DOI: <u>https://doi.org/10.21123/bsj.2023.7952</u>

Water Treatment Using Zinc Nanoparticles and Apricot Plant Extracts from Organic and Inorganic Pollution

Suzan Muslim Abdullah^{1*}

Abbas Ali Salih AL-Hamdani¹D

Labeeb Ahmed Al-Zubaidi²

¹ Department of Chemistry, College of Science for Women, University of Baghdad, Baghdad, Iraq.

² Environment and Water Directorate, Ministry of Science and Technology.

*Corresponding author: nsuzaneiaz@gmail.com

E-mail addresses: Abbas alhamadani@yahoo.co.uk, Labeebbio1996@yahoo.com

Received 14/10/2022, Revised 29/1/2023, Accepted 30/1/2023, Published Online First 20/5/2023, Published 01/1/2024

This work is licensed under a <u>Creative Commons Attribution 4.0 International License</u>.

Abstract:

The apricot plant was washed, dried, and powdered after harvesting to produce a fine powder that was used in water treatment. created an alcoholic extract from the apricot plant using ethanol, which was then analysed using GC-MS, Fourier transform infrared spectroscopy, and ultraviolet-visible spectroscopy to identify the active components. Zinc nanoparticles were created using an alcoholic extract. FTIR, UV-Vis, SEM, EDX, and TEM are used to characterize zinc nanoparticles. Using a continuous processing procedure, zinc nanoparticles with apricot extract and powder were employed to clean polluted water. Firstly, 2 g of zinc nanoparticles were used with 20 ml of polluted water, and the results were Tetra 44% and Levo 32%; after that, we used 4 g (Tetra 100% and Levo 100%). Secondly, an apricot plant was used to treat water (Tetro 100%, Levo 100%). When apricot powder and zinc nanoparticles were compared in treatment water, apricot-zinc nanoparticles were preferred. Thirdly, we treated the water from some heavy metals (2 g after 25 min; Fe 99.50%, 88.75%, Cr 99.10%, Pb 100%, Sb 95%, Cd 95%, Cu 100%), and added 4 g of nanoFe 98.75%, 96.40%, Cr 83.40%, Pb 100%, Sb 77.50%, Cd 95.80%, and Cu 100%.

Keywords: Antibiotic pollutant, Apricot plant, Inorganic pollutant, Organic pollutant, Pollutant water treatment, Zinc nanoparticle

Introduction:

Pollution is the introduction of substances that cause a negative change to the environment. Pollution may be solid, liquid, or gaseous. Environmental pollution is no longer a local problem, but has become a global problem due to the accumulation of its impact and the delay in implementing solutions¹.Pollutant concentration is affected by the social, cultural, and physical environment². Organic and inorganic pollution are the two types of chemical pollution; organic pollution includes carbon and hydrogen.³ Because of the high percentage of toxic substances and low element concentrations, inorganic pollution, which includes all elements except C-H, is more dangerous⁴. We discuss this in our research on water pollution. Any chemical or physical change caused by human consumption, whether direct or indirect, is not suitable for use by humanitarians, animals, or vegetarians⁵. We employ treatments

such as plant extract assisted biogenesis. Merging plants with chemical materials is one of the most effective and non-toxic methods for preparing nanomaterials because it is a good way and includes many uses for plants⁶. Another definition for "green nano" is a method used to integrate plants with chemicals. It is one of the most effective, fast, ineffective. and environmentally friendly modalities. It is common for usefulness methods to be a very important way that includes multiple plants using the plant in the nut and nanotechnology prevention prepared to benefit the environment. 7-9. In this work, we will investigate the treatment of heavy metals, antibiotics, and pesticides polluting water using zinc nanoparticles in combination with alcoholic apricot extract processed using customised columns. In order to cleanse water tainted with phenols and aromatic chemicals, silver nanoparticles have already won the use of extracts utilisingspecialised capsules¹⁰. In other studies, ZnNPs were combined with alcoholic cumin leaf extract to clean water of inorganic pollutants. ¹¹.

Materials and Method:

1. Materials and instrumentation

A Shimadzu-3800 Spectrometer equipped with a FTIR in the range of 4000-400 cm1 was used as a detector, and the following chemical substances were used: ethanol (20%), methanol (65%), zinc sulfate, ascorbic acid, sodium hydroxide, and Shimadzu polvvinvl alcohol. 160 Α spectrophotometer was used to find the electronic spectrum data. Compounds were analysed for mass indication using a Shimadzu Mass 100P. This study used scanning electron microscopy (SEM) to manage the analysis and describe the size and surface of the nanoparticles. The best technique for determining the NPs' morphology is TEM. A sample is passed through an intense electron beam during this technique for microscopy, and the outcome of the electrons' interactions with the material is the creation of a picture. A little drop of nanoparticles was applied to a copper grid that had a carbon coating, and it was left to dry under a mercury lamp for five minutes. Finally, readings were taken under stable voltage conditions at magnifications of 5000x, 10000x, 20000x, and 50000x. To validate the presence of the zinc nanoparticles, EDX measurements were performed using a high-resolution chemical composition in a sample.

2. Plant harvest and preparation for grinding and extraction

The apricot plants used in this study came from the Kadhimiya District in Iraq's Baghdad Governorate. It was thoroughly cleaned with deionized water many times to get rid of any impurities, dried at room temperature, and then ground into a very fine powder using a special laboratory grinder for 15 seconds. Alcoholic apricot extract was produced by mixing a solution of 65% methanol, 20% ethanol, and 15% free ionised water, allowing it to sit for a while, and then heating it to 50C. It was condensed

simultaneously for eight hours using a laboratory condenser. At 50 °C, the extraction procedure is carried out, and then evaporation and condensation are used to boost enrichment the aim of this paper treatment pollutant water included some inorganic metals (Fe, Pb, Sb, Cd, Cu, Cr) and antibiotic (Tetro, Levo) by using firstly zinc nanoparticle with apricot plant extract, secondly apricot plant powder.

3. Preparation of zinc nanoparticles

The following steps were used to manufacture zinc nanoparticles with apricot extract, using a modified version of Elumalai's method: Placing 10 ml (20%) of apricot extract and 1000 ml of pure water in a round flask, the flask was left to be heated and stirred at different temperatures. After one minute, 17.5 g of zinc sulphate was added gradually while being continuously stirred ¹². The mixture's acidity was then equalised by adding pure sodium hydroxide. The mixture was then put into a glass container and heated to 200°C for two hours. The filtered solution separates from the precipitate to complete the separation, and the precipitate is then collected and dried from the remaining water in A furnace set to 70°C will be used to do the drying; after it has been crashed, 17.5g of zinc sulphate will be gradually added to finish the mixing of the components. The green powder that was produced is kept in a container for characterization. ¹³. The aim of study treatment pollutant water included (antibiotic and heavy metals) by using two ways zinc nanoparticles with alcoholic apricot extract and apricot powder by continuous technique.

4. Determining the most important compounds of apricot plant extract

Gas chromatography-mass spectroscopy (GC-Mass) technology, which is pure, quicker, and cheaper than conventional extraction methods, was used to identify the activated compounds in the alcoholic apricot plant extract. GC-MS is a technique for analyzing a qualitative and quantitative group of compounds ^{14,15}. Substances found in the apricot extract by GC-Mass are shown in Fig. 1 and Table 1.

GasChron		•	Correct Name	<u>Claurifiantian</u>	
Peak No.	R.T	Area %	Comp. Name	Classification	~ 1
1	25.145	6.60	Benzoic acid	Organic acid	Soapycompounds
2 3	25.817	2.14	Benzoic acid	Organic acid	
3	33.075	0.92	Cyclopentane-1-thione,	Thiophen compounds	
			2,3,4,4-2-tetramethyl		
4	34.898	1.22	Tetradecane	Aliphatic compounds	
4 5 6	39.871	1.53	Durohydroquinone	Glycol	Soapy compounds
	43.116	4.28	Hexadecane	Aliphatic compounds	
7	50.336	1.89	Furazan 2-(dimethyl amino	Triazol	
			methylene amino)-4-(1,2,4-		
			trizol-2-yl)		
8	50.518	2.62	Hexadecanal, 2-methyl	Aliphatic compounds	
9	51.770	13.37	Oxiraneundecanoic acid, 3-	Alcohol	
			pentyl methyl ester, trans		
10	53.999	3.30	n-hexadecanoic acid	Alcohol	
11	54.759	1.13	Epoxy-1-vinylcyclododecene-	Fatty acid methyl esters	Soapy compounds
			1,2	5 5	1.7 1
12	56.062	16.52	Methyl (furan-2-yl)-6-hydroxy	Fatty acid	Soapy compounds
			x-2-ynoate	5	1.7 1
13	57.171	5.23	4-(4-chlorophenyl)-2-diethyl	Epoxy compounds	Soapy compounds
			amino-2-cyclo buten-1,2-dione	I J I I A	
14	57.451	3.41	Oleic Acid	Methyl esters	
15	57.654	2.50	1-cyclohexylnonene	Amino acid methyl	Soapy compounds
10	0,1001	2.00	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	esters	Soupj compounds
16	58.731	1.67	(Octadecanoic acid (Z-1)	Fatty acid	
17	59.709	5.16	Iron, tricarbonyl (2,3,4,5-	Aliphatic compounds	
17	57.107	5.10	tetrahydroxy-2,4-	inplate compounds	
			cyclopentadien-1-one)		
18	60.332	1.48	1,3-cyclopentadiene, 5-(1-	Fatty acid	Soapy compounds
10	00.552	1.10	methylpropylidene)	T atty dold	boupy compounds
19	60.526	1.26	Octadic-9-enoic acid		
20	61.183	1.20	1,3-cyclopentadiene,5-	Cyclic compounds	Soapy compounds
40	01.105	1.42	(1-methylpropyldene)-	Cyclic compounds	Soapy compounds
21	61.606	17.77	Octadic-9-enoic acid	Fatty acid methyl esters	
21 22	62.326	6.41	Thiosulfunic acid $(H_2S_2O_2)$, S-	Fairy actu meuryr esters	
<i>44</i>	02.320	0.41			
22	67 770	1.02	(minoethyl) ester	Fatty agid mathed action	Coopy composed a
23	62.778	1.83	9-Octadecenoic acid, (E)-	Fatty acid methyl esters	Soapy compounds

Table 1. Organic and inorganic compounds detected in the apricot alcoholic extract by GasChromatography

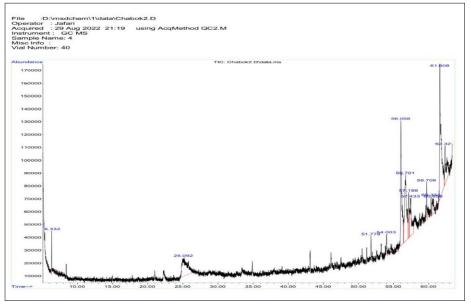


Figure 1. GC-Mass spectroscopy for apricot extract

Results and Discussion:

This section describes the results of treating water that has been contaminated with antibiotic pollutants and inorganic elements including Cd, Sb, Fe, Cr, and Cu either using apricot plants or with zinc nanoparticles and evaluates the effectiveness of the treatment. The water treatment technique that was used was the result of processing research. Contrasting the standards for standard water adopted by the WHO and treated water.

1. Ultraviolet Visible (UV-Vis)

The main part of identifying active compounds in apricot plants is determining the absorptions caused

by the visible spectrum to the colors of the apricot plant, which has been screened as an alcoholic extract and ZnNP with apricot extract. The absorbing peaks in the first one are at 307 and 676 nm, and in ZnNP, at 292 nm. These peaks refer to n $\rightarrow \pi^*$ and $\pi \rightarrow \pi^*$ in the UV, and 676 nm refers to an apricot plant with organic and inorganic compounds. When comparing between two samples, the alcoholic extract peak shifted towards a shorter, longer wavelength 10 nm red shift, and another peak in the visible area refers to ZnNP^{17,18}, as shown in Fig 2.

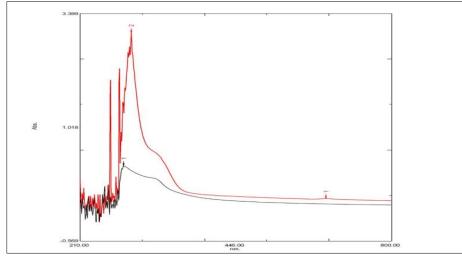


Figure 2. Ultraviolet -Visible for both of apricot extract and zinc nanoparticles with Alcoholic extract

2.Fourier Transform-Infrared (FTIR)

The infrared Fourier transform is a key method. When comparing alcoholic extract with an apricot plant and alcoholic extract with a nanocomposite, the method for defining organic components in alcoholic extract refers to the creation of nanoparticles. It is employed to identify active chemicals and test whether they can be joined with another element to create new complexes. A peak may be seen at 3371 cm⁻¹, and at 3417 cm⁻¹ ¹zinc nanoparticles can be seen. The (O-H) group has altered two compounds at around 46cm⁻¹ in these peaks, which are then followed by further peaks on 2929 cm⁻¹ in the extract and 2926cm⁻¹refer to ZnNPs. These peaks correspond to the (CH) aliphatic group (1612 cm⁻¹), the carbonyl group (1552 cm⁻¹), the (CH) group (1037 cm⁻¹ in the apricot alcohol extract), and the (CH) group (1116 cm⁻¹ in the nanoparticle)^{19,20}asshown in Figs 3, 4.

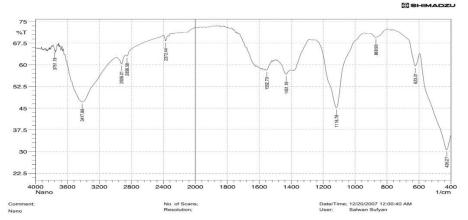


Figure 3. FT-IR Spectrum of zinc nanoparticles with alcoholic apricot

3. Scanning Electron Microscope (SEM)

The scanning electron microscope for zinc nanoparticles reveals a spherical crystal shape in average particles (122.8 nm), indicating that its granule size includes a range of nano, and this result is significant ²¹ Other nanoparticles can be found at 55.96, 63.93, 60.66, 85.32, 97.20, 100.1, and 122.8 nm, which correspond to the hydrocarbon group range of nano except for hydrogen due to its small size²² as shown in Fig. 5.

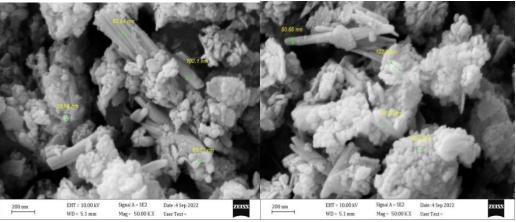


Figure 4. Show SEM for zinc nanoparticles with alcoholic extract of apricot

4. X-Ray diffraction spectroscopy

It is a technique used to identify the arrangement of the crystal atoms, where the X-ray hits the crystal to show certain directions according to the angles and strengths of reflected rays, and where 3D images are formed for the electron density inside the crystal. To measure the diffraction of X-rays, the nano-crystals are inserted on the angle meter and transformed while targeting the X-rays on it, which results in random diffraction called measurements. All directions are taken as

images in 2D dimensions in order to be transformed into 3D images representing the electronic density inside the crystal. The X-ray diffraction study used for identifying the crystal molecular weight is the result of X-ray testing, where the three readings between 30 and 40 were due to the presence of zinc elements in more readings due to the size of nanomolecules with zinc elements, while the remaining values show the presence of hydrocarbon compounds except for hydrogen, which does not appear due to its small size²³, as shown in Fig 6.

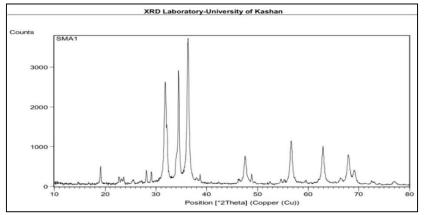


Figure 5. XRD-diffraction of Zinc nanoparticles with alcoholic apricot extract

5. Energy dispersive X-Ray spectroscopy

EDX is a type of X-ray emission used to identify the chemical properties of the samples, which offers information about the location of atomic distribution on the surface and the chemical compounds of the samples; on another note, each element has an atomic structure and determined values in x-ray spectroscopy. When examining a nanoparticle, three peaks (1, 8.6, and 9.8) keV was determined, and they had a crystalline spherical structure²⁴. Show Fig7.

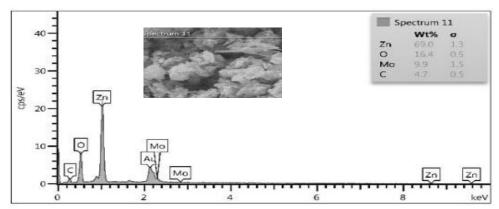


Figure 6. Energy dispersive X. Ray spectroscopy (EDX) of Zinc nanoparticles with alcoholic apricot extract

6. Transmission electron microscopy (TEM)

TEM is the greatest method for figuring out how nanoparticles are shaped. In this sort of microscopy, a sample is run through a powerful electron beam, and the outcome of the electrons' interactions with the material is the creation of an image. After that, the image is magnified and focused onto an imaging medium, such as a charge-coupled device, a fluorescent screen, or a sheet of photographic film²⁵, smaller magnification. Because of differences in the material's composition or thickness, contrast can be seen in TEM pictures of that substance. When using a sample of zinc nanoparticles with apricot extract, high-resolution transmission electron microscopy (HRTEM) revealed that the sample was smooth and spherical on the outside²⁶ Shown in Fig. 8.

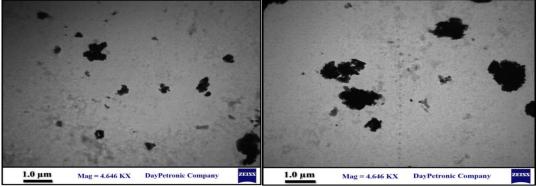
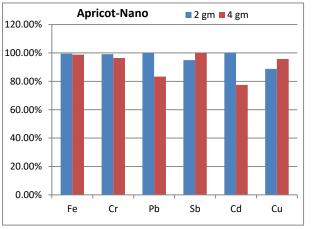


Figure 7. Transmission Electron Microscope of zinc nanoparticles (TEM)

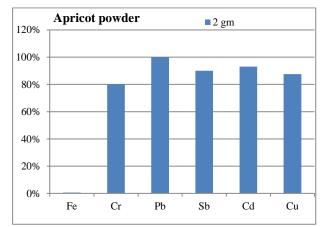
4. Treatment of organic compounds


The polluted water was identified using a specific ratio of Tetra 100%- Levo 100%, and 2g for each sample. After that, a continuous technique of treatment was used. Ten milliliters of polluted water were added, two grams of apricot powder, and the same method with zinc nanoparticles. After that, the shaking and mixing process was completed by placing the ingredients onto a magnetic stirrer. After the end flow rate, a portion of the sample was pulled out, and the treatment percentage was

calculated. The following apricot powder 100%. Comparatively, percentages are the components were found. Because found some free active plant groups as in GC -Mass in plants comparison with zinc as there are some copulative which involving nano zinc or a layer of nanoparticles of zinc there for it reduce their activity as in the following result ^{27, 28.} The results are shown in tables 2, 3, 4, 5, 6and scheme 1,2,3,4 respectively.

Table 2. Treatment percentages by continuous process by use zinc nanoparticles with extract apricot plant with heavy metals

25min	Metal	Metal (ppm)					34 Metal (ppm)		
	2 gm	Before	After	Percentage	min	4 gm	Before	After	Percentage
1.	Fe	10	0.05	99.50%	1.	Fe	10	0.125	98.75%
2.	Cr	10	0.09	99.10%	2.	Cr	10	0.36	96.40%
3.	Pb	10	B.D.L	100%	3.	Pb	10	1.66	83.40%
4.	Sb	10	0.5	95%	4.	Sb	10	B.D.L	100%
5.	Cd	10	B.D.L	100%	5.	Cd	10	2.25	77.50%
6.	Cu	10	1.125	88.75%	6.	Cu	10	0.42	95.80%


Baghdad Science Journal 2024, 21(1): 124-132

Scheme 1. Treatment of heavy metals by using zinc nanoparticles with apricot extract

Table 3. Treatment percentages by continuous process by using zinc nanoparticle with apricot plant extracts

	Metal (ppm)					
	2 gm	Before	After	Percentage		
1.	Fe	10	9.94	1%		
2.	Cr	10	2	80%		
	Pb	10	B.D.L	100%		
•	Sb	10	1	90%		
	Cd	10	0.69	93%		
5.	Cu	10	1.24	88%		

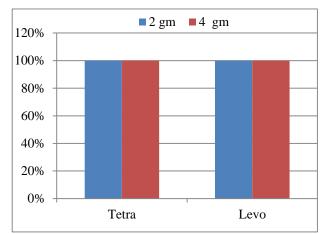
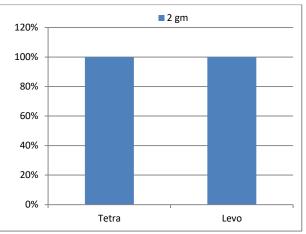

Scheme 2. Treatment heavy metals by using apricot powder

Table 4. Treatment percentages by continuousprocess by use nano particle

2 gm	Antibio	otic (ppm)		
		Before	After	Percentage
1.	Tetra	5	B.D.L	100%
2.	Levo	5	B.D.L	100%

Table 5. Treatment percentages by continuousprocess by using nanoparticle


4	Antibiotic (ppm)					
gm		Before	After	Percentage		
1.	Tetra	5	B.D.L	100%		
2.	Levo	5	B.D.L	100%		

Scheme 3. Treatment of Tetra and Levo by using nanoparticle

Table 6. Treatment percentages for antibioticsby continuous process using apricot plant

2 gm	Antibio	tics (ppm)		
		Before	After	Percentage
1.	Tetra	5	B.D.L	100%
2.	Levo	5	B.D.L	100%

Scheme 4. Treatment Tetra and Levo by using apricot powder

Conclusion:

By utilising zinc nanoparticles, which were in turn manufactured using ZnSO₄ as a starting material and whose creation was proven by the following methodology; we were able to successfully treat water in this study using ecologically acceptable techniques: FT-IR SEM, TEM, EDX, and UV-Visible. Then, using a continuous process of flowing polluted water with apricot powder and zinc nanoparticles extracted from an apricot plant, it was discovered that apricot powder with zinc nanoparticles was preferred to apricot powder.

Authors' Declaration:

- Conflicts of Interest: None.
- We hereby confirm that all the Figures and Tables in the manuscript are mine ours. Besides, the Figures and images, which are not mine ours, have been given the permission for republication attached with the manuscript.
- Ethical Clearance: The project was approved by the local ethical committee in University of Baghdad.

Authors' Contributions Statement:

A. presented the idea, analysis, discussion of the results and writing of the manuscript. S. M. A. and A.A.S.A. Contributed to the design and implementation of the research, laboratory work, L.A.A., verified the analytical methods and discussed the results and contributed to the final manuscript.

References:

- Ajmi RN, Sultan M, Hanno SH. Bioabsorbent of Chromium, Cadmium, and Lead from Industrial Waste Water by the Waste Plant. J Pharm Sci Res. 2018; 10(3): 672-674. http://dx.doi.org/10.1016/j.colsurfb.2017.02.020
- Al-Hadithy AH, Motlag KH, Sharaf ME, Hashim LQ. Using of Rustumiya sewage water for irrigation: its effect on some soil properties and corn growth. Baghdad Sci J. 2011; 8(1): 179-187.<u>http://dx.doi.org/10.21123/bsj.2016.13.3.0511</u>
- 3. Al-Bahadili ZR, Al-Hamdani AAS, Rashid FA, Al-Zubaidi LA, Ibrahim SM. An Evaluation of the Activity of Prepared Zinc Nanoparticles with Extract of Alfalfa Plant in the Treatment of heavy metals. Baghdad Sci J. 2022 November; 19(6): 1399-1409. https://dx.doi.org/10.21123/bsj.2022.
- 4. Ahmadi R A, Amani S. Synthesis, Spectroscopy, Thermal Analysis, Magnetic Properties and Biological A. ctivity Studies of Cu(II) and Co(II) Complexes with Schiff Base Dye Ligands. Molecules. 2012; 17(6): 6434-6448. https://doi.org/10.3390/molecules17066434
- 5. Xia J, Duan QY, Luo Y, Xie ZH, Liu ZY, Mo XG. Climate change and water resources: Case study of Eastern Monsoon Region of China. AdvClim Change Res. 2017 Jun 1; 8(2): 63-67. https://doi.org/10.1016/j.saa.2015.02.011
- Barrahi, M, Elhartiti H, El Mostaphi A, Chahboun N, Saadouni M et al. Corrosion inhibition of mild steel by Fennel seeds (Foeniculumvulgare Mill) essential oil in 1 M hydrochloric acid solution.Int J Corros. 2019; 8(4): 937–953. <u>https://doi.org/10.17675/2305-6894-2019-8-4-9</u>
- Sadiq H, Sher F, Sehar S, Lima EC, Zhang S, Iqbal HM, et al. Green synthesis of ZnO nanoparticles from SyzygiumCumini leaves extract with robust photocatalysis applications. J Mol Liq. 2021Aug 1;

335:

116567.

- https://doi.org/10.1016/j.saa.2015.02.011.
- Jayanthi P, Lalitha P. Reducing power of the solvent extracts of Eichhorniacrassipes (Mart.) Sold. Int. J Phar Phar Sci. 2011; 3(3): 126-8. https://doi.org/10.22034/AJGC.2021.261206.1287.
- Matinise N, Fuku XG, Kaviyarasu K, Mayedwa N, Maaza MJ. ZnO nanoparticles via MoringaOleifera green synthesis: Physical properties & amp; mechanism of formation. App Sur Sci. 2017 Jun 1; 406: 339-347. https://doi.org/10.1016/j.apsusc.2017.01.219
- 10. Christian P, Kammer FV, Baalousha M, Hofmann H. Nanoparticles: Structure, Properties, Preparation and Behaviors in Environmental Media. Ecotoxicology.2008; 17(5): 326-343. https://doi.org/10.1007/s10646-008-0213-1
- 11. Al-Khazraji AMA, Al Hassani RAM. Synthesis, Characterization and Spectroscopic Study of New Metal Complexes form Heterocyclic Compounds for Photostability Study. Syst Rev Pharm. 2020; 11(5): 535-555. <u>https://doi.org/10.31838/srp.2020.5.71</u>
- 12. Samy ME, Moamen SR, Fawziah AA, Reham ZH. Situ Neutral System Synthesis, Spectroscopic, and Biological Interpretations of Magnesium(II), Calcium(II), Chromium(III),Zinc(II), Copper(II) and Selenium(IV) Sitagliptin Complexes. Int J Environ Res Public Health. 2021; 18(8030): 1-19. https://doi.org/10.3390/ijerph18158030
- 13. Abdallah, M, Altas HM, Al-Gorair AS, Jabir H, Al-Fahemi BAAL et al. Natural nutmeg oil as a green corrosion inhibitor for carbon steel in 1.0 M HCl solution: Chemical. Electrochemical, and computational methods. J MolLiq 2021; 323: 115036. <u>https://doi.org/10.1016/j.molliq.2020.115036</u>.
- 14. Al-Zoubi W, Kim MJ, Yoon DK, Al-Hamdani AA, Kim YG, Young GK. Effect of organic compounds and rough inorganic layer formed by plasma electrolytic oxidation on photocatalytic performance. J Alloys Compd. 2020 May 15; 823: 153787. <u>https://doi.org/10.3390/membranes12050516</u>.
- 15. Al- Hamdani AAS, Al- Zoubi W. synthesis and antioxidant activities of Schiff bases and their complexes. ApplOrganomet Chem. 2016; 32(3): 11864-11876.

https://doi.org/10.5606/tftrd.2020.6889.

- 16. Reda SM, Al-Hamdani AAS. Mn(II), Fe(III), Co(II) and Rh(III) complexes with azo ligand: Synthesis, characterization, thermal analysis and bioactivity. Baghdad Sci J. 2022. November; 20(6): 1399-1409. https://doi.org/10.21123/bsj.2022.7289.
- 17. Al- Zoubi W, Kim MJ, Al-Hamdani AAS, Kim YG, Ko YG. Phosphorus-based and their complexes as nontoxic antioxidants: structure- activity relationship and mechanism of action. Appl. Organomet. Chem. 2019; 33(11): e5210. https://doi.org/10.1016/j.matpr.2020.07.368
- 18. Tyner KM, Wokovich AM, Doub WH, Watson N. Sadrieh Comparing methods for detecting and characterizing metal oxide nanoparticles in unmodified commercial sunscreens. Nanomedicine.

2009; 4(12): 145-159. https://doi.org/10.2217/17435889.4.2.145

- González-Ballesteros N S, Prado-López J, Rodríguez-González B, Lastra M, Rodríguez-Argüelles MC. Green synthesis of gold nanoparticles using brown algae, Cystoseirabaccata: Its activity in colon cancer cells. Colloids Surf. B. 2017; 15(3): 190-198. <u>https://doi.org/10.1016/j.colsurfb.2017.02.020</u>
- 20. Obaid S M H, Sultan J S, Synthesis, Characterization and Biological Efficacies from Some New Dinuclear Metal Complexes for Base 3-(3, 4-Dihydroxyphenyl)-2-[(2-hydroxy-3-methylperoxy-benzylidene)amino]-2-methyl Propionic Acid. Indones. J. Chem. 2020; 20(6), 1311-1322. https://dx.doi.org/10.21123/bsj.2022.6709
- 21. Rahman A, De Clippeleir H, Thomas W, Jimenez JA, Wett B, Al-Omari A, Murthy. A-stage and highrate contact-stabilization performance comparison for carbon and nutrient redirection from high-strength municipal wastewater. ChemEng J. 2019; 3(57): 737-749 <u>https://doi.org/10.1016/j.cej.2018.09.206</u>
- 22. Kirill VY, Aleksandr SS, Werner K, Sergey AG. Synthesis, Crystal Chemistry of Octahedral Rhodium (III) Chloroamines. Molecules Sci J. 2020; 25(768): 1-17. <u>https://doi.org/10.3390/molecules25040768</u>
- 23. Lingmei L, Yang W, Li Q, Gao S, Shang JK. Synthesis of Cu₂O nanospheres decorated withTiO₂nanoislands, their enhanced photoactivity stability under visible light illumination, and theirpost-illumination catalytic memory. ACS Appl Mater Interfaces. 2014; 6: 5629–5639. https://doi.org/10.1016/j.colsurfb.2017.02.020

- 24. Moamen SR, AltalhiT.,Safyah BB, Ghaferah HA and Kehkashan A. New Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Zn(II), Cd(II), and Hg(II) GibberellateComplexes: Synthesis, Structure and Inhibitory Activity Against COVID-19 Protease. Russ J Gen Chem. 2021; 91(5): 890–896. https://doi.org/10.21123/bsj.2022.7289..
- 25. Rahman A, De Clippeleir H, Thomas W, Jimenez JA, Wett B, Al-Omari A, et al. A-stage and high-rate contact-stabilization performance comparison for carbon and nutrient redirection from high-strength municipal wastewater. ChemEng J. 2018; 10(7): 878-896. https://doi.org/10.1016/j.scitotenv.2013.07.022
- 26. Maurice K, Mariam AC, Katia NN, Awawou GP, Sally-Judith EN,Peter TN. Synthesis, Characterization and Antimicrobial Studies of Co(II), Ni(II), Cu(II) and Zn(II) Complexes of (E)-2-(4-Dimethylbenzydimino)-Glycylglycine,(Glygly-DAB) а Schiff Base Derived from 4-Dimethylaminobenzaldehyde and Glycylglycine. Int J Org Chem. 2018: 8: 298-308. https://doi.org/10.4236/ijoc.2022.124015
- 27. Al Zoubi W, Saad G M, Agastya PM, Young GK. Acyclic and cyclic imines and their metal complexes: recent progress in biomaterials and corrosion applications. RSC Adv., 2018; 8: 23294–23318. DOI https://doi.org/10.1039/C8RA01890A
- 28. Suleman VT, Al-Hamdani AAS, Ahmed SD, Jirjees VY, Khan ME, Adnan Dib. Phosphorus Schiff base ligand and its complexes: Experimental and theoretical investigations. ApplOrganomet Chem. 2020; 34(4): 1-16. https://doi.org/10.1002/aoc.5546

معالجة المياه من الملوثات العضويةو اللاعضوية باستخدام دقائق الزنك النانوية مع مستخلص نبات المشمش

لبيب احمد الزبيدي²

عباس علي صالح الحمداني1

سوزان مسلم عبد الله¹

¹ قسم الكيمياء، كلية العلوم للبنات، جامعة بغداد، بغداد، العراق.
² دائرة البيئة و المياه، وزارة العلوم و التكنلوجيا.

الخلاصة:

نبات المشمش تم غسلة، طحنه بعد حصاده للحصول على مسحوق جيد ليستخدم في معالجة المياه. تم استخدام نبات المشمش مع الايثانول للحصول على المستخلص الكحولي وتم تشخيصة بالتقنيات الطيفية كروموتو غرافيا الغاز، تقنية الاشعة تحت الحمراء، تقنية الاشعة فوق البنفسجية – المرئية، الطيفية الحديد المركبات الفعالة للمستخلص. مركب الزنك النانوي تم تحضيره باستخدام المستخلص الكحولي وقم تشخيصة بالتقنيات الطيفية كروموتو غرافيا الغاز، تقنية الاشعة تحت الحمراء، تقنية الاشعة فوق البنفسجية المرئية، فحص المجهر الالكتروني الماسح، مطيافية تشتت الاشعة ووق البنفسجية المرئية، المجهر الالكتروني الماسح، مطيافية تشتت الاشعة وتشخيصة بالتقنيات الطيفية (الاشعة تحت الحمراء، الاشعة فوق البنفسجية المرئية، فحص المجهر الالكتروني الماسح، مطيافية تشت الاشعة وتشخيصة بالشعنية، المجهر الالكتروني الماسح، مطيافية تشتت الاشعة وتشخيصة بالشعنية، المجهر الالكتروني النافذ)-)لتشخيص المركب الزنك النانوي. تم استخدام طريقة التدفق المستمر، مركب الزنك النانوي مع مستخلص المشمش الكحولي ومسحوق نبات الجت لمعالجة المياء الملوثة. أولا استخدمت 2 غرام من مركب الزنك النانوي مع مستخلص لوكات النينية، المجهر الالكتروني النافذ)-)لتشخيص المركب الزنك النانوي. تم استخدام طريقة التدفق المستمر، مركب الزنك النانوي مع مستخلص المشمش الكحولي ومسحوق نبات الجت لمعالجة المياء الملوثة. أولا استخدمت 2 غرام من مركب الزنك النانوي مع 20 مل من المياء الملوثة وكانت النتيجة ((Levo 100% الحولي ومات النتائج ((كون 100%)). ثانياً، استخدم وكانت النتائج ((كون 100%)). عند الموت المؤمن ومركب الزنك النانوي مع معان وكانت النتوي مع مسحوق المسمش ومركب الزنك النانوي مع 20 مل من المياء الموثة وكانت النتائج ((كون 100%)). ثانياً، استخدم وكانت النتائج ((كون 100%)). تانياً معندم في عام وكانت النوي أول المعالي الموق والي الماستخلم مركب الزنك النانوي مع محول وركون المامش وركب الزنك النانوي مسحوق نبات المشمش ومركب الزنك النانوي الغربي النتائج ((كون 100%)). ثانياً المنوي مع مسحوق المسمش ومركن الذائوي مع مستخلم وركون النانوي مع مستخلم وكانت النتيجة ((كون 100%)). ثانياً المامين وركون كان النانوي أول كان النانوي أول من مركب الزنك النانوي أول مامان كال الغاوي الخدم ومع مركم الزنك أول العال مع موم وركو كام مركا إول أول مامال كال مالعا

الكلمات المفتاحية:المضادات الحيوية الملوثة، نبات المشمش،الملوثات اللاعضوية، الملوثات العضوية، معالجة المياه الملوثة، مركب الزنك النانوي.