

Abstract:

A freshwater bivalve plays a crucial function in aquatic habitats as the filtered water and burrowing mussels mix the sediment, thus increasing oxygen content and making the ecosystem healthier. The aim of the study is to see how chlorpyrifos affects biochemical markers in freshwater mussel Unio tigridis. About 180 individuals per taxon and water samples were collected from the Qandil water resource on the Greater Zab River, Erbil Province, Iraq. Once arrived at the lab, the individuals were kept in aquaria with river water and an air-conditioned room Temperature: 25±2 and Light: 12h/12h and acclimatized to laboratory conditions for seven days in aged tap water. The mussel's identification molecularly and the DNA sequence of the mussel includes U. tigridis supplied gene bank accession number ON872361, ON872362, ON872363, and ON872364 nucleotide sequencing. The 96-h toxicity of chlorpyrifos pesticide in the freshwater mussel U. tigridis was investigated using various nominal concentrations, including 50, 100, 200, 300 and 400 ppm. The water quality of the river and aquaria was tested for physicochemical parameters including water temperature, the potential of hydrogen ion pH, electrical conductivity EC, and total dissolved solids TDS, dissolved oxygen, total alkalinity, total hardness, calcium ion, magnesium ion. Water quality results of aquaria revealed that most tested variables were favorable for the breeding of mussels. The mortality of the mussels was observed daily and the 96 h LC₅₀ value for mussels was 157.99 ppm. Within the tissue of the gills, Acetylcholinesterase (AChE), Glutathione S-transferase (GST), Catalase (CAT), and Malondialdehyde (MDA) were determined. The chlorpyrifos exposures caused significant increases in GST, CAT, and MDA. The elevation of oxidative stress biomarkers was inversely related to the AChE inhibition in the examined species. In conclusion water pollution by chlorpyrifos lead to unsafe condition for aquatic taxa.

Keywords: biochemicals, LC₅₀, mussel, pesticide, toxic effect.

Introduction:

Bivalves are a significant animal that has made excellent bioindicators for evaluating water pollution and figuring out its level in bodies of water Stormwater runoff, untreated wastewater discharges, agriculture, and air deposition are just a few of the various ways that pollutants infiltrate water systems. Around the world, non-point source nutrient enrichment has taken over as the main cause of deteriorating water quality². Pesticides and heavy metals are frequent freshwater pollutants that have a direct impact on aquatic life. Pesticides have a variety of negative consequences on public health, the ecosystem, the quality of food, and biodiversity. Pesticide poisoning of the environment ranks among the most significant issues facing the country due to its high persistence, potential for extreme toxicity,

and slow breakdown. Pesticide employment is growing in farming, which causes environmental pollution. The majority of pesticides cause oxidative stress by disrupting the body's normal antioxidant system³. The sensitivity of freshwater species to organophosphates pesticides varies widely according to chemical compositions, duration of exposure, general, quality of water and taxa. In pesticide adversely affects non-target species, such as benthic invertebrates and fish, that live in the freshwater ecosystem due to their watery dispersal⁴. Pesticides are routinely identified in the aquatic ecosystem as artificial toxins; organophosphates and carbamates are new chemically synthesized insecticides that are strong neurotoxic chemicals. common ingredient Chlorpyrifos is a in organophosphates pesticides, and it's utilized on a vast range of products including wheat, fruit and vegetables ⁵. Pesticide overuse has a variety of negative consequences on the environment and the creatures that are exposed to it, which has garnered interest in scientific fields. The inadequacy of a study based on empirical data on the opinions of farmers is one of Erbil's biggest issues. Typically, farmers are not well informed about the procedures for choosing and applying pesticides ⁶.

long-lived Bivalves generally are between 15 to 40 years and have comparatively low mobility in their natural habitat. These creatures filter-feed on minute fine particles in the aquatic environment, but they have additionally been observed depositing food in the benthic habitats ⁷. Mollusca, specifically bivalves, has played a significant influence in determining the rates of pollutants around the planet. This is due to the tactical advantages of collecting, global dispersion, generally quiescent behaviors, appropriate size, and, in many cases, environmental and socioeconomic significance⁸. A biomarker is a fundamental change that may be detected and/or assessed by bivalves at the genetic, metabolic, cell, physiological, or behavioral level and that discloses an organism present or the previous response to at least a single chemical in the ecosystem ⁹.

Antioxidant enzymes are among the most popular markers utilized in pollution level monitoring. Among the first chemicals to also be utilized as a lipid peroxidation indicator was malondialdehyde (MDA) ¹⁰. One of the important steps in oxidative stress is the modification of membrane phospholipids by lipid peroxidation, which is one of the indicators of stress. Chemically produced toxicity is frequently characterized by stress 11 oxidative An enzyme called (AchE) acetylcholinesterase hydrolyzes acetylcholine and turns it into choline and acetic acid ¹². The enzyme regulates ionic currents in excitable membranes and is crucial for nerve conduction at the neuromuscular junction. The mechanism of the harmful effect of organophosphate insecticides is closely linked to the suppression of AchE. AChE has been and continues to be a widely utilized biomarker in freshwater ecotoxicity investigations, and it may also be employed as a neurotoxicity biomarker in species ¹⁰. Glutathione S-transferase (GST) are detoxification enzymes that catalyze the attachment of glutathione (GSH) to a range of electrophilic molecules for the removal of potentially harmful xenobiotics. GST is found in the cytosol and microsomal fractions of cells 13. Antioxidant enzymes like catalase (CAT) are part of the antioxidant defense system. By eliminating reactive oxygen species, this antioxidant enzyme helps to

maintain cellular homeostasis and antioxidant defense ¹⁴. The purpose of this research is to see how chlorpyrifos affects biochemical markers in freshwater mussel *Unio tigridis* gill tissue.

Materials and Methods: Water Quality

In September 2021, polyethylene bottles were used for the collection of river water at the study location. Water samples were examined for physical-chemical characteristics instantly such as water temperature °C, the potential of hydrogen ion pH, electrical conductivity EC (μ S/cm), and total dissolved solids TDS (mg/l) at the sampling site. Dissolved oxygen (mg/l), total alkalinity (mg CaCO₃/l), total hardness (mg CaCO₃/l), calcium ion (mg/l), magnesium ion (mg/l), were measured as soon as arrived at the laboratory according to the procedures of ^{15, 16}. The following water parameters analyzed in each glass aquarium were pH, EC, TDS, DO, total alkalinity, total hardness, Ca²⁺, and Mg²⁺ utilizing the techniques listed above. Throughout the test, every 48 h, all parameters were measured.

Bivalve's Sampling and Acclimatization

The freshwater mussels *U. tigridis* were collected in September 2021 from Qandil water resources on the Greater Zab River, Erbil Province, Iraq 36°37'39.55" N 44°10'51.80" E.

One species of freshwater mussel's handcollected *U. tigridis* 7.5 cm long, 4.5 cm wide, and 26.2 g weight was found in the Greater Zab River's sediment area Fig. 1, branch in the Qandil area. About 180 individuals per taxon were sampled from the study area, cleaned, and transported to the laboratory with river water. Once arrived at the lab, the individuals were kept in aquaria with river water and an air-conditioned room Temperature: 25 ± 2 and Light: 12h/12h and acclimatized to laboratory conditions for seven days in aged tap water. During animal rearing time, the water was changed every 24 h. Mussels were not fed during the experiment period. The sample of mussels was identified using the common keys ^{17, 18}. Baghdad Science Journal 2024, 21(1): 53-61

Figure 1. Unio tigridis morphological view.

Molecular Study

Four replications of a Bivalvia *U. tigridis* were employed for DNA sequencing after morphological identification. Genomic DNA from adductor muscle was isolated and purified using the GeneAll® ExgeneTM for Clinic Cell SV small kit (Songpa-gu, Seoul, Korea). Agar gel electrophoresis was used to gauge the amount of genomic DNA that had been extracted before PCR ¹⁹. The Nano Drop

1000 spectrophotometer is prepared to measure the optical density of a DNA sample as well as the concentration and purity of genomic DNA extraction to determine the amount and purity of DNA. The COI gene was successfully amplified using the primer pair LCO1490: 5'-GGTCAACAAATCATAAAGATATTGG-3' and HC02198: 5'-

TAAACTTCAGGGTGACCAAAAAATCA-3'. which were ordered from Macrogen (Korea) Table 1 20 . The PCR experiment was conducted in a 50 μ L reaction cocktail including 25 µL of 2× master mix (AMPLIQON, Denmark), 1.0 µL of each primer 10 pmol, and 3 µL of genome template. The amount reached 50 µL using PCR-grade water. To verify that the DNA templates were completely denaturized, DNA amplification for the COI gene was carried out in the thermal cycler for 5 minutes at 94 °C. The PCR was then carried out as follows: 94°C for denaturation for 50 sec, 50°C for annealing for 45 sec, and 72°C for an extension for 50 sec. These parts were repeated forty times, with a 7-minute extension at 72°C as the final cycle. 0.8% of agarose gel electrophoresis in $1 \times$ TAE buffer was used to examine the PCR products ²¹. and were sent to (Macrogen/South Korea) for sequencing. MEGA software was used to analyze and alter the sequences that were acquired.

 Table 1. LCO1490 (forward) and HCO2198 (reverse) primers.

Direction	Name	Sequence
Forward	LCO1490	5'-GGTCAACAAATCATAAAGATATTGG-3'
Reverse	HC02198	5'-TAAACTTCAGGGTGACCAAAAAATCA-3'

Experimental Design

The experiment consisted of 18 glass aquaria three controls and three replications of each other who received different exposure concentrations of chlorpyrifos 50, 100, 200, 300 and 400 mg/L. After applying chlorpyrifos immediately into the aquaria, they were left at 25 °C with a 12-h. darkness: 12 h. light cycle. The number of U. tigridis living and dead were recorded after 24, 48, 72, and 96 h by observing the mobility of individuals, the entry and escape of soft tissues from their shells in particular. The individual that couldn't enter their soft tissues and close their shells were considered as dead. Dead mussels were taken out of glass aquariums every day until the test was finished. Probit Analysis was used to measure the 96-h LC₅₀ of chlorpyrifos following ²². Additionally, the mortality percentage was calculated as a following Eq. 1:

 $Mortality \% = \frac{No.of \ death \ animals}{Total \ no.of \ animals \ at \ the \ begining \ of \ the \ test} \times 100$

Total no.of animals at the begining of the test

Biochemical Analysis

Mussels were dissected, and the gills of each *U. tigridis* were cleaned in an ice-cold saline fluid. A handheld glass homogenizer was used to homogenize the samples in a phosphate buffer. The homogenates were centrifuged at 4,000 rpm for 10 min at 4 °C. Before testing, the supernatants were taken and stored at -80°C 23 .

For Acetylcholinesterase AChE: BC 2020 and Glutathione S Transfer GST: BC0350, concentrations were measured by colorimetric method using commercial assay kits according to the manufacturer's protocol of Beijing Solarbio Science and Technology Co., Ltd. But, the tissue Catalase (CAT) activity was measured using the technique of ²⁴. Finally, the lipid peroxidation level in the tissue was quantified as malondial dehyde (MDA) according to the method of 25 .

Data Analysis

Data were analyzed by using the SPSS program version 25. Analysis of variance (ANOVA) is one way used to handle water quality and biochemical data. To look for significant variations between the treatments, Duncan's post hoc test was used. For statistical significance, a p-value of 0.05 is used as the limit.

Results and Discussion:

It appears vital to assess the harmful effects of pesticides on aquatic creatures like freshwater

mussels because there are numerous ways for environmental pollutants to infiltrate surface waters. The toxicity of the chlorpyrifos on U. tigridis biochemical markers is thus assessed in this work. The mussel identification molecularly by utilizing particular comprehensive or initial gene magnification was uniform with phenotypic assessment. Data for the molecular sample was provided by CDS nucleotide sequencing, which also provided isolation diagnostic and minute properties. The DNA sequence of the mussel includes U. tigridis supplied gene bank accession number ON872361, ON872362, ON872363, and ON872364 nucleotide sequencing Fig. 2.

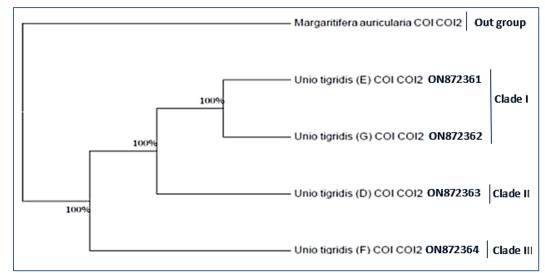


Figure 2. Analysis of COI's molecular phylogeny using the Maximum Likelihood approach.

The values of water quality parameters in Qandil water resources during the study are represented in Fig.3. Environmental elements like physical and chemical variables have an impact on the ecology of freshwater mussels ²⁶.

While Table 2, summarizes the value of aquaria water quality parameters. During a laboratory experiment, these parameters must fall

within the acceptable limits for aquatic species, especially for mussels' life. Water quality results of aquaria revealed that most tested variables were favorable for the breeding of mussels and were steady over the entire test. A control survival rate of 90% or more is typically required for short-term acute experiments with fish and invertebrates like bivalves ¹⁶.

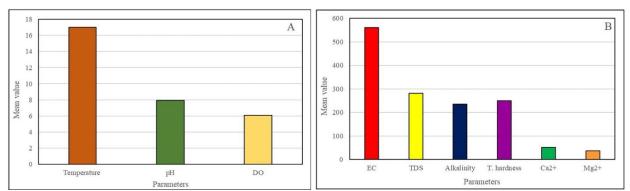


Figure 3. Mean values of physical and chemical parameters at Qandil water resource included A: Water temperature (°C), pH, DO (mg/l); B: EC (µS/cm), TDS (mg/l), Alkalinity (mg CaCO₃/l), Total Hardness (mg CaCO₃/l), Ca²⁺ (mg/l) and Mg²⁺ (mg/l).

Baghdad Science Journal 2024, 21(1): 53-61

Table 2. Aquaria water quality parameters.					
Parameters	Range	Mean ± SD			
рН	7.97-8.29	8.17±0.12			
EC µS.cm ⁻¹	503-561	546±21.73			
TDS mg. l ⁻¹	337-376	366±14.56			
DO mg. l ⁻¹	4.53-6.37	5.25 ± 0.72			
Alkalinity mg CaCO3.l ⁻¹	179-222	201±16.74			
Hardness mg CaCO ₃ .l ⁻¹	231-260	249±17.26			
Ca^{2+} mg. l^{-1}	65.17-79.07	73.40±5.24			
Mg^{2+} mg. l ⁻¹	18.92-24.91	22.08±3.87			

Table 2 A 1:4.

During the investigation, overproduction of mucus and a lengthening of shell closure was observed in all treated groups. These findings may help to explain why the investigated mussels had a defensive response, as other researchers found a similar pattern of behavior. Consequently, the findings of our investigation are consistent with ²⁷. As a typical response to stress, the mollusks secrete more mucus ²⁸. The most popular toxicity test is the 96 h LC50, which quantifies the toxicant level that,

after 96 h of exposure, results in a 50% lethal response 29. This test was used in the current experiment, and from the results 96 h LC50 for U. tigridis treated with five concentrations of 157.99 chlorpyrifos was ppm. Numerous investigations have found 96-h LC50 values of chlorpyrifos for various freshwater mussel and other organisms, among them ³⁰⁻³². The result of the mortality percentage illustrated at Table 3.

Concentration (ppm)	24h	48h	72h	96h
0	0	0	0	0
50	0	10	20	20
100	10	10	20	30
200	0	40	60	80
300	0	40	70	80
400	20	50	80	100

The effect of chlorpyrifos on oxidative stress-related toxicity was studied including measurement of AChE, GST, CAT activities (U/mg protein), and MDA level (nmol/g protein) in gill of tissue freshwater mussels U. tigridis. Acetvlcholinesterase (AChE) inhibition is the primary poisonous property of chlorpyrifos ³³. Table 4 shows how the organophosphorus pesticide chlorpyrifos affects AChE activity. The outcomes showed that the AChE activity in the gills of pesticide-exposed mussels had significantly decreased $p \leq 0.05$ with increasing concentration of pesticide in aquaria. The AChE activity declined gradually from 24 h to 96 h of exposure. Indeed, the least activities were observed after 96 h of exposure with a value of 227.93±3.51 U/mg protein compared to control with a value of 492.81±0.54 U/mg protein. The findings of the present study are consistent with an earlier study of the inhibitory effect of this type of pesticide on mussels' AChE 34.

Table 4. Evaluation of AChE (U/mg protein) (Mean ± SE) in Unio tigridis during different times in vivo exposed to different chlorpyrifos (CPF) concentrations.

Concentration (ppm)	24 h	48 h	72 h	96 h	
0	492.81±0.54 ^a	488.37±0.37°	490.51±0.83 ^b	451.11±0.61 ^d	
50	467.37±2.67 ^a	315.67±1.30 ^b	316.46±2.71 ^b	307.85±0.65°	
100	450.99±1.30ª	321.52±7.92 ^b	305.92±1.99°	284.58±2.07 ^d	
200	436.56±0.69ª	254.12 ± 5.44^{d}	316.79±2.82°	361.30±25.51 ^b	
300	374.17±3.40 ^a	280.58 ± 0.67^{b}	292.02±0.65b	262.70±7.89°	
400	342.37±3.20ª	259.47±1.31°	304.87 ± 0.45^{b}	227.93±3.51 ^d	

Note: Values in each row with different letters are significantly different, while values with the same letters are not significantly different.

Glutathione S-transferase (GST) activity assessed in control and treated gill *U. tigridis* throughout the experiment period is displayed in Table 5. Indeed, pesticides raised GST activity in gills to 7.37 ± 0.26 U/mg protein compared to the control value of 2.22 ± 0.11 U/mg protein. A significant rise $p \le 0.05$ was noticed in most concentrations when compared with the gills of control mussels ³⁵. suggest that GST is crucial for detoxification and for preserving cells from oxidative damage. The detoxification of organophosphorus substances is facilitated by GST, which is essential for pesticide resistance. Similar results were observed by ³⁶.

Table 5. Evaluation of GST (U/mg protein) (Mean ± SE) in Unio tigridis during different times in vivo
exposed to different chlorpyrifos (CPF) concentrations.

Concentration	24 h	48 h	72 h	96 h
(ppm)				
0	2.22±0.11 ^b	2.34±0.01 ^b	2.27±0.03 ^b	2.56±0.04
50	2.54±0.01°	3.38 ± 0.10^{b}	3.88 ± 0.06^{a}	4.04±0.03
100	2.81 ± 0.04^{d}	3.99±0.01°	4.33 ± 0.04^{b}	5.09±0.a
200	2.95±0.003°	4.69 ± 0.30^{b}	5.78 ± 0.02^{a}	6.01±0.59
300	3.95±0.01°	5.41 ± 0.03^{b}	5.69 ± 0.30^{b}	6.72±0.28
400	4.56±0.15°	5.89 ± 0.06^{b}	6.48±0.26 ^b	7.37±0.26

Note: Values in each row with different letters are significantly different, while values with the same letters are not significantly different.

Additionally, variations in catalase (CAT) activity were seen as a result of chlorpyrifos exposure and its effects on the gills of mussels, *U. tigridis* Table 6. There is an obvious difference between the treatment and control groups. With an increase in chlorpyrifos dosage exposure, there were significant increases in CAT activity. At 400 ppm,

the maximum CAT activity 45.90 U/mg protein was observed. The tendency in CAT activity is consistent with earlier studies that found that certain insecticides increased CAT activity. This increase in CAT activity in the gill's aids in the pesticide's detoxification ³⁷. Our results come to agree with those of ³⁸(3).

Table 6. Evaluation of CAT (U/mg protein) (Mean ± SE) in *Unio tigridis* during different times in vivo exposed to different chlorpyrifos (CPF) concentrations.

Concentration (ppm)	24 h	48 h	72 h	96 h
0	21.99±0.06 ^{ab}	21.56±0.39 ^b	21.06 ± 0.50^{b}	22.81±0.24 ^a
50	32.62 ± 0.50^{b}	34.22±0.17 ^a	32.51±0.26 ^b	34.73±0.32 ^a
100	35.36±1.10°	36.48 ± 0.41^{bc}	37.58 ± 0.19^{ab}	38.98±0.06ª
200	37.00±1.00 ^b	39.02±0.07 ^b	38.93 ± 0.07^{b}	42.37±1.23 ^a
300	39.97 ± 0.04^{b}	35.97±0.54°	37.48±0.26°	43.70±1.35 ^a
400	42.74 ± 0.34^{b}	42.45 ± 0.87^{b}	40.51±0.30°	45.90±0.47 ^a

Note: Values in each row with different letters are significantly different, while values with the same letters are not significantly different.

Among the several aldehydes and ketones that are produced when monounsaturated and polyunsaturated fatty acids are per-oxidized is MDA. The maximum value of MDA 1.64±0.01 nmol/g protein was observed in an aquarium with a 400 ppm chlorpyrifos level during the 48 h of the test Table 7. A gradual increase in MDA levels was observed with increasing the concentration of pesticide during the test period. The mechanism for the rise in MDA may reveal that insecticide may enter the cell's lipid membrane and disrupt the orientation of the phospholipids, altering the fluidity of the membrane. Lipid peroxidation rises as a result of oxidative damage that tissue or cell is unable to prevent, as indicated by a rise in MDA levels ³⁹. Our results come to agree with that of ³⁸.

Table 7. Evaluation of MDA (nmol/g protein) (Mean ± SE) in <i>Unio tigridis</i> during different times in
vivo exposed to different chlorpyrifos (CPF) concentrations.

www.exposed.to.unrefent emot pythos (CFF) concentrations.					
Concentration (ppm)	24 h	48 h	72 h	96 h	
0	0.50±00	0.50±00	0.50±00	0.50±00	
50	0.83±0.003°	0.92 ± 0.01^{a}	0.95 ± 0.01^{a}	0.87 ± 0.02^{b}	
100	0.99 ± 0.002^{b}	1.15 ± 0.02^{a}	1.12±0.06 ^a	1.00 ± 0.00^{b}	
200	1.26±0.02°	1.36±0.02 ^b	1.43±0.01ª	1.17 ± 0.02^{d}	
300	1.37 ± 0.02^{b}	1.47 ± 0.01^{a}	1.33 ± 0.01^{b}	1.27±0.02°	
400	1.63 ± 0.07^{a}	1.64±0.01ª	1.53±0.2 ^{ab}	1.40 ± 0.04^{b}	

Note: Values in each row with different letters are significantly different, while values with the same letters are not significantly different.

Conclusion:

The organophosphorus pesticide chlorpyrifos is toxic to U. tigridis at different concentrations. The biochemical impacts of sublethal concentrations of up to 400 ppm of chlorpyrifos pesticides were evaluated in U. tigridis under laboratory conditions. The chlorpyrifos exposures caused significant increases in GST, CAT, and MDA. The elevation of oxidative stress biomarkers was inversely related to the AChE inhibition in the examined species. Our findings suggest the value of using biochemical and oxidative biomarkers to identify the harmful outcomes and toxicological processes brought on by environmental contaminants. Water pollution by chlorpyrifos from human activities, especially agriculture leads to unsafe conditions for aquatic taxa.

Authors' declaration:

- Conflicts of Interest: None.
- We hereby confirm that all the Figures and Tables in the manuscript are ours. Besides, the Figures and images, which are not ours, have been given the permission for re-publication attached with the manuscript.
- Ethical Clearance: The project was approved by the local ethical committee in University of Salahaddin.

Authors' contributions statement:

This work was carried out in collaboration between two authors. Y. A. Sh. designed the work, and N. S. H. collected the samples and did the experiment. Data analysis and the article were written by N. S. H. under the supervision of Y. A. Sh.

References:

- Al-Jaff DK, Jaweir HJ. Aquatic Oligochaeta (Annalida: Clitellata) as Bio Indication for Sediment Quality Assessment in Tigris River Within Baghdad City/Iraq. Baghdad Sci J. 2021 Mar; 18(1): 665-9. https://doi.org/10.21123/bsj.2021.18.1(Suppl.).0665
- 2. Shekha YA, Haydar HA, Al-Barzingy YO. The effect of wastewater disposal on the water quality and

phytoplankton in Erbil wastewater channel. Baghdad Sci J. 2010 Jan; 7(2): 984-93. https://doi.org/10.21123/bsj.2010.7.2.984-993

- El-Gendy KS, Aly NM, Mahmoud FH, Kenawy A, El-Sebae AKH. The role of vitamin C as antioxidant in protection of oxidative stress induced by imidacloprid. Food Chem Toxicol. 2010 Jan; 48(1): 215-21. https://doi.org/10.1016/j.fct.2009.10.003
- 4. Solé M, Bonsignore M, Rivera-Ingraham G, Freitas R. Exploring alternative biomarkers of pesticide pollution in clams. Mar Pollut Bull. 2018 Nov; 136: 61-7. https://doi.org/10.1016/j.marpolbul.2018.08.062
- Abubakar Y, Tijjani H, Egbuna C, Adetunji CO, Kala S, Kryeziu TL, et al. Pesticides, history, and classification. Natural remedies for pest, disease and weed control: Elsevier; 2020 Jan 1: 29-42. https://doi.org/10.1016/B978-0-12-819304-4.00003-8
- Othman BA, Kakey ES. Environmental pesticide residues and health biomarkers among farmers from greenhouses of Erbil cucumber crops. Iraqi J Agric Sci. 2020 Oct 31;51(5):1357-66. https://doi.org/10.36103/ijas.v51i5.1145
- Pandian TJ. Reproduction and development in mollusca. CRC Press; 2018 Sep 7. 320p. <u>https://doi.org/10.1201/b22125</u>
- Böhm M, Dewhurst-Richman NI, Seddon M, Ledger SE, Albrecht C, Allen D, et al. The conservation status of the world's freshwater molluscs. Hydrobiologia. 2021 Jul; 848(12): 3231-54. https://doi.org/10.1007/s10750-020-04385-w
- Amiard JC, Caquet T, Lagadic L. Use of biomarkers for environmental quality assessment. 1st ed. CRC Press. London: 2000 Jun 1. 475. p. https://doi.org/10.1201/9781003211020
- 10. Gagne F. Biochemical ecotoxicology: principles and methods: Elsevier; 2014 Jul 7. 282p. https://books.google.iq/books?id=ldKcoAEACAAJ
- 11. Hao M, Liu R. Molecular mechanism of CAT and SOD activity change under MPA-CdTe quantum dots induced oxidative stress in the mouse primary hepatocytes. Spectrochim Acta A Mol Biomol Spectrosc. 2019 Sep 5; 220: 117104. https://doi.org/10.1016/j.saa.2019.05.009

- 12. Brahma N, Gupta A. Acute toxicity of lead in fresh water bivalves Lamellidens jenkinsianus obesa and Parreysia (Parreysia) corrugata with evaluation of sublethal effects on acetylcholinesterase and catalase activity, lipid peroxidation, and behavior. Ecotoxicol Environ Saf. 2020 Feb 1; 189: 109939. <u>https://doi.org/10.1016/j.ecoenv.2019.109939</u>
- 13. Potęga A, Kosno M, Mazerska Z. Novel insights into conjugation of antitumor-active unsymmetrical bisacridine C-2028 with glutathione: Characteristics of non-enzymatic and glutathione S-transferase-mediated reactions. J Pharm Anal. 2021 Dec 1;11(6): 791-8. <u>https://doi.org/10.1016/j.jpha.2021.03.014</u>
- 14. Rajput VD, Harish, Singh RK, Verma KK, Sharma L, Quiroz-Figueroa FR, et al. Recent Developments in Enzymatic Antioxidant Defence Mechanism in Plants with Special Reference to Abiotic Stress. Biology. 2021 Mar 26; 10(4):267. https://doi.org/10.3390/biology10040267
- 15. Bartram J, Balance R, editors. Water quality monitoring: a practical guide to the design and implementation of freshwater quality studies and monitoring programmers. London & New York: CRC Press.1996. 383 p. https://books.google.iq/books?id=d839DwAAQBAJ &lpg
- 16. Baird RB, Eaton AD, Clesceri LS, editors. Standard methods for the examination of water and wastewater.23th Edition, 800 I Street, NW, Washington DC, USA: American Public Health Association; 2017. <u>https://www.pdfdrive.com/aphastandard-methodsfor-the-examination-of-water-andwastewaterd184521100.html.</u>
- 17. Ahmed MM. Systematic study on Mollusca from Arabian Gulf and Shatt al-Arab, Iraq. Basrah, Iraq: Center for Arab Gulf Studies, University of Basrah.1975. 78 p.
- Plaziat J-C, Younis WR. The modern environments of Molluscs in southern Mesopotamia, Iraq: A guide to paleogeographical reconstructions of Quaternary fluvial, palustrine and marine deposits. Carnets de géologie. 2005 Jan 13(A01): 1-18. https://doi.org/10.4267/2042/1453
- 19. Bakr KI, Abdul-Rahman SM, Hamasalih RM. Molecular detection of β-lactamase genes in Klebsiella pneumoniae and Escherichia coli isolated from different clinical sources. Cell Mol Biol. 2021 Dec 1; 67(4): 170-80. https://doi.org/10.14715/orph/2021.67.4.10

https://doi.org/10.14715/cmb/2021.67.4.19

- 20. Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol. 1994 Oct; 3(5): 294–9.
- 21. Hamasalih R, Abdulrahman Z. Antibiofilm potency of ginger (Zingiber officinale) and quercetin against staphylococcus aureus isolated from urinary tract

catheterized patients. Appl Ecol Environ Res. 2020 Jan 1; 18(1): 219-36. http://dx.doi.org/10.15666/aeer/1801_219236.

- 22. Finney DJ. Probit analysis: a statistical treatment of the sigmoid response curve. Ann Entomol Soc Am. 1952 Dec 1; 45(4): 686. https://doi.org/10.1093/aesa/45.4.686
- 23. Alnahdi HS, Ramadan KS, Farid HE, Ayaz NO. Effects of Salvia Miltiorrhiza extract on the regulation of antioxidant enzyme activities in liver and kidney of rats exposed to TCA. Indian J Anim Res. 2018; 52(10): 1422-7. <u>https://doi.org/10.18805/ijar.B-793</u>
- 24. Beers RF, Sizer IW. A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol chem. 1952 Mar; 195(1): 133-40. https://doi.org/10.1016/s0021-9258(19)50881-x
- 25. Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 1979 Jun 1; 95(2): 351-8. https://doi.org/10.1016/0003-2697(79)90738-3
- 26. Bespalaya YV, Aksenova OV, Sokolova SE, Shevchenko AR, Tomilova AA, Zubrii NA. Biodiversity and distributions of freshwater mollusks in relation to chemical and physical factors in the thermokarst lakes of the Gydan Peninsula, Russia. Hydrobiologia. 2021 Jul; 848(12): 3031-44. https://doi.org/10.1007/s10750-020-04227-9
- 27. Kumar S, Pandey RK, Das S, Das VK. Acute toxicity and behavioral responses of a freshwater mussel, Lamellidens marginalis, exposed to Cypermethrin. J Appl Biosci. 2012 Jun; 38(1): 98-100.
- 28. Dallarés S, Carrasco N, Álvarez-Muñoz D, Rambla-Alegre M, Solé M. Multibiomarker biomonitoring approach using three bivalve species in the Ebro Delta (Catalonia, Spain). Environ Sci Pollut Res. 2018 Dec; 25(36): 36745-58. <u>https://doi.org/10.1007/s11356-018-3614-6</u>
- 29. Cheng P, Zhou C, Chu R, Chang T, Xu J, Ruan R, et al. Effect of microalgae diet and culture system on the rearing of bivalve mollusks: Nutritional properties and potential cost improvements. Algal Res. 2020 Oct 1; 51: 102076.

https://doi.org/10.1016/j.algal.2020.102076 30. Huang X, Cui H, Duan W. Ecotoxicity of chlorpyrifos to aquatic organisms: A review. Ecotoxicol Environ Saf. 2020 Sep 1; 200:

- 31. Jiménez K, Solano K, Scholz C, Redondo-López S, Mena F. Early Toxic Effects in a Central American Native Fish (Parachromis dovii) Exposed to Chlorpyrifos and Difenoconazole. Environ Toxicol Chem. 2021 Jul;40(7):1938-47. <u>https://doi.org/10.1002/etc.5048</u>
- 32. Soum T, Ritchie RJ, Navakanitworakul R, Bunthawin S, Dummee V. Acute Toxicity of Chlorpyrifos (CPF) to Juvenile Nile Tilapia (Oreochromis niloticus):

Genotoxicity and Histological Studies. J Fish Environ. 2022 Apr 1; 46(1): 130-40.

33. Bonifacio AF, Zambrano MJ, Hued AC. Integrated ecotoxicological assessment of the complex interactions between chlorpyrifos and glyphosate on a non-target species Cnesterodon decemmaculatus (Jenyns, 1842). Chemosphere. 2020 Dec 1; 261: 127782.

https://doi.org/10.1016/j.chemosphere.2020.127782

- 34. Ewere EE, Reichelt-Brushett A, Benkendorff K. Imidacloprid and formulated product impacts the fatty acids and enzymatic activities in tissues of Sydney rock oysters, Saccostrea glomerata. Mar Environ Res. 2019 Oct 1; 151: 104765. <u>https://doi.org/10.1016/j.marenvres.2019.104765</u>
- 35. Lu X-P, Xu L, Meng L-W, Wang L-L, Niu J, Wang J-J. Divergent molecular evolution in glutathione Stransferase conferring malathion resistance in the oriental fruit fly, Bactrocera dorsalis (Hendel). Chemosphere. 2020 Mar 1; 242: 125203. https://doi.org/10.1016/j.chemosphere.2019.125203
- 36. Perić L, Burić P. The effect of copper and chlorpyrifos co-exposure on biomarkers in the marine mussel

Mytilus galloprovincialis. Chemosphere. 2019 Jun 1; 225: 126-34.

https://doi.org/10.1016/j.chemosphere.2019.03.003

- 37. Butrimavičienė L, Stankevičiūtė M, Kalcienė V, Jokšas K, Baršienė J. Genotoxic, cytotoxic, and neurotoxic responses in Anodonta cygnea after complex metal mixture treatment. Environ Sci Pollut Res Int. 2019 Mar; 26(8): 7627-39. DOI: <u>https://doi.org/10.1007/s11356-019-04206-1</u>
- 38. Khudhur SM, Shekha YA. Histopathological and Biochemical Biomarker Response of Mussel, Unio Pictorum, to Carbamate Pesticide Carbaryl: A Laboratory Study. Indian J Ani Res. 2019; 1157: 1-5. DOI: <u>https://doi.org/10.18805/ijar. B-1157</u>
- 39. Al-Fanharawi AA, Rabee AM, Al-Mamoori AM. Multi-biomarker responses after exposure to organophosphates chlorpyrifos in the freshwater mussels Unio tigridis and snails Viviparous benglensis. Hum Ecol Risk Assess Int J. 2019 Jul 4;25(5):1137-56.

https://doi.org/10.1080/10807039.2018.1460800

سمية الكلوربيريفوس على ذوات الصدفتين في المياه العذبة (Unio tigridis) وتأثيراتها على المؤشرات الحيوية

يحيى أحمد شيخه

نهال سهيل حنا

قسم العلوم البيئية والصحة، كلية العلوم، جامعة صلاح الدين، أربيل، العراق.

الخلاصة:

للذوات الصدفيتين وظيفة هامة في المياه العذبة إذ تقوم بعملية تصفية المياه ولكون مكوثهم في البيئة القعرية يؤثرون على زيادة نسبة الأوكسجين مما يؤدي الى بيئة قاعيه اكثر حيوية. الهدف من الدراسة هو معرفة كيفية تأثير الكلوربيريفوس على الخصائص الكيميائية الحيوية في ذات الصدفيتين في المياه العذبة *Unio tigridis.* تم جمع حوالي 180 كائن إضافة إلى عينة من موارود مياه قنديل على نهر الزاب الكبير في ذات الصدفيتين في المياه العذبة *Unio tigridis.* تم جمع حوالي 180 كائن إضافة إلى عينة من موارود مياه قنديل على نهر الزاب الكبير في ذات الصدفيتين في المياه العذبة *Unio tigridis.* تم جمع حوالي 180 كائن إضافة إلى عينة من موارود مياه قنديل على نهر الزاب الكبير في دات الصدفيتين في المياه العذبة *Unio tigridis.* تم جمع حوالي 180 كائن إضافة إلى عينة من موارود مياه قنديل على نهر الزاب الكبير في محافظة اربيل – العراق. بمجرد وصولهم إلى المختبر ، تم الاحتفاظ بالأفراد في أحواض مع مياه النهر ودرجة حرارة الغرفة المكيفة: 25 ± 2 والضوء: 12 ساعة / 12 ساعة والتأقلم مع ظروف المختبر المدة سبعة أيام في ماء منزوع الكلور. يتضمن تحديد بلح البحر جزيئيًا وتسلسل الحمض النووي لبلح البحر رقم انصام بنك الجينات المقدم من *tigridis* ON872361 و 0N872362 و 0N872363 و تماسل المور مون المور يليئوس المون تم توتير ها على والكيميائية لمياه النهر والاحواض بما في ذلك درجة حرارة والي مالاس الهيدروجيني ، والتوصيل الكهربائي ، وإجمالي المواد الصلبة الذربية الذابية ، والأكسجين ، والموصيل الكهربائي ، وإجمالي المواد الصلبة الذابية ، والأكسجين المذاب ، والقاعدية، و أليون الكالسيوم ، الأس الهيدروجيني ، والقوصيل الكهربائي ، وإجمالي المواد الصلبة الذابية ، والأكسجين المذاب ، والقاعدية وكان ما مي وإلى المواد الصلبة الذابية ، والأكسجين المذاب ، والقاعدية، واليوان مي ذات وأيون الكالسيوم ، وأيون المعنيسوم ، وأليوصيل الكهربائي ، وإجمالي المواد ورغين ولكنه من الذاب ، والقاعدية، والوصيم ، وأيون المكيربان ، والقاعدية، ووالما معني ووضي على ولائكسجين المذاب ، والقاعدية، والعام ما وونو الكالسيوم ، وأيون المعنيسوم ، والفون المعنيسوم ، واليون المعنيسوم ، والموصي الكهرببن ، ورمم بأيون الميني المانه المدوس تم ووضي برموس مو وكان ما

الكلمات المفتاحية: الكيماويات الحيوية ، التركيز المميت النصفى ، محار ، مبيدات الآفات ، التأثير السام.