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Abstract: 
In this paper, analyzing the non-dimensional Magnesium-hydrodynamics problem Using nanoparticles 

in Jeffrey-Hamel flow (JHF) has been studied. The fundamental equations for this issue are reduced to a three-

order ordinary differential equation. The current project investigated the effect of the angles between the plates, 

Reynolds number, nanoparticles volume fraction parameter, and magnetic number on the velocity distribution 

by using analytical technique known as a perturbation iteration scheme (PIS). The effect of these parameters 

is similar in the converging and diverging channels except magnetic number that it is different in the divergent 

channel. Furthermore, the resulting solutions with good convergence and high accuracy for the different values 

of the physical parameters are in the form a power-series of the problem posed. The efficiency of this method 

is shown by comparison between for different cases between computed results with numerical solution and 

solutions by other methods. 

 
Keywords:  Analysis of Convergence, Magnetohydrodynamics, Nanofluid flow, Non-Parallel Plates, 

Nanoparticle. 

 

Introduction: 
Fluid dynamics is a discipline of mathematics 

and physics concerned with the description and study 

of the movement of liquids and gases. The science of 

fluid dynamics is frequently separated into 

aerodynamics and hydrodynamics.  Many physical 

elements influence fluid flow including fluid 

characteristics, flow speed, and the geometry of the 

solid surface, also there are three important fluid 

physical properties like viscosity, density, and 

compressibility. The study of flows between two 

parallel walls in converging/diverging channel is 

very important due to its engineering and industrial 

applications. Such applications include exchanging 

heat transfer of heat exchangers for milk flowing, 

cold drawing operation in polymer industry, 

extrusion of molten polymers through converging 

dies, pressure driven transport of particles through a 

symmetric converging/diverging channel and many 

others. Nano-fluids have novel properties that make 

them potentially useful in many applications in heat 

transfer, including microelectronics, fuel cells, 

pharmaceutical processes, and hybrid powered 

engines, domestic refrigerator, engine 

cooling/vehicle thermal management,  chiller, heat 

exchanger, in grinding, machining and in boiler flue 

gas temperature reduction. They exhibit enhanced 

thermal conductivity and the convective heat transfer 

coefficient compared to the base fluid. Knowledge of 

the rheological behavior of nanofluids is found to be 

critical in deciding their suitability for convective 

heat transfer applications1. Nano-fluids also have 

special acoustical properties and in ultrasonic fields 

display additional shear-wave reconversion of an 

incident compressional wave; the effect becomes 

more pronounced as concentration increases. Nano-

fluids are fluids that include nanometer-sized 

particles called nanoparticles. The design of 

engineering for these fluids is considered 

suspensions nanoparticles in a base fluid. Metals, 

oxides, carbides, or carbon nanotubes are common 

nanoparticles utilized in nanofluids while   water, 

ethylene glycol, and oil are examples of common 

base fluids. Nanofluids have unique properties that 

make them potentially useful in a wide range of heat 

transfer applications nanofluids also exhibit unique 

acoustical capabilities, displaying extra shear-wave 
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reconversion of an incident compressional wave in 

ultrasonic fields; the effect gets more apparent as 

concentration increases when compared to the base 

fluid. They have higher thermal conductivity and 

convective heat transfer coefficient.   It has been 

discovered that understanding the rheological 

behavior of nanofluids is crucial in determining their 

appropriateness for convective heat transfer2. 

Nanofluid flow may be categorized into two types: 

compressible and incompressible. This 

categorization is based on the fluid density during the 

flow, which is constant for incompressible flow and 

changeable for compressible flow. Jeffrey3 and 

Hamel4 are among the most famous researchers of 

the last century whose studies focused on the flow of 

viscous, incompressible fluids through convergent 

and divergent channels. Furthermore,  several  

approaches are investigated by many researchers  for 

solving non-linear problems and the effects of 

Magnetohydrodynamic(MHD) for different fluids 

and geometries, such as5-8.In this paper, one of the 

most important approaches is employed for highly 

nonlinear problems, known as perturbation iteration 

scheme PIS(M,N)9-12 where  M is the number of 

correction terms in the perturbation expansion and N 

denotes the highest-order derivational term in the 

Taylor series, where M is always less than or equal 

to N. which is used to analyze an ordinary differential 

equations8. PIS is a type of analytical approach for 

discovering approximate-analytical solutions to 

nonlinear equations that cannot be solved exactly. It 

may be used to explain, forecast, and describe 

occurrences in systems induced by nonlinear 

processes13-16.  This analytical approach has already 

been successfully applied to solve the problem of 

nanofluid flow, to find the analytic solutions for the 

velocity, and to study differential equations 

governing the MHD Jeffery-Hamel flow. In a base 

fluid water   the impacts of nanoparticles (Al2O3, 

TiO2, Cu), Reynolds number, Hartmann number, 

angle open and volume fraction parameter  on 

velocity profiles  are graphically discussed. 

Consequently, the presented findings are   compared 

in in the literature with several analytical and  

numerical methods such as collocation method(CM), 

new analytical method (NAM), homotopy 

perturbation method (HPM24), spectral-homotopy 

analysis method (SHPM) and Range-Kutta of forth 

order (RK~4) . 

 

Mathematical Formulation 
The flow of an incompressible conductive 

viscous two dimensions fluid from a source or 

through at the intersection of non-parallel planar 

walls is presented. An electrically-driven boundary 

layer flow conductive viscous fluid containing 

nanoparticles is taken into consideration. It is 

possible to describe the Jeffery-Hamel problem and 

the method of fluid flow on parallel walls 

geometrically as in Fig.1.The velocity is completely 

radial and solely dependent on r and 𝜽 only14. In 

polar coordinates, the governing equations basic are 

defined mathematically as follows17-20: 
𝜌𝑛.f

r
 
∂( rũ)

∂r
= 0,      1 

ũ
∂ũ

∂r
+

1

ρn.f

∂P

∂r
− vn.f [

∂2ũ

∂r2
−
1

r

∂ũ

∂r
−

1

r2
∂2ũ

∂θ2
+
ũ

r2
] +

σμ°
2

ρn.f
ũ = 0,                 2 

  
1

ρn.fr

∂P

∂r
−
2vn.f

r2
∂ũ

∂θ
= 0                  3 

Where μ°  is electromagnetic induction,  ũ is the 

radial velocity, ρ is the fluid density, p is the fluid 

pressure, σ is the conductivity of the nanofluid, 

vn.f  is the coefficient of kinematic viscosity. The 

fluid density, dynamic viscosity, kinematic viscosity, 

and  φ as a solid volume fraction of nanofluid may 

be represented as follows: 

 ρn.f = (1 − φ)ρf + φρs , 

 μn.f =
μf

(1−φ)2.5
 ,        4 

 vn.f =
μf 

ρn.f
 . 

By integrating Eq. 1, with respect to 𝑟 and   setting 

the constant of integration   𝜃 yield: 

rũ(r, θ) = ω(θ),                    5 

 The derivation of Eqs. 2 and 3 with respect to  𝑟 and  

𝜃  respectively, can be represent as    
ũ(∂2ũ)

∂r∂θ
+
∂ũ

∂r

∂ũ

∂θ
= vn.f [

∂3ũ

∂r2 ∂θ
−
3

r

∂2ũ

∂r∂θ
−

1

r2
∂3ũ

∂θ3
+

3

r2
∂ũ

∂θ
] −

σμ°
2

ρn.fr
2

∂ũ

∂θ
  ,                   6 

The dimensionless variables with Eq. 5 can make the 

problem dimensionless  

ω(ξ) =
ω(θ)

ωmax
,    ω(ξ) =

rũ(r,θ)

ωmax
,   ξ =

θ

λ
 ,      ũ(r, θ) =

ωmax

r
ω(ξ),                          7 

From Eq. 7, the required derivatives it will be: 
∂ũ

∂θ
=
ωmax

λr

𝑑𝜔(𝜉)

𝑑𝜉
,                           

∂2ũ

∂θ2
=

ωmax

λ2r

𝑑2𝜔(𝜉)

𝑑𝜉2
 ,                    

∂3ũ

∂θ3
=
ωmax

λ3r

𝑑3𝜔(𝜉)

𝑑𝜉3
,        

∂ũ

∂r
=
−ωmax

r2
ω(ξ),                        

∂2ũ

∂r2
=

2ωmax

r3
ω(ξ),                   

∂2ũ

∂r∂θ
=
−ωmax

λr2 

𝑑𝜔(𝜉)

𝑑𝜉
,                             

∂3ũ

∂r2 ∂θ
=
2ωmax

λr3
𝑑𝜔(𝜉)

𝑑𝜉
,                                              8 

Substituting above partial derivative in Eq. 8, into 

Eq. 6, yield  
−2λ2ωmax

vn.f
ω(ξ)

𝑑𝜔(𝜉)

𝑑𝜉
− [4λ2

𝑑𝜔(𝜉)

𝑑𝜉
−
𝑑3𝜔(𝜉)

𝑑𝜉3
] +

σμο
2λ2

ρn.f
vn.f

𝑑𝜔(𝜉)

𝑑𝜉
= 0,                      9 

The simplification of   Eq. 9, can appear as  
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𝑑3𝜔(𝜉)

𝑑𝜉3
− 2λR̃e [(1 − φ) + φ

ρs

ρf
] (1 −

φ)2.5ω(ξ)
𝑑𝜔(𝜉)

𝑑𝜉
+ (4 − (1 − φ)1.25H̃a)λ

2 𝑑𝜔(𝜉)

𝑑𝜉
=

0            10 

 Subject to boundary conditions are  

ω(0) = 0 ,
dω(0)

dξ
= 0,        ω(1) = 0,                         11 

where  R̃e =
ωmax  λ

v
  is Reynolds number and  H̃a =

σμ°
2

ρv
  is Hartmann number.  In addition, can classified 

to two cases as: 

 Divergence channel :  𝜆 > 0,  𝜔𝑚𝑎𝑥 > 0, 
 Convergence channel ∶   𝜆 < 0,  𝜔𝑚𝑎𝑥 < 0. 

 

 
Figure 1. Geometry of JHF problem of convergent and divergent channel. 

 

Perturbation Iteration Scheme (PIS)  
To illustrate the general of idea for PIS(1,1). 
Consider the nonlinear ordinary differential 

equation13-15 as follows: 

ℳ(
ξ,ω(ξ),   

dω(ξ)

dξ
,
d2ω(ξ)

dξ2
,
d3ω(ξ)

dξ3
, … ,

d(n−1)ω(ξ)

dξ(n−1)
,

d(n)ξ(ξ)

dξ(n)

) =

0,                         12 

where 𝜔 is an unknown function and special 

dependent variable. ℳ is a function of 𝜔 and its 

derivatives. The auxiliary perturbation parameter 𝛿 

can be added to Eq. 12, as indicated in the equation 

below 

           

ℳ(
ξ,ω(ξ),   

dω(ξ)

dξ
,
d2ω(ξ)

dξ2
,
d3ω(ξ)

dξ3
, … ,

d(n−1)ω(ξ)

dξ(n−1)
,

d(n)ω(ξ)

dξ(n)
, 𝛿

) =

0,                   13 

 Rewriting Eq. 13 with  𝛿 is a small perturbation 

parameter as the following:  

     

 ℳ (
ξ,ωm+1(ξ), ω̇m+1(ξ), ω̈m+1(ξ),… ,ωm+1

(n−1)(ξ),

ωm+1
(n)

(ξ), δ
) =

0,                  14 

where represents m the 𝑚𝑡ℎ iteration with define 

perturbation expansions with correction term as 

follow: 

ω1 = ω0 + δ(ωc)0, 
ω2 = ω1 + δ(ωc)1, 

 

ω3 = ω2 + δ(ωc)2, 

⋮ 
ωm+1 = ωm + δ(ωc)m,                 15 

 

where 𝜔𝐶 is the correction term in the perturbation 

expansion and substituting Eq. 15 in Eq. 14, get: 

 

ℳ(ξ,𝜔𝑚(𝜉) + 𝛿(𝜔𝑐)𝑚,, �̇�𝑚(𝜉) + 𝛿( �̇�𝑐)𝑚, �̈�𝑚(𝜉)
+ 𝛿(�̈�𝑐)𝑚, �⃛�𝑚(𝜉) + 

 𝛿(�⃛�𝑐)𝑚, … , 𝜔𝑚
(𝑛−1)

(𝜉) + 𝛿(𝜔𝑐)𝑚
(𝑛−1)

,   𝜔𝑚
(𝑛)
(𝜉) +

𝛿(𝜔𝑐)𝑚
(𝑛)
, 𝛿) = 0,                 16 

 

now, using the Taylor series expansion for the first 

order derivative in the vicinity of 𝛿 = 0, which 

gives:  

ℳ

(

 
 
𝜉,𝜔𝑚(𝜉),   

𝑑𝜔𝑚(𝜉)

𝑑𝜉
,
𝑑2𝜔𝑚(𝜉)

𝑑𝜉2
, … ,

𝑑(𝑛−1)𝜔𝑚(𝜉)

𝑑𝜉(𝑛−1)
,

𝑑(𝑛)𝜔𝑚(𝜉)

𝑑𝜉(𝑛)
, 0

)

 
 

+
𝑑ℳ

𝑑𝜔𝑚
  . (𝜔𝑐)𝑚|

𝛿=0

+ 

δ
dℳ

dω̇m
 . (ω̇c)m|

δ=0
+⋯+

δ
dℳ

dωm
(n−1)  . (ωc)m

(n−1)
|
δ=0

+

δ
dℳ

dωm
(n)  . (ωc)m

(n−1)
|
δ=0

= 0 ,    17 

 

Arrange Eq. 17 to get: 



Open Access     Baghdad Science Journal                                P-ISSN: 2078-8665 

Published Online First: May, 2023                     2024, 21(1): 161-173                                             E-ISSN: 2411-7986 

 

161 

(𝜔𝑐)𝑚
(𝑛) =

−ℳ

𝛿.
𝑑ℳ

𝑑𝜔𝑚
(𝑛)

−

𝑑ℳ

𝑑𝜔𝑚
𝑑ℳ

𝑑𝜔𝑚
(𝑛)

. (𝜔𝑐)𝑚 −

𝑑ℳ

𝑑�̇�𝑚
𝑑ℳ

𝑑𝜔𝑚
(𝑛)

. (�̇�𝑐)𝑚 −

⋯−

𝑑ℳ

𝑑𝜔𝑚
(𝑛−1)

𝑑ℳ

𝑑𝜔𝑚
(𝑛)

. (𝜔𝑐)𝑚
(𝑛−1) −

𝑑ℳ

𝑑𝛿
𝑑ℳ

𝑑𝜔𝑚
(𝑛)

.              18 

Note that all derivatives in Eq.18 are calculated at 

𝛿 = 0, the solution in Eq. 11 is an ordinary 

differential equation (ODE). The boundary condition 

and initial condition are used to solve this ordinary 

differential equation, yielding (𝜔𝑐)𝑚(𝜉). In Eq.16, 

the value of (𝜔𝑐)𝑚(𝜉) is replaced to obtain on 

(𝜔)𝑚+1(𝜉). Which it is the approximate analytical 

answer, in the form of a power series, that is required. 

(𝜔𝑐)0
(𝑛)
=

−ℳ

𝛿.
𝑑ℳ

𝑑𝜔0
(𝑛)

−

𝑑ℳ

𝑑𝜔0
𝑑ℳ

𝑑𝜔0
(𝑛)

. (𝜔𝑐)0 −

𝑑ℳ

𝑑�̇�0
𝑑ℳ

𝑑𝜔0
(𝑛)

. (�̇�𝑐)0 −

⋯−

𝑑ℳ

𝑑𝜔0
(𝑛−1)

𝑑ℳ

𝑑𝜔0
(𝑛)

. (𝜔𝑐)0
(𝑛−1)

−
𝑑ℳ

𝑑𝛿
𝑑ℳ

𝑑𝜔0
(𝑛)

.            19 

Thus,  express the analytical approximate solutions 

in the following way, firstly define 

𝜔0 = ℂ0 ,         (𝜔𝑐)𝑚 = ℂ𝑚+1,  
and the remaining solutions can be developed in 

subsequent iterations  

𝜔0 = ℂ0,  
𝜔1 = 𝜔0 + (𝜔𝑐)0 = ℂ0 + ℂ1,  
𝜔2 = 𝜔1 + (𝜔𝑐)1 = ℂ0 + ℂ1 + ℂ2,  
⋮  
𝜔𝑚+1 = 𝜔𝑚 + (𝜔𝑐)𝑚 = ℂ0 + ℂ1 + ℂ2 +⋯+
ℂ𝑚+1 = ∑ ℂ𝑖

𝑚+1
𝑖=0 .    20 

As a result, the value of (𝜔𝑐)𝑚 is substituted 

in Eq. 16 to yield  𝜔𝑚+1(𝜉)  which takes the form of 

a power series. The analytical approximate solution 

to Eq. 12, is as follows: 

𝜔 = lim
𝑚→∞

𝜔𝑚+1 = ∑ ℂ𝑖
∞
𝑖=0 .   

 

The Application of PIS for Jeffery-Hamel 

Nano-fluid Flow 
The steps of PIS (1,1) to the Jeffery-Hamel 

Nanofluid Flow problem in order to find an 

analytical solution, can be illustrated as follows; 

     
d3ω(ξ)

dξ3
− 2λR̃e [(1 − φ)

+ φ
ρs
ρf
] (1 − φ)2.5ω(ξ)

dω(ξ)

dξ
 + 

(4 − (1 − φ)1.25H̃a)λ
2 dω(ξ)

dξ
= 0,  

     21 

 

the JHF of auxiliary perturbation parameter  is  

ℳ(ω(ξ),
dω(ξ)

dξ
,
d3ω(ξ)

dξ3
, δ) =

d3ω(ξ)

dξ3
+ 2δλR̃e((1 −

φ) +
ρs

ρf
φ) (1 − φ)2.5ω(ξ)

dω(ξ)

dξ
  

 +δ(4 − (1 − φ)1.25H̃a)λ
2 dω(ξ)

dξ
.                    22 

The general equation of   Perturbation expansion is 

ωn+1 = ωn + δ(ωc)n,                     23 

substituting Eq. 22 and Eq. 23, and expanding using 

the Taylor series of first order derivatives about 

(𝛿 = 0), give   

                   ℳ(ωn, ω̇n, ω⃛n, 0) + δ[ℳωn
(ωc)n +

ℳω̇n
(ωc)n +ℳω⃛n

(ωc)n +ℳδ] = 0,              24 

from Eq. 16, the following of the partial derivatives: 

ℳδ = 2λR̃e((1 − φ) +
ρs

ρf
φ)(1 − φ)2.5ωnω̇n −

(4 − (1 − φ)1.25H̃a)λ
2ω̇n,  

ℳωn = 2δλR̃e((1 − φ) +
ρs

ρf
φ)(1 − φ)2.5ω̇n,  

ℳω̇n = 2δλR̃e((1 − φ) +
ρs

ρf
φ)(1 − φ)2.5 ωn ,  

ℳ(ωn, ω̇n, ω⃛n, 0) = ω⃛ , 
ℳω⃛n = 1.                           25 

By calculating all partial derivatives at 𝛿 = 0 and 

substituting the results into Eq. 24, led to 

(ω⃛c)n = −
1

δ
ω⃛n − 2λR̃e((1 − φ) +

ρs

ρf
φ)  

(1 − φ)2.5ωnω̇n − (4 − (1 − φ)
1.25H̃a)λ

2ω̇n,    

     26 

 the initial condition of the Eq. 21, become  

ωο(ξ) = ℤο + ℤ1ξ + ℤ2
ξ2

2!
 ,              27 

where, 

       ω(0) = ℤο    ,
𝑑𝜔(0)

𝑑𝜉
= ℤ1      ,

d2ω(0)

dξ2
= ℤ2 .  

 From boundary conditions Eq. 11: 

  ωο(𝜉) = 1 + ℤ2
ξ2

2
  .                             28 

Note that having a preliminary condition for 

solving the equation that involves the unknown ℤ2,  

can calculate the value of ℤ2 using the resulted 

solution of JHF problem at a value of 𝜉 = 1.   The 

analytical obtained solutions can be written as 

follows: 

ω1(𝜉) = 1 +
ℤ2
2
ξ2 − [

1

12
λR̃e((1 − φ)

+
ρs
ρf
φ)(1 − φ)2.5

−
1

24
((1 − φ)1.25 H̃a − 4λ

2)ℤ2]ξ
4 

               −[
1

120
((1 − φ) +

ρs

ρf
φ)(1 −

φ)2.5λR̃eℤ2
2]ξ6,                                                                 

29 

 ω2(ξ) = 1 +
ℤ2

2
ξ2 + [−

1

12
((1 − φ) +

ρs

ρf
φ)(1 −

φ)2.5λR̃eℤ2 +
1

24
(1 − φ)1.25 H̃aℤ2 − 

           
1

6
λ2ℤ2]ξ

4 −
1

120
((1 − φ) +

ρs

ρf
φ)(1 −
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φ)2.5λR̃eℤ2
2 +

1

180
((1 − φ)+

ρs

ρf
φ)2(1 − φ)5 

                λ2R̃e
2ℤ2 +  

1

45
((1 − φ) +

ρs

ρf
φ)(1 −

φ)2.5λ3R̃eℤ2 −
1

90
(1 − φ)1.25    λ2H̃aℤ2 +  

              λ2R̃e
2ℤ2
2 +

1

280
(1 − φ) +

ρs

ρf
φ)(1 −

φ)2.5λ3R̃eℤ2
2 −

1

1120
 (1 − φ) +

ρs

ρf
φ)(1 − φ)3.75             

               λR̃eH̃aℤ2
2]ξ8 + (

1

10800
((1 − φ) +

ρs

ρf
φ)2λ2R̃e

2ℤ2
3 −

1

12960
((1 − φ) +

ρs

ρf
φ)3(1 − φ)7.5  

              λ3R̃e
3ℤ2
3 −

1

3240
((1 − φ) +

ρs

ρf
φ)3(1 −

φ)7.5λ4R̃e
2ℂ2
2 −

1

3240
(1 − φ)1.25λ3R̃eH̃aℤ2

2 +     

              
1

12960
((1 − φ) +

ρs

 ρf
φ)2(1 −

φ)6.25λ2R̃e
2H̃aℤ2

2 −
1

51840
(1 − φ) +

ρs

ρf
φ) 

R̃eH̃a
2ℤ2
2 +                

1

6480
(1 − φ) +

ρs

ρf
φ)(1 −

φ)3.75λ3R̃eH̃aℤ2
2]ξ10+[−

1

95040
((1 − φ) +

ρs

ρf
φ)3(1 − φ)7.5  

              λ3R̃e
3ℤ2
3 −

1

47520
((1 − φ) +

ρs

ρf
φ)2(1 −

φ)5 λ4R̃e
2ℤ2
3 +

1

190080
((1 − φ) +

ρs

ρf
φ)2 

                (1 − φ)7.5λ2R̃e
2H̃aℤ2

3]ξ12             30 

⋮  
Results and Discussion 

Discussions of various flow parameters 

(Hartmann, nanofluid volume fraction, and Reynold 

numbers) on the velocity profile 𝜔(𝜉) are included 

in this section. Firstly, Table 1 shows the physical 

material in state of density, thermal conductivity and 

specific heat capacity for (water 

Al2O3, TiO2 and Cu). The convergence of values ℤ2 

is clearly shown in Tables 2 and 3. The PIS findings 

are presented in Tables 4-8 and compared to the 

numerical, collocation technique solutions and other 

methods. The results are totally compatible, as 

shown in the tables, also, when observing Tables 5, 

7, and 8, when making the error between the method 

we are working on and the numerical methods in the 

literature, we note that the PIS is the best in terms of 

solutions and excellent compatibility with the 

numerical methods, so this gives us preference to 

take it and work with it in the subsequent fields. This 

precision instills in us a high level of trust in the 

validity of the problem and demonstrates a high level 

of engineering precision agreement. This inquiry is 

finished by illustrating the impacts of a few key 

factors in order to determine how these variables 

affect the fluid. Figs. 2-4, illustrate the impact of 

various active parameter settings. 

Material 𝐀𝐥𝟐𝐎𝟑. The impact of the Hartmann 

number on the velocity profiles of divergent and 

convergent channels is seen in Fig. 2a. The results 

reveal that raising the Hartmann number raises the 

velocity profiles of both convergent and divergent 

channels.  As the Hartmann number rises, it becomes 

clear that there is no backflow in both channels. 

Figure 2b illustrates that in divergent channels, fluid 

velocity falls with Reynolds numbers, whereas in 

convergent channels, fluid velocity increases with 

Reynolds numbers. According to Fig. 2c, the fluid 

velocity tends to decrease as the nanofluid volume 

fraction increases in divergent channels but increases 

in convergent channels. 

Material TiO2. Figure 3a shows the result of raising 

the Hartmann number on the velocity profiles of 

divergent and convergent channels. The velocity 

profiles of convergent and divergent channels are 

reduced as a result.  There is no backflow in both 

channels when the Hartmann number increased. In 

both divergent and convergent channels, the fluid 

velocity decreases with increasing Reynolds 

numbers, as seen in Fig. 3b. The fluid velocity 

reduces with increasing nanofluid volume fraction in 

divergent channels but increases with nanofluid 

volume fraction in convergent channels, as shown in 

Fig. 3c.  

Material Cu. Figure 4a, illustrates the impact of the 

Hartmann number on the velocity profiles of 

divergent and convergent channels. It's worth noting 

that when the Hartmann number rises, the velocity 

profiles of convergent and divergent channels 

decrease. Furthermore, raising the Hartmann number 

in both channels results in no backflow, which is 

plainly visible. Figure 4b, shows that in divergent 

channels, the fluid velocity falls as the Reynolds 

number increases, whereas in convergent channels, 

the fluid velocity increases. Fluid velocity decreases 

with increasing nanofluid volume fraction in 

divergent channels, but rises in convergent channels, 

as seen in Fig. 4c. 

The effect of changing the angle yielding to 

increases the profile of velocity as clear in Fig. 2d,3d  

and 4d, for Al2O3, TiO2, and  Cu respectively. In the 

convergent channel, the increase is evident in the 

effect of the angle on the velocity profile curves, but 

the opposite can be seen in the divergent channel. 

The rise of the Reynolds number has an effect on the 

convergence of the solutions as shown in the 

behavior of the velocity in the figures in the 

divergent channel only, notice the deviated of the 

curve at 𝜆 = 20° in  𝜉 = 0.65  .  It can also be noted 

that there is no effect when an increase in the 

Reynolds number of the converging channel in 

increasing the velocity curves in all cases as shown 

in Fig. 2d, 3d and 4d.  

Physically, the impact of the Reynolds 

number on the velocity distribution is due to higher 

viscosity at the border, which causes fluid motion 
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resistance and hence an increase in the momentum 

boundary layer. The influence of nanofluid volume 

fraction on velocity is shown, with a steady drop in 

velocity profile as the nanofluid volume fraction 

rises. When 𝜑 = 0 in this plot, the fluid is 

transported down the channel with no nanofluid 

volume percentage. Given the significant energy 

exchange rate when fluid molecules flow through the 

nonparallel channel, nanofluid volume fraction has 

an influence on the fluid and lowers the thickness of 

the momentum barrier layer. The influence of 

channel opening angles on the divergent- convergent 

plate. To prevent fluid backflow, relatively broad 

open channel angles are used. Backflow is not a 

problem in the converging channel, but it can happen 

in the diverging channel. Backflow is prevented by a 

high Reynolds number in the presence of a strong 

magnetic field strength. As shown, increasing the 

channel angle quantitatively results in a considerable 

drop in the velocity profile. The magnetic field 

effects flow, as seen by the magnetic field intensity 

and the reduction in fluid flow via the nonparallel 

channel. As can be seen in the plot, absolute velocity 

decreases. This may be explained physically by the 

existence of resistive forces at the channel's border 

owing to an increase in boundary layer thickness, 

which causes a retarding effect on the velocity field. 

Now, some tables and figures will be reviewed that 

changed values of  �̃�𝑒 , �̃�𝑎    and 𝜑  as fallow: 

 

Table 1. Properties of Nanofluid and Nanoparticles  
Item 𝛒(𝐤𝐠 𝐦𝟑)⁄  𝐂𝐏(𝐉 𝐤𝐠𝐊)⁄  𝐤(𝐖 𝐦𝐊)⁄  

𝐀𝐥𝟐𝐎𝟑 
𝐓𝐢𝐎𝟐 
𝐂𝐮 
𝐟𝐥𝐮𝐢𝐝 𝐩𝐡𝐚𝐬𝐞(𝐰𝐚𝐭𝐞𝐫) 

3970 

4250 

8933 

997.1 

765 

686.2 

385 

4179 

40 

8.9538 

401 

0.613 
 

Table 2. The convergence of the fixed values when  𝝋 = 0.001 
Order �̃�𝒆 = 𝟑𝟎 , �̃�𝒂 = 𝟕𝟎𝟎 �̃�𝒆 =  𝟑𝟎, �̃�𝒂 = 𝟔𝟎𝟎 �̃�𝒆 = 𝟐𝟎 , �̃�𝒂 = 𝟐𝟎𝟎 

𝜆 = 2° 𝜆 = 3° 𝜆 = 5° 
ℤ2 ℤ2 ℤ2 

Class 1 

Class 2 

Class 3 

Class 4 

Class 5 

-2.166866549 

-2.165203558 

-2.165221284 

-2.165221197 

-2.165221197 

-2.103282989 

-2.105260852 

-2.105264580 

-2.105264601 

-2.105264601 

-2.229756176 

-2.228845350 

-2.228865090 

-2.228865106 

-2.228865106 
 

Table 3. The convergence of the fixed values when  𝝓 = 𝟎. 𝟎𝟎𝟏 
 

Order 
�̃�𝒆 = 𝟑𝟎 , �̃�𝒂 = 𝟕𝟎𝟎 �̃�𝒆 =  𝟑𝟎, �̃�𝒂 = 𝟔𝟎𝟎 �̃�𝒆 = 𝟐𝟎 , �̃�𝒂 = 𝟐𝟎𝟎 

𝜆 = −2° 𝜆 = −3° 𝜆 = −5° 

ℤ2 ℤ2 ℤ2 

Class 1 

Class 2 

Class 3 

Class 4 

Class 5 

-1.657407 

-1.638453 

-1.637772 

-1.637756 

-1.637756 

-1.445386 

-1.393417 

-1.389896 

-1.389740 

-1.389740 

-1.45574 

-1.40676 

-1.40360 

-1.40347 

-1.40347 
 

Table 4. The profile of 𝝎(𝝃) for 𝑻𝒊𝑶𝟐 
𝝃 �̃�𝒆 = 𝟓𝟎, �̃�𝒂 = 𝟎 𝝋 = 𝟎, 𝛌 = 𝟓

° �̃�𝒆 = 𝟏𝟎, �̃�𝒂 = 𝟕𝟓𝟎 𝝋 = 𝟎. 𝟎𝟓, 𝛌 = −𝟓
° �̃�𝒆 = 𝟑𝟎, �̃�𝒂 = 𝟔𝟎𝟎𝝋 = 𝟎. 𝟎𝟐, 𝛌 = 𝟓

° 

0.00 

0.05 

0.10 

0.20 

0.30 

0.40 

0.50 

0.60 

0.70 

0.75 

0.80 

0.85 

0.90 

0.95 

1.00 

1.0000000000 

0.9955850163 

0.9824360737 

0.9312441318 

0.8506474508 

0.7468472460 

0.6270205939 

0.4983152995 

0.3670452811 

0.3020636550 

0.2381888793 

0.1758023208 

0.1151907682 

0.05655169989 

0.00000000000 

1.0000000000 

0.9985407480 

0.9941370402 

0.9761297024 

0.9446966965 

0.8976157250 

0.8315921452 

0.7420743222 

0.6230187448 

0.5500506880 

0.4666155463 

0.3714135480 

0.2629998131 

0.1397785248 

0.0000000000 

1.0000000000 

0.9975322023 

0.9901341560 

0.9606182178 

0.9116655867 

0.8435286562 

0.7563476197 

0.6499430042 

0.5235488252 

0.4523740775 

0.3754720632 

0.2924130170 

0.2026445163 

0.1054664173 

0.0000000000 
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Table 5. The profile of 𝝎(𝝃) for Cu 
�̃�𝐞 = 𝟑𝟎, �̃�𝐚 = 𝟔𝟎𝟎, 𝝀 = 𝟓°, 𝛗 = 𝟎. 𝟎𝟐 

𝝃 PIS NAM17 RK~𝟒    Residual  error  

       (PIS,RK~4) 

Residual error  

(NAM,RK~4) 

0.00 

0.10 

0.20 

0.30 

0.40 

0.50 

0.60 

0.70 

0.80 

0.90 

1.00 

1.0000000000 

0.9898438613 

0.9595061889 

0.9093422847 

0.8398237017 

0.7513647610 

0.6440902848 

0.5175457664 

0.3703390664 

0.1996813580 

0.0000000000 

1.000000000 

0.989837623 

0.959481313 

0.909286554 

0.839725036 

0.751210824 

0.643867387 

0.517236610 

0.369919206 

0.199115412 

0.000000000 

1.000000000 

0.989843868 

0.959506219 

0.909342349 

0.839823811 

0.751364924 

0.644090515 

0.517546090 

0.370339540 

0.199682092 

0.000000000 

0.000000000 

0.000000006 

0.000000030 

0.000000064 

0.000000109 

0.000000163 

0.000000231 

0.000000324 

0.000000474 

0.000000734 

0.000000000 

0.000000000 

0.000006245 

0.000024906 

0.000055795 

0.000098775 

0.000154100 

0.000223128 

0.000309480 

0.000420340 

0.000566680 

0.000000000 
 

Table 6. The profile of 𝝎(𝝃) for Cu when �̃�𝒆 = 𝟓𝟎, �̃�𝒂 = 𝟎, 𝝀 = 𝟓
°, 𝝋 = 𝟎. 

𝝃 PIS Reference17 HPM19 SHPM19 Reference21 Reference22 RK~𝟒 

0.00 

0.25 

0.50 

0.75 

1.00 

1.000000 

0.894269 

0.627020 

0.302063 

0.000000 

1.000000 

0.894649 

0.628312 

0.303771 

0.000000 

1.000000 

0.894960 

0.627220 

0.302001 

0.000000 

1.000000 

0.894242 

0.626948 

0.301990 

0.000000 

1.000000 

0.894242 

0.266948 

0.301991 

0.000000 

1.000000 

0.894243 

0.626953 

0.301998 

0.000000 

1.000000 

0.894269 

0.627022 

0.302065 

0.000000 
 

Table 7. The profile of 𝝎(𝝃) for Cu 
�̃�𝐞 = 𝟏𝟎,   �̃�𝐚 = 𝟕𝟓𝟎, 𝝀 = −𝟓°, 𝛗 = 𝟎. 𝟎𝟓 

𝝃 PIS NAM17 CM23   Residual  error 

     (PIS,CM) 

 Residual error   

  (NAM,CM) 

0.00 

0.10 

0.20 

0.30 

0.40 

0.50 

0.60 

0.65 

0.70 

0.75 

0.80 

0.85 

0.90 

0.95 

1.00 

1.0000000000 

0.9942690739 

0.9766464658 

0.9458150013 

0.8994867526 

0.8342633380 

0.7454407460 

0.6902932180 

0.6267640959 

0.5537831903 

0.4701479955 

0.3745158259 

0.2653976864 

0.1411549204 

0.0000000000 

1.000000000 

0.994237767 

0.976518907 

0.945519431 

0.898941811 

0.833382035 

0.744151771 

0.688792461 

0.625067799 

0.551934739 

0.468230004 

0.372665147 

0.263823428 

0.140159099 

0.000000000 

1.000000000 

0.994278317 

0.976670165 

0.945855446 

0.899546175 

0.834341990 

0.745536091 

0.690394661 

0.626869073 

0.553888111 

0.470248161 

0.374605389 

0.265469361 

0.141198775 

0.000000000 

0.0000000000 

0.0000092431 

0.0000236992 

0.0000404447 

0.0000594224 

0.0000786520 

0.0000953450 

0.0001014430 

0.0001049771 

0.0001049207 

0.0001001655 

0.0000895631 

0.0000716746 

0.0000438546 

0.0000000000 

0.000000000 

0.000040550 

0.000151258 

0.000336015 

0.000604364 

0.000959955 

0.001378381 

0.001602200 

0.001801274 

0.001953372 

0.002018157 

0.001940242 

0.001645933 

0.001039676 

0.000000000 
 

Table 8.The profile of 𝝎(𝝃) for 𝑨𝒍𝟐𝑶𝟐 
�̃�𝐞 = 𝟏𝟎 , �̃�𝐚 = 𝟎 , 𝝀 = −𝟑

° , 𝛗 = 𝟎. 𝟎𝟏 

𝝃 Present solution Reference17 Numerical method22   Residual error 

     (PIS,NM) 

   Residual  error  

(Reference17,NM) 

0.10 

0.15 

0.20 

0.25 

0.30 

0.35 

0.40 

0.45 

0.50 

0.55 

0.60 

0.65 

0.70 

0.75 

0.80 

0.85 

0.90 

0.95 

1.00 

0.9892746750 

0.9758945272 

0.9572113072 

0.9332729078 

0.9041393503 

0.8698816537 

0.8305804780 

0.7863245615 

0.7372089770 

0.6833332169 

0.6247991314 

0.5617087387 

0.4941619214 

0.4222540321 

0.3460734116 

0.2656988314 

0.1811968752 

0.0926192463 

0.0000000000 

0.989274758 

0.975894713 

0.957211638 

0.933273423 

0.904140089 

0.869882653 

0.830581769 

0.786326170 

0.737210915 

0.683335479 

0.624801686 

0.561711523 

0.494164834 

0.422256931 

0.346076117 

0.265701137 

0.181198571 

0.092620147 

0.000000000 

0.989274758 

0.975894718 

0.957211647 

0.933273437 

0.904140111 

0.869882686 

0.830581821 

0.786326255 

0.737211060 

0.683335727 

0.624802106 

0.561712214 

0.494165934 

0.422258619 

0.346078608 

0.265704674 

0.181203403 

0.092626497 

0.000008010 

0.000000083 

0.000000190 

0.000000339 

0.000000529 

0.000000760 

0.000001032 

0.000001343 

0.000001693 

0.000002083 

0.000002510 

0.000002974 

0.000003475 

0.000004012 

0.000004586 

0.000005196 

0.000005842 

0.000006527 

0.000007250 

0.000000000 

0.000000000 

0.000000005 

0.000000009 

0.000000014 

0.000000022 

0.000000033 

0.000000052 

0.000000085 

0.000000145 

0.000000248 

0.000000042 

0.000000691 

0.000001100 

0.000001688 

0.000002491 

0.000003537 

0.000004832 

0.000006350 

0.000000000 
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(a) �̃�𝒂varied for �̃�𝒆 = 𝟏𝟎𝟎,𝝋 = 𝟎. 𝟎𝟓 

 
(b) �̃�𝐞 varied for �̃�𝒂 = 𝟓𝟎,𝝋 = 𝟎. 𝟎𝟓 

 
(c) 𝝋 varied for �̃�𝒂 = 𝟓𝟎, �̃�𝐞 = 𝟏𝟎𝟎 

 
(d) 𝝀 varied for �̃�𝒂 = 𝟓𝟎, �̃�𝐞 = 𝟒𝟎,𝝋 = 𝟎. 𝟎𝟓 

Figure 2. The behavior of the velocity 𝛚(𝛏)for 𝐀𝐥𝟐𝐎𝟐. 
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(a) �̃�𝒂 is varied for �̃�𝒆 = 𝟏𝟎𝟎,𝝋 = 𝟎. 𝟎𝟓 

 
(b) �̃�𝒆  is varied for�̃�𝒂 = 𝟓𝟎,𝝋 = 𝟎. 𝟎𝟓 

 
(c) 𝝋 is varied for �̃�𝒆 = 𝟏𝟎𝟎, �̃�𝒂 = 𝟓𝟎 

 
(d) 𝝀 is varied for �̃�𝒆 = 𝟒𝟎, �̃�𝒂 = 𝟓𝟎,𝝋 = 𝟎. 𝟎𝟓 

Figure 3. The behavior of the velocity 𝛚(𝛏) for 𝐓𝐢𝐎𝟐. 
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(a) �̃�𝒂 varied for �̃�𝒆 = 𝟏𝟎𝟎 , 𝝋 = 𝟎. 𝟎𝟓 

 
(b) �̃�𝒆 varied for �̃�𝒂 = 𝟓𝟎 , 𝝋 = 𝟎. 𝟎𝟓 

 
(c) 𝝋 varied for �̃�𝐞 = 𝟏𝟎𝟎 �̃�𝒂 = 𝟓𝟎 

 
(d) 𝝀 is varied for �̃�𝒆 = 𝟒𝟎, �̃�𝒂 = 𝟓𝟎,𝝋 = 𝟎. 𝟎𝟓 

Figure 4. The behavior of the velocity 𝛚(𝛏) for Cu. 
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The Criterion of Convergence 
In this section, the analysis of convergence24,25 for 

approximate- analytical solutions obtained by 

applying the perturbation iteration scheme to Jeffery 

Hamel nanofluid flow is discussed.    

From the theorems13, the convergence condition can 

be summarized as follows: 

𝛽i = {

‖ℂi+1‖

‖ℂ1‖
,       ‖ℂi‖ ≠ 0,

0 ,              ‖ℂi‖ = 0.
   For i = 0,1,2, ….  

Then, we can say that the series approximate 

solutions {ωn}0
∞ converges to the exact solution  𝜔  

which satisfy 0 < 𝛽𝑖 < 1. As a result, we will 

investigate the convergence of all the solutions  from 

applying PIS with various parameters physical  to the 

flow problem provided  as in Tables 9-11: 

 

Table 9.The values of the convergence condition 

for �̃�𝒂 = 𝟏𝟎𝟎 , 𝝋 = 𝟎. 𝟎𝟐. 

  

 

�̃�𝐞
= 10 

Convergent 

Channel 
Divergent  Channel 

𝛽0 

𝛽1 

𝛽2 

⋮ 

0.1411810894 

0.0935334332 

0.0515927896 

⋮ 

𝛽0 

𝛽1 

𝛽2 

⋮ 

0.07791235460 

0.05724796917 

0.03205946998 

⋮ 

 

 

�̃�𝐞
= 50 

𝛽0 

𝛽1 

𝛽2 

⋮ 

0.3863381649 

0.3581219765 

0.1968631136       
⋮ 

𝛽0 

𝛽1 

𝛽2 

⋮ 

0.6896834846 

0.4583435333 

0.2943455867 

⋮ 

 

�̃�𝐞
= 70 
 

𝛽0 

𝛽1 

𝛽2 

⋮ 

0.4305492890 

0.4851477564 

0.2662747644 

⋮ 

𝛽0 

𝛽1 

𝛽2 

⋮ 

0.9690339670 

0.7640911730 

0.5477475715 

⋮ 

 

 

 

 

 

 

Table 10. The values of the convergence condition 

for �̃�𝒆 = 𝟔𝟎 , 𝝋 = 𝟎. 𝟎𝟓. 

 

�̃�𝒂 =
100 

 

Convergent 

Channel 
Divergent  Channel 

𝛽0 

𝛽1 

𝛽2 

⋮ 

0.4135183495 

0.4217938618 

0.2316881525 

⋮ 

𝛽0 

𝛽1 

𝛽2 

⋮ 

0.8735164047 

0.5989330136 

0.4047721428 

⋮ 
 

�̃�𝒂
= 500 

 

𝛽0 

𝛽1 

𝛽2 

⋮ 

0.4245427965 

0.5145881398 

0.2800577281 

⋮ 

𝛽0 

𝛽1 

𝛽2 

⋮ 

0.6053471556 

0.4478715869 

0.2819873444 

⋮ 
 

�̃�𝒂
= 750 

 

 

𝛽0 

𝛽1 

𝛽2 

⋮ 

0.4228299262 

0.5742276354 

0.3112843779 

⋮ 

𝛽0 

𝛽1 

𝛽2 

⋮ 

0.4512128494 

0.3646051721 

0.2190332775 

⋮ 

 

Table 11.The values of the convergence condition 

for �̃�𝒆 = 𝟔𝟎 , �̃�𝒂 = 𝟏𝟎𝟎𝟎. 

 

𝜑
= 0.02 

 

Convergent 

Channel 

Divergent  

Channel 

𝛽0 

𝛽1 

𝛽2 

⋮ 

0.09226558641 

0.1525787323 

0.3430056094 

⋮ 

𝛽0 

𝛽1 

𝛽2 

⋮ 

0.4642518368 

0.3974196368 

0.2387217804 

⋮ 

 

𝜑
= 0.05 

𝛽0 

𝛽1 

𝛽2 

⋮ 

0.1205813049 

0.2039766130 

0.3623216572 

⋮ 

𝛽0 

𝛽1 

𝛽2 

⋮ 

0.4378818589 

0.3748808097 

0.2233554244 

⋮ 

 

𝜑
= 0.09 

 

𝛽0 

𝛽1 

𝛽2 

⋮ 

0.7017153800 

0.4135136276 

0.3797457088 

⋮ 

𝛽0 

𝛽1 

𝛽2 

⋮ 

0.5816984975 

0.4754310591 

0.2967041282 

⋮ 

 

From the above tables, it is noted that the value of  𝛽𝑖 
, 𝑖 = 0,1,2,… are sandwiched between 0 and 1, 

therefore the presented solutions are convergence. 

Fig. 5 describes the curves behaviors of the fluid flow 

in convergent- divergent channels. 

 
Figure 5. The behaviors of the curves of velocity profiles. 
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Conclusion: 
While working in this manuscript, the 

approximate analytical PIS of the velocity 

distribution of the Jeffrey-Hamel flow problem with 

nanoparticles was used.  Since PIS is an effective and 

efficient approach to address all kinds of Jeffrey-

Hamel flow problems, the method has been 

successfully demonstrated using similarity 

transformation through which the governing 

equations (continuity, momentum) of this problem 

have been converted into an ordinary differential 

equation, in addition to that it has been compared 

with other numerical methods.  Note that the 

imposed method is more accurate among the 

methods, and the parameters were made semi-

basically and their values were controlled to discuss 

the variation that occurs in the velocity profiles, as it 

was presented briefly in Fig. 5, which roughly 

illustrates the behavior that this method causes when 

changing the parameters on the velocity profile in the 

two converging/divergent channels. So, we can say 

that this method is useful to work on in detecting the 

behavior of nanofluids during their flow and 

knowing the velocity and convergence that they 

cause when taking water as a basic liquid with 

nanoparticles such as (copper, silver, titanium and 

aluminum).  The future study of this method is done 

by expanding the horizons of working on nanofluids 

by taking fluids with higher densities. For example, 

we can replace water with oil or alcohol, or a mixture 

between oil and water, and so on, with different 

nanoparticles to obtain a more complex fluid and an 

advanced issue that can be used in various fields.   

 

Authors' Declaration: 
- Conflicts of Interest: None. 

- We hereby confirm that all the Figures and Tables 

in the manuscript are mine ours. Besides, the 

Figures and images, which are not mine ours, 

have been given the permission for re-publication 

attached with the manuscript. 

- Ethical Clearance: The project was approved by 

the local ethical committee in University of 

Basrah. 

 

Authors' Contributions Statement:   
  A. M. conceived of the presented idea. S.I. 

performed the computations and verified the 

analytical method. All authors discussed the results 

and contributed to the final manuscript. 

 

References: 
1. Kaggwa A., and Carson JK.  Developments and future 

insights of using nanofluids for heat transfer 

enhancements in thermal systems: a review of recent 

literature. Int Nano Lett . 2019; 9(4): 277–288. 

https://doi.org/10.1007/s40089-019-00281-x. 

2. Younes H., Mao M., Sohel Murshed SM., Lou D., 

Hong H., and Peterson GP.  Nanofluids: Key 

parameters to enhance thermal conductivity and its 

Appl. Therm. Eng . 2022; Vol. 207: Elsevier Ltd. 

https://doi.org/10.1016/j.applthermaleng.2022.11820

2. 

3. Jeffery GBL. The two-dimensional steady motion of 

a viscous fluid. Lond. Edinb. Dublin philos. Mag. j. 

sci.1915;29(172):455–465. 

https://doi.org/10.1080/14786440408635327. 

4. Hamel G. Spiralförmige Bewegungen zäher 

Flüssigkeiten. Jahresber Dtsch Math.-Ver,1917; 25: 

34‐60. http://eudml.org/doc/145468. 

5. Biswal U., and Chakraverty S. Investigation of 

Jeffery-Hamel Flow for Nanofluid in the Presence of 

Magnetic Field by a New Approach in the Optimal 

Homotopy Analysis Method. JACM . 2022; 8(1): 48–

59. https://doi.org/10.22055/jacm.2020.31909.1937. 

6. Singh J., Rashidi MM., Sushila, and Kumar DA. 

hybrid computational approach for Jeffery–Hamel 

flow in non-parallel walls. Neural. Comput. Appl. 

2019; 31(7): 2407–2413. 

https://doi.org/10.1007/s00521-017-3198-y. 

7. Chaharborj SS., and Moameni A.  Spectral-homotopy 

analysis of MHD non-orthogonal stagnation point 

flow of a nanofluid. J. Appl. Math.  Comput. Mech. 

2018; 17(1): 15–28. 

https://doi.org/10.17512/jamcm.2018.1.02. 

8. Petroudi IR., Ganji DD., Nejad MK., Rahimi J., 

Rahimi E., and Rahimifar A. Transverse magnetic 

field on Jeffery-Hamel problem with Cu-water 

nanofluid between two non-parallel plane walls by 

using collocation method. Case Stud. Therm. Eng. 

2014; 4: 193–201. 

https://doi.org/10.1016/j.csite.2014.10.002 . 

9. Rahman I UR., Sulaiman M., Alarfaj FK., Kumam P., 

and Laouini G. Investigation of non-linear MHD 

Jeffery–Hamel blood flow model using a hybrid 

metaheuristic approach. IEEE Access. 2021;9: 

163214–163232. 

https://doi.org/10.1109/ACCESS.2021.3133815. 

10. Ahmad I., and Ilyas H. Homotopy Perturbation 

Method for the nonlinear MHD Jeffery–Hamel blood 

flows problem. Appl.  Numer.  Math. 2019; 141: 124–

132. https://doi.org/10.1016/j.apnum.2018.07.005. 

11. Li Z., Khan I., Shafee A., Tlili I., and Asifa T. Energy 

transfer of Jeffery–Hamel nanofluid flow between 

non-parallel walls using Maxwell–Garnetts (MG) and 

Brinkman models. Energy Reports. 2018; 4: 393–

399. https://doi.org/10.1016/j.egyr.2018.05.003. 

12. Meher R., and Patel ND. Analytical Investigation of 

MHD Jeffery–Hamel flow problem with heat transfer 

by differential transform method. SN Appl. Sci. 2019; 

1(7). https://doi.org/10.1007/s42452-019-0632-z. 

13. Al-Saif, ASJ., and Harfash, AJ. Perturbation-iteration 

algorithm for solving heat and mass transfer in the 

unsteady squeezing flow between parallel plates. J. 

Appl. Comput. Mech. 2019; 5(4): 804–815. 

https://doi.org/10.22055/JACM.2019.28052.1453 

https://doi.org/10.1007/s40089-019-00281-x
https://doi.org/10.1016/j.applthermaleng.2022.118202
https://doi.org/10.1016/j.applthermaleng.2022.118202
https://doi.org/10.1080/14786440408635327
http://eudml.org/doc/145468
https://doi.org/10.22055/jacm.2020.31909.1937
https://doi.org/10.1007/s00521-017-3198-y
https://doi.org/10.17512/jamcm.2018.1.02
https://doi.org/10.1016/j.csite.2014.10.002
https://doi.org/10.1109/ACCESS.2021.3133815
https://doi.org/10.1016/j.apnum.2018.07.005
https://doi.org/10.1016/j.egyr.2018.05.003
https://doi.org/10.1007/s42452-019-0632-z
https://doi.org/10.22055/JACM.2019.28052.1453


Open Access     Baghdad Science Journal                                P-ISSN: 2078-8665 

Published Online First: May, 2023                     2024, 21(1): 161-173                                             E-ISSN: 2411-7986 

 

111 

14. Jasim A M. New Analytical Study for Nanofluid 

between Two Non-Parallel Plane Walls (Jeffery-

Hamel Flow). J. Appl. Comput. Mech.. 2021; 7(1): 

213–224. 

https://doi.org/10.22055/jacm.2020.34958.2520. 

15. Jasim AM. New Analytical Study of Non-Newtonian 

Jeffery Hamel Flow of Casson Fluid in Divergent and 

Convergent Channels by Perturbation Iteration 

Algorithm. Baghdad J Sci. 2021; 39(1): 37–55. 

https://doi.org/10.29072/basjs.202113. 

16. Kumbinarasaiah S., and Raghunatha KR. Numerical 

solution of the Jeffery–Hamel flow through the 

wavelet technique. Heat Transfer. 2022; 51(2): 1568–

1584. https://doi.org/10.1002/htj.22364. 

17. Umavathi J C., and Shekar M (n.d.). Effect of MHD 

on Jeffery-Hamel Flow in Nanofluids by Differential 

Transform Method. J. Eng. Res. Appl. . 2022 ;(Vol. 

3). www.ijera.com. 

18. Mehmood A., Ul-Haq N., Zameer A., Ling SH., Asif 

M., and Raja Z (n.d.). Design of Neuro-Computing 

Paradigms for Nonlinear Nanofluidic Systems of 

MHD Jeffery-Hamel Flow. J. Taiwan Inst. Chem. 
2018;Vol.(91):57-85. 
https://www.sciencedirect.com/science/article/pii/S1

876107018303201. 

19. AL-Jizani, K H., and Al-Delfi J KK. An Analytic 

Solution for Riccati Matrix Delay Differential 

Equation using Coupled Homotopy-Adomian 

Approach. Baghdad Sci J. 2022; 19(4): 800–804. 

https://doi.org/10.21123/bsj.2022.19.4.0800. 

20. Al-Jawary MA, and Salih OM.Effective 

Computational Methods for Solving the Jeffery-

Hamel Flow Problem.  Baghdad Sci J. 2022. 

https://doi.org/10.21123/bsj.2022.7326. 

21. Noon, N J. Numerical Analysis of Least-Squares 

Group Finite Element Method for Coupled Burgers’ 

Problem. Baghdad Sci J.2022; 18(4): 1521–1535. 

https://doi.org/10.21123/bsj.2021.18.4(Suppl.).1521. 

22. Swaidan W., and Ali H S. Numerical solution for 

linear state space systems using haar wavelets 

method. Baghdad Sci J. 2022; 19(1): 84–90. 

https://doi.org/10.21123/BSJ.2022.19.1.0084. 

23. Tarrad AH.  3D Numerical Modeling to Evaluate the 

Thermal Performance of Single and Double U-tube 

Ground-coupled Heat Pump. High Tech  Innov. J. 

2022; 3(2): 115–129. https://doi.org/10.28991/HIJ-

2022-03-02-01. 

24. Hasan P M., and Sulaiman N A. Convergence 

Analysis for the Homotopy Perturbation Method for 

a Linear System of Mixed Volterra-Fredholm Integral 

Equations. Baghdad Sci J. 2020; 17(3(Suppl.)): 1010. 

https://doi.org/10.21123/bsj.2020.17.3(Suppl.).1010. 

25. Hasim I, Kilicman A, Ismail AI, Azmi A, and Che 

Hussin CH.Approximate Analytical Solutions of 

Bright Optical Soliton for Nonlinear Schrödinger 

Equation of Power Law Nonlinearity. Baghdad Sci 

J.2021; 18(1(Suppl.)). 

https://doi.org/10.21123/bsj2021.18.1(Suppl.).0836. 

 

 

 
 هامل جيفري مشكلة الهيدروديناميكي المغنطيسي النانوي السائل لتدفق التحليلي شبه التقييم

 
 عبير مجيد جاسم      سجى عصام عبد الرضا  

 
 قسم الرياضيات، كلية العلوم، جامعة البصرة، البصرة، العراق.

 

 الخلاصة:
 هامل جيفري دفقت في النانوية الجسيمات باستخدام يةدبعال غير المائية والديناميكا المغنيسيوم مشكلة تحليل دراسة تمت البحث هذا في

(JHF .)بين الزوايا رتأثي الحالي المشروع يدرس. مستويات ثلاثة من اعتيادية تفاضلية معادلة إلى المسألة لهذه الأساسية المعادلات تقليل يتم 

 بمخطط عرفت تحليلية تقنية باستخدام السرعة توزيع على المغناطيسي والرقم ، النانوية الجسيمات حجم ومعلمة ، رينولدز ورقم ، الصفائح

 القناة في يختلف الذي المغناطيسي الرقم باستثناء والمتباعدة المتقاربة القنوات في المعلمات هذه تأثير يتشابه(. PIS) التكراري الاضطراب

 طاقة سلسلة كلش في هي الفيزيائية للمعلمات المختلفة للقيم العالية والدقة الجيد التقارب ذات الناتجة الحلول فإن ، ذلك على علاوة. المتباعدة

 طرقب والحلول العددي الحل مع المحسوبة النتائج بين المختلفة الحالات بين المقارنة خلال من الطريقة هذه كفاءة تظهر. المطروحة للمشكلة

 .أخرى

 

 .يةالجسيمات النانو ،الصفائح غير المتوازية ،تدفق السوائل النانوية الديناميكيا المائية المغناطيسية، ،تحليل التقارب الكلمات المفتاحية:
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