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Abstract:

In this paper, analyzing the non-dimensional Magnesium-hydrodynamics problem Using nanoparticles
in Jeffrey-Hamel flow (JHF) has been studied. The fundamental equations for this issue are reduced to a three-
order ordinary differential equation. The current project investigated the effect of the angles between the plates,
Reynolds number, nanoparticles volume fraction parameter, and magnetic number on the velocity distribution
by using analytical technique known as a perturbation iteration scheme (PIS). The effect of these parameters
is similar in the converging and diverging channels except magnetic number that it is different in the divergent
channel. Furthermore, the resulting solutions with good convergence and high accuracy for the different values
of the physical parameters are in the form a power-series of the problem posed. The efficiency of this method
is shown by comparison between for different cases between computed results with numerical solution and
solutions by other methods.

Keywords: Analysis of Convergence, Magnetohydrodynamics, Nanofluid flow, Non-Parallel Plates,
Nanoparticle.

Introduction:

Fluid dynamics is a discipline of mathematics  cooling/vehicle thermal management, chiller, heat
and physics concerned with the description and study ~ exchanger, in grinding, machining and in boiler flue
of the movement of liquids and gases. The science of ~ gas temperature reduction. They exhibit enhanced
fluid dynamics is frequently separated into  thermal conductivity and the convective heat transfer
aerodynamics and hydrodynamics. Many physical coefficient compared to the base fluid. Knowledge of
elements influence fluid flow including fluid  the rheological behavior of nanofluids is found to be
characteristics, flow speed, and the geometry of the critical in deciding their suitability for convective
solid surface, also there are three important fluid heat transfer applicationst. Nano-fluids also have
physical properties like viscosity, density, and  special acoustical properties and in ultrasonic fields
compressibility. The study of flows between two  display additional shear-wave reconversion of an
parallel walls in converging/diverging channel is incident compressional wave; the effect becomes
very important due to its engineering and industrial more pronounced as concentration increases. Nano-
applications. Such applications include exchanging fluids are fluids that include nanometer-sized
heat transfer of heat exchangers for milk flowing, particles called nanoparticles. The design of
cold drawing operation in polymer industry, engineering for these fluids is considered
extrusion of molten polymers through converging  suspensions nanoparticles in a base fluid. Metals,
dies, pressure driven transport of particles through a oxides, carbides, or carbon nanotubes are common
symmetric converging/diverging channel and many nanoparticles utilized in nanofluids while  water,
others. Nano-fluids have novel properties that make  ethylene glycol, and oil are examples of common
them potentially useful in many applications in heat ~ base fluids. Nanofluids have unique properties that
transfer, including microelectronics, fuel cells, make them potentially useful in a wide range of heat
pharmaceutical processes, and hybrid powered transfer applications nanofluids also exhibit unique
engines, domestic refrigerator, engine acoustical capabilities, displaying extra shear-wave

161


https://doi.org/10.21123/bsj.2023.7955
mailto:saja.issam2@gmail.com
mailto:abeer.jassem@yahoo.com
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0003-2369-5047
https://orcid.org/0000-0001-6713-5696

Open Access
Published Online First: May, 2023

Baghdad Science Journal
2024, 21(1): 161-173

P-1SSN: 2078-8665
E-ISSN: 2411-7986

reconversion of an incident compressional wave in
ultrasonic fields; the effect gets more apparent as
concentration increases when compared to the base
fluid. They have higher thermal conductivity and
convective heat transfer coefficient. It has been
discovered that understanding the rheological
behavior of nanofluids is crucial in determining their
appropriateness for convective heat transfer?,
Nanofluid flow may be categorized into two types:
compressible and incompressible. This
categorization is based on the fluid density during the
flow, which is constant for incompressible flow and
changeable for compressible flow. Jeffrey® and
Hamel* are among the most famous researchers of
the last century whose studies focused on the flow of
viscous, incompressible fluids through convergent
and divergent channels. Furthermore, several
approaches are investigated by many researchers for
solving non-linear problems and the effects of
Magnetohydrodynamic(MHD) for different fluids
and geometries, such as®8.In this paper, one of the
most important approaches is employed for highly
nonlinear problems, known as perturbation iteration
scheme PIS(M,N)%!2 where M is the number of
correction terms in the perturbation expansion and N
denotes the highest-order derivational term in the
Taylor series, where M is always less than or equal
to N. which is used to analyze an ordinary differential
equations®. PIS is a type of analytical approach for
discovering approximate-analytical solutions to
nonlinear equations that cannot be solved exactly. It
may be used to explain, forecast, and describe
occurrences in systems induced by nonlinear
processest®te. This analytical approach has already
been successfully applied to solve the problem of
nanofluid flow, to find the analytic solutions for the
velocity, and to study differential equations
governing the MHD Jeffery-Hamel flow. In a base
fluid water the impacts of nanoparticles (Al,0s3,
TiO2, Cu), Reynolds number, Hartmann number,
angle open and volume fraction parameter on
velocity profiles are graphically discussed.
Consequently, the presented findings are compared
in in the literature with several analytical and
numerical methods such as collocation method(CM),
new analytical method (NAM), homotopy
perturbation method (HPM?¥), spectral-homotopy
analysis method (SHPM) and Range-Kutta of forth
order (RK~4) .

Mathematical Formulation

The flow of an incompressible conductive
viscous two dimensions fluid from a source or
through at the intersection of non-parallel planar
walls is presented. An electrically-driven boundary
layer flow conductive viscous fluid containing
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nanoparticles is taken into consideration. It is
possible to describe the Jeffery-Hamel problem and
the method of fluid flow on parallel walls
geometrically as in Fig.1.The velocity is completely
radial and solely dependent on r and @ only'4. In
polar coordinates, the governing equations basic are
defined mathematically as follows"-%:

Png O(XT) _ 0 1
r ar ’
~0U 1 0P [azﬁ_1aﬁ_1azﬁ [
or = ppror nflagrz " roar rzaez ' 2
2
op? .
b= 0, 2
Pn.f 5 5
1 0P 2v u
9 _ 2O _ 3
Pn.fr Or rz 90

Where p. is electromagnetic induction, i is the
radial velocity, p is the fluid density, p is the fluid
pressure, ¢ is the conductivity of the nanofluid,
vnr IS the coefficient of kinematic viscosity. The
fluid density, dynamic viscosity, kinematic viscosity,
and ¢ as a solid volume fraction of nanofluid may

be represented as follows:

Pt = (1 — @)ps+ @ps,
_ Ke

Hnf = - gy2s -

_ Mr

A" = —.
n.f Pn.f

By integrating Eq. 1, with respect to  and setting
the constant of integration 0 yield:

rii(r, 0) = w(0), 5

The derivation of Egs. 2 and 3 with respect to r and
6 respectively, can be represent as

a(o’w) | owon _ [63ﬁ _39% _ 10%
arae aroe  nffgr290  roraoe  r2aes
i@ op? ou 6

r290] pn.frZ% !
The dimensionless variables with Eq. 5 can make the
problem dimensionless

6 Uu(r,0 6 ~
0@ =22, 0@ =772 =7, 0(r6) =
=20 (D), 7

From Eq. 7, the required derivatives it will be:

0U _ wmax dw(§) @ _
90 Ar d& '’ FTE
®max >0 (§) @ — Omax dw(@)
A2r  dg&z !’ 003 A3r a3’
00 _ —wmax 92U
ar  r2 w(E)' arz
20max 0%u _ —Wmax dw(§)
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%0 20max dw(§) 8
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Substituting above partial derivative in Eq. 8, into
Eq. 6, yield

—22* Wmax dw(§) 2dw(é) dBw(@)
el O [47‘ a | ag ] +
272

ougA f dw($) =0, 9

Pn.f aé
The simplification of Eg. 9, can appear as
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oD R [(1-9) + 02 (1 -
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0 10

Subject to boundary conditions are

w(0) =0, d‘;’lg’) =0, w(1)=0, 11

Nanoparticle

Convergent channel
(inflow)

~ A . ~
where R, = “’m% is Reynolds number and H, =

2
% is Hartmann number. In addition, can classified

to two cases as:
Divergence channel : 4 > 0, wqx > 0,
Convergence channel : 1 <0, wyqx < 0.

Nanoparticle

Divergent channel
(out flow)

Figure 1. Geometry of JHF problem of convergent and divergent channel.

Perturbation Iteration Scheme (PIS)
To illustrate the general of idea for PIS(1,1).

Consider the nonlinear ordinary differential
equation**® as follows:
do® do® do®  d"Ye®
ij(E)J dE ) dEZ )] dE3 L] dz(n—l) 4
M
dWg®)
dgm
0, 12

where w is an unknown function and special
dependent variable. M is a function of w and its
derivatives. The auxiliary perturbation parameter §
can be added to Eqg. 12, as indicated in the equation
below

do® d?w@® do®  d"PYe®)
500, % T e am
M
d™Mw(®) s
dgm 7
0, 13

Rewriting Eq. 13 with & is a small perturbation
parameter as the following:

™.®),8

WOmi1

M <E' (‘)m+1(z)' (bm+1(z)' d.)m+1(z): Ty (1)5:11.:11)
0, 14
where represents m the mt" iteration with define
perturbation expansions with correction term as
follow:

w1 = Wy + 8(wc)o,

wz = w1 + 6(we)y,

@w:

w3 = Wy + 6(we)o,

WOm+1 = Oy + (W) m, 15

where w, is the correction term in the perturbation
expansion and substituting Eg. 15 in Eq. 14, get:

M (& 0m () + 8@,y O () + 5D my B ()
+ 86 W (€) +
(@m0 V() + 8ISV, wS(&) +

S(w),8) =0, 16

now, using the Taylor series expansion for the first
order derivative in the vicinity of § =0, which
gives:

dm-1
(e an®. “n()

dwn(§) d*wn(§)

df ) dfz LA ] ds(n_l) )
M dm
W (§) 0
dém
N am (@) | N
— (w
dwp R P
dm .
8 1a - (@] et
dm (n-1)
SW . ((.l)c m 5o +
am (n-1) —
SW.(Cm 8=0—0, 17

Arrange Eqg. 17 to get:
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(wc)(n) -4 (wc)m dd]vl‘ : (‘)c)m - ( (E) dg3 8) dg3 + ZSAR ((1
'dwgp dwg;) ™ @) + 2 cp) (1 — )25 (F) LW dw(E)
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PRGN _ e 4 N1.25TF \92 dw(%)
d m (wc)(n 1) ;ﬁ[ . 18 +8(4 (1 ) Ha))\ d_E 22
d 5,’;) do( The general equation of Perturbation expansion is
Note that all derivatives in Eq.18 are calculated at Wps1 = 0p + 6(we)y, 23

6 =0, the solution in Eg. 11 is an ordinary
differential equation (ODE). The boundary condition
and initial condition are used to solve this ordinary
differential equation, yielding (w.),(§). In Eq.16,
the value of (w.), (&) is replaced to obtain on
(w)m+1(€). Which it is the approximate analytical
answer, in the form of a power series, that is required.

am am
(m _ —JV[ dmo dag
(wc) - (wc)o am (wc)o
o (n) dwgn) RO
_am d
(n-1) am
dwg (n-1) ds
o (W) — —dam 19
dwgn) dwgn)

Thus, express the analytical approximate solutions
in the following way, firstly define

wo =Gy, _(?‘)c)m = ((_:m+1' ]
and the remaining solutions can be developed in
subsequent iterations

(A)O = Co,

w1 = wo + (we)g = Co + Cy,

0)2 = (,()1 + (wC)l = CO + Cl + Cz,

Omi1 =0Om + (W) =C+C, +Cy + -+
Cm1 = X126 €. 20

As a result, the value of (w,),, is substituted
in Eq. 16 to yield w,,+1(§) which takes the form of
a power series. The analytical approximate solution
to Eq. 12, is as follows:
w = T}ll_rgo Omi1 = Xizo C; -

The Application of PIS for Jeffery-Hamel
Nano-fluid Flow

The steps of PIS (1,1) to the Jeffery-Hamel
Nanofluid Flow problem in order to find an
analytical solution, can be illustrated as follows;

d3w(¥) -
2R [1-)

do@®

002 (- 0@ 5

(4_ _ (1 )1 25H )}\2 dw(E) =0,
21

the JHF of auxiliary perturbation parameter is

substituting Eq. 22 and Eq. 23, and expanding using
the Taylor series of first order derivatives about
(6 =0), give
M (@n, G, B, 0) + 8[ Moy, (0)n +

Md)n((’)c)n + Mii')n(‘*)c)n + Ms] =0, 24
from Eq. 16, the following of the partial derivatives:

M = 20Re((1 - @) + 2 @)(1 = @)* oy =
(4‘ - (1 - (p)l.ZSHa))\Zd)n,

M, = 28XRe((1 = @) + 220) (1 = 9)* >,

My, = 28XRe((1 = @) + £ 0)(1 — 9)*° wy
M(wn' Wp, dsn' 0) =,
M&n = 1. 25
By calculating all partial derivatives at § = 0 and
substituting the results into Eq. 24, led to
1.. =~ s
(Bc)n = =5 Bn = 22Re((1 - @) + =)
(1 - @)* 0y, — 4-Q1- (P)llzsﬁa)}\z‘bna

26

the initial condition of the Eq. 21, become
2

0o (§) = Zo + Ly§+ L, 2, 27
where,

dw(0) d?w(0)

(‘)(0) = Z0 ) dé = Zl ’ dEZ ZZ

From boundary conditions Eq. 11:

2

0o(§) = 1+7Z; % . 28

Note that having a preliminary condition for
solving the equation that involves the unknown Z,,
can calculate the value of Z, using the resulted
solution of JHF problem at a value of £ = 1. The
analytical obtained solutions can be written as
follows:

0r(©) =1+ 28 — 2R ((1 - )
1 = 2 12 Re ()
+20)(1 - )28
o
o (1 )25 T, — 40T

[ (A~ @) +2)(1 -
@) AR ZZ]E°,
29
02(§) = 1+ 28 + [~ 5 (1~ @) +2)(1 -
(P)Z'SAReZZ + Z(l _ (P)1.25 FI Z _

MNLIE — o (- @) +2e)(1 -
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Results and Discussion

Discussions of various flow parameters
(Hartmann, nanofluid volume fraction, and Reynold
numbers) on the velocity profile w(&) are included
in this section. Firstly, Table 1 shows the physical
material in state of density, thermal conductivity and
specific heat capacity for (water
Al,03, TiO2 and Cu). The convergence of values Z,
is clearly shown in Tables 2 and 3. The PIS findings
are presented in Tables 4-8 and compared to the
numerical, collocation technique solutions and other
methods. The results are totally compatible, as
shown in the tables, also, when observing Tables 5,
7, and 8, when making the error between the method
we are working on and the numerical methods in the
literature, we note that the PIS is the best in terms of
solutions and excellent compatibility with the
numerical methods, so this gives us preference to
take it and work with it in the subsequent fields. This
precision instills in us a high level of trust in the
validity of the problem and demonstrates a high level
of engineering precision agreement. This inquiry is
finished by illustrating the impacts of a few key
factors in order to determine how these variables
affect the fluid. Figs. 2-4, illustrate the impact of
various active parameter settings.
Material Al,03.The impact of the Hartmann
number on the velocity profiles of divergent and
convergent channels is seen in Fig. 2a. The results
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reveal that raising the Hartmann number raises the
velocity profiles of both convergent and divergent
channels. As the Hartmann number rises, it becomes
clear that there is no backflow in both channels.
Figure 2b illustrates that in divergent channels, fluid
velocity falls with Reynolds numbers, whereas in
convergent channels, fluid velocity increases with
Reynolds numbers. According to Fig. 2c, the fluid
velocity tends to decrease as the nanofluid volume
fraction increases in divergent channels but increases
in convergent channels.

Material TiO2. Figure 3a shows the result of raising
the Hartmann number on the velocity profiles of
divergent and convergent channels. The velocity
profiles of convergent and divergent channels are
reduced as a result. There is no backflow in both
channels when the Hartmann number increased. In
both divergent and convergent channels, the fluid
velocity decreases with increasing Reynolds
numbers, as seen in Fig. 3b. The fluid velocity
reduces with increasing nanofluid volume fraction in
divergent channels but increases with nanofluid
volume fraction in convergent channels, as shown in
Fig. 3c.

Material Cu. Figure 4a, illustrates the impact of the
Hartmann number on the velocity profiles of
divergent and convergent channels. It's worth noting
that when the Hartmann number rises, the velocity
profiles of convergent and divergent channels
decrease. Furthermore, raising the Hartmann number
in both channels results in no backflow, which is
plainly visible. Figure 4b, shows that in divergent
channels, the fluid velocity falls as the Reynolds
number increases, whereas in convergent channels,
the fluid velocity increases. Fluid velocity decreases
with increasing nanofluid volume fraction in
divergent channels, but rises in convergent channels,
as seen in Fig. 4c.

The effect of changing the angle yielding to
increases the profile of velocity as clear in Fig. 2d,3d
and 4d, for Al, 04, TiO2, and Cu respectively. In the
convergent channel, the increase is evident in the
effect of the angle on the velocity profile curves, but
the opposite can be seen in the divergent channel.
The rise of the Reynolds number has an effect on the
convergence of the solutions as shown in the
behavior of the wvelocity in the figures in the
divergent channel only, notice the deviated of the
curve at A = 20° in &€ = 0.65 . It can also be noted
that there is no effect when an increase in the
Reynolds number of the converging channel in
increasing the velocity curves in all cases as shown
in Fig. 2d, 3d and 4d.

Physically, the impact of the Reynolds
number on the velocity distribution is due to higher
viscosity at the border, which causes fluid motion
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resistance and hence an increase in the momentum
boundary layer. The influence of nanofluid volume
fraction on velocity is shown, with a steady drop in
velocity profile as the nanofluid volume fraction
rises. When ¢ =0 in this plot, the fluid is
transported down the channel with no nanofluid
volume percentage. Given the significant energy
exchange rate when fluid molecules flow through the
nonparallel channel, nanofluid volume fraction has
an influence on the fluid and lowers the thickness of
the momentum barrier layer. The influence of
channel opening angles on the divergent- convergent
plate. To prevent fluid backflow, relatively broad
open channel angles are used. Backflow is not a
problem in the converging channel, but it can happen

Table 1. Properties of Nanofluid and Nanoparticles

in the diverging channel. Backflow is prevented by a
high Reynolds number in the presence of a strong
magnetic field strength. As shown, increasing the
channel angle quantitatively results in a considerable
drop in the velocity profile. The magnetic field
effects flow, as seen by the magnetic field intensity
and the reduction in fluid flow via the nonparallel
channel. As can be seen in the plot, absolute velocity
decreases. This may be explained physically by the
existence of resistive forces at the channel's border
owing to an increase in boundary layer thickness,
which causes a retarding effect on the velocity field.
Now, some tables and figures will be reviewed that
changed values of R, , H, and ¢ as fallow:

Item p(kg/m?) CP(J/kgK) k(W/mK)
Al 03 3970 765 40
TiO, 4250 686.2 8.9538
Cu 8933 385 401
fluid phase(water) 997.1 4179 0.613

Table 2. The convergence of the fixed values when ¢ = 0.001

Order R, =30,H,=700

R, = 30,H, = 600

R, =20,H, =200
A=2 A=3 A=5
Class 1 -2.166866549 -2.103282989 -2.229756176
Class 2 -2.165203558 -2.105260852 -2.228845350
Class 3 -2.165221284 -2.105264580 -2.228865090
Class 4 -2.165221197 -2.105264601 -2.228865106
Class 5 -2.165221197 -2.105264601 -2.228865106

Table 3. The convergence of the fixed values when ¢ = 0.001

R, =30,H, =700 R, = 30,H, = 600 R, =20,H, =200
Order A=-2° 1=-3 A1=-5
Zy Zy Z,
Class 1 -1.657407 -1.445386 -1.45574
Class 2 -1.638453 -1.393417 -1.40676
Class 3 -1.637772 -1.389896 -1.40360
Class 4 -1.637756 -1.389740 -1.40347
Class 5 -1.637756 -1.389740 -1.40347

Table 4. The profile of w(§) for TiO,

¢ R,=50,H,=09p=0,A=5"

R,=10,H, =750 ¢ = 0.05,A = -5’

R,=30,H,=600p =0.02,A=75"

0.00 1.0000000000 1.0000000000
0.05 0.9955850163 0.9985407480
0.10 0.9824360737 0.9941370402
0.20 0.9312441318 0.9761297024
0.30 0.8506474508 0.9446966965
0.40 0.7468472460 0.8976157250
0.50 0.6270205939 0.8315921452
0.60 0.4983152995 0.7420743222
0.70 0.3670452811 0.6230187448
0.75 0.3020636550 0.5500506880
0.80 0.2381888793 0.4666155463
0.85 0.1758023208 0.3714135480
0.90 0.1151907682 0.2629998131
0.95 0.05655169989 0.1397785248
1.00 0.00000000000 0.0000000000

1.0000000000
0.9975322023
0.9901341560
0.9606182178
0.9116655867
0.8435286562
0.7563476197
0.6499430042
0.5235488252
0.4523740775
0.3754720632
0.2924130170
0.2026445163
0.1054664173
0.0000000000
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Table 5. The profile of w(§) for Cu

R.=30, H,=600, A1=5, ¢=0.02
& PIS NAMY RK~4 Residual error Residual  error
(P1S,RK~4) (NAM,RK~4)
0.00  1.0000000000 1.000000000 1.000000000 0.000000000 0.000000000
0.10  0.9898438613 0.989837623 0.989843868 0.000000006 0.000006245
0.20  0.9595061889 0.959481313 0.959506219 0.000000030 0.000024906
0.30  0.9093422847 0.909286554 0.909342349 0.000000064 0.000055795
0.40  0.8398237017 0.839725036 0.839823811 0.000000109 0.000098775
0.50  0.7513647610 0.751210824 0.751364924 0.000000163 0.000154100
0.60  0.6440902848 0.643867387 0.644090515 0.000000231 0.000223128
0.70  0.5175457664 0.517236610 0.517546090 0.000000324 0.000309480
0.80  0.3703390664 0.369919206 0.370339540 0.000000474 0.000420340
0.90  0.1996813580 0.199115412 0.199682092 0.000000734 0.000566680
1.00  0.0000000000 0.000000000 0.000000000 0.000000000 0.000000000
Table 6. The profile of w (&) for Cuwhen R, = 50,H, =0,A=5",¢ = 0.
& PIS Reference!’ HPM?® SHPM?*® Reference?! Reference? RK~4
0.00 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
0.25 0.894269 0.894649 0.894960 0.894242 0.894242 0.894243 0.894269
0.50 0.627020 0.628312 0.627220 0.626948 0.266948 0.626953 0.627022
0.75 0.302063 0.303771 0.302001 0.301990 0.301991 0.301998 0.302065
1.00 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
Table 7. The profile of w(§) for Cu
R.=10, H, =750, A=-5, ¢@=0.05
& PIS NAMY CMZ Residual error Residual error
(P1S,CM) (NAM,CM)
0.00 1.0000000000 1.000000000 1.000000000 0.0000000000 0.000000000
0.10  0.9942690739 0.994237767 0.994278317 0.0000092431 0.000040550
0.20  0.9766464658 0.976518907 0.976670165 0.0000236992 0.000151258
0.30  0.9458150013 0.945519431 0.945855446 0.0000404447 0.000336015
0.40  0.8994867526 0.898941811 0.899546175 0.0000594224 0.000604364
0.50  0.8342633380 0.833382035 0.834341990 0.0000786520 0.000959955
0.60 0.7454407460 0.744151771 0.745536091 0.0000953450 0.001378381
0.65  0.6902932180 0.688792461 0.690394661 0.0001014430 0.001602200
0.70  0.6267640959 0.625067799 0.626869073 0.0001049771 0.001801274
0.75  0.5537831903 0.551934739 0.553888111 0.0001049207 0.001953372
0.80  0.4701479955 0.468230004 0.470248161 0.0001001655 0.002018157
0.85  0.3745158259 0.372665147 0.374605389 0.0000895631 0.001940242
0.90 0.2653976864 0.263823428 0.265469361 0.0000716746 0.001645933
0.95 0.1411549204 0.140159099 0.141198775 0.0000438546 0.001039676
1.00 0.0000000000 0.000000000 0.000000000 0.0000000000 0.000000000
Table 8.The profile of w(§) for Al,0,
R.=10, H,=0,A=-3", ¢=0.01
'3 Present solution Referencel’ Numerical method?? Residual error Residual  error
(PIS,NM) (Reference!’,NM)
0.10 0.9892746750 0.989274758 0.989274758 0.000000083 0.000000000
0.15 0.9758945272 0.975894713 0.975894718 0.000000190 0.000000005
0.20 0.9572113072 0.957211638 0.957211647 0.000000339 0.000000009
0.25 0.9332729078 0.933273423 0.933273437 0.000000529 0.000000014
0.30  0.9041393503 0.904140089 0.904140111 0.000000760 0.000000022
0.35  0.8698816537 0.869882653 0.869882686 0.000001032 0.000000033
0.40  0.8305804780 0.830581769 0.830581821 0.000001343 0.000000052
0.45  0.7863245615 0.786326170 0.786326255 0.000001693 0.000000085
0.50 0.7372089770 0.737210915 0.737211060 0.000002083 0.000000145
0.55 0.6833332169 0.683335479 0.683335727 0.000002510 0.000000248
0.60 0.6247991314 0.624801686 0.624802106 0.000002974 0.000000042
0.65 0.5617087387 0.561711523 0.561712214 0.000003475 0.000000691
0.70  0.4941619214 0.494164834 0.494165934 0.000004012 0.000001100
0.75  0.4222540321 0.422256931 0.422258619 0.000004586 0.000001688
0.80  0.3460734116 0.346076117 0.346078608 0.000005196 0.000002491
0.85  0.2656988314 0.265701137 0.265704674 0.000005842 0.000003537
0.90 0.1811968752 0.181198571 0.181203403 0.000006527 0.000004832
0.95 0.0926192463 0.092620147 0.092626497 0.000007250 0.000006350
1.00 0.0000000000 0.000000000 0.000008010 0.000000000 0.000000000
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Figure 2. The behavior of the velocity w(§)for Al,0,.
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Figure 4. The behavior of the velocity w(§) for Cu.
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The Criterion of Convergence

In this section, the analysis of convergence?*? for

approximate- analytical solutions obtained by

applying the perturbation iteration scheme to Jeffery

Hamel nanofluid flow is discussed.

From the theorems®?, the convergence condition can

be summarized as follows:
el e o,

B =1 cl
0, IC;ll = 0.

Then, we can say that the series approximate
solutions {w,}g converges to the exact solution w
which satisfy 0 < f; < 1. As a result, we will
investigate the convergence of all the solutions from
applying PIS with various parameters physical to the
flow problem provided as in Tables 9-11.:

Fori=10,1,2, ...

Table 9.The values of the convergence condition
for H, = 100,¢ = 0.02.

Table 10. The values of the convergence condition
for R, = 60,9 = 0.05.

gﬁgxi';?em Divergent Channel
H, = B, 0.4135183495 | B, 0.8735164047
100 B, 0.4217938618 | B, 0.5989330136

B, 0.2316881525 | B, 0.4047721428

Bo 0.4245427965 | B, 0.6053471556
H, B, 05145881398 | B, 0.4478715869
=500 | B, 0.2800577281 | B, 0.2819873444
i Bo 0.4228299262 | B, 0.4512128494
. a7 50 B, 05742276354 | B, 0.3646051721
- B, 0.3112843779 | B, 0.2190332775

Table 11.The values of the convergence condition
for R, = 60 ,H, = 1000.

Convergent Divergent Channel Convergent Divergent
Channel Channel Channel
_ B, 0.1411810894 | g, 0.07791235460 ® B, 0.09226558641 | B, 0.4642518368
R, | g, 0.0935334332 | g, 0.05724796917 =002 | B, 01525787323 | p, 0.3974196368
=10 | B, 0.0515927896 Ba 0.03205'946998 B, 0.3430056094 B, 0.2387217804
B, 0.3863381649 | B, 0.6896834846 B, 0.1205813049 | B, 0.4378818589
_ p, 0.3581219765 | p,  0.4583435333 B, 0.2039766130 | B, 0.3748808097
R. | p, 01968631136 | p, 0.2943455867 ¢ 005 | B 03623216572 | B, 02233554244
=50 : : : : =U : : : :
_ Bo 0.4305492890 | B, 0.9690339670 B, 0.7017153800 | B, 0.5816984975
R, | pp 04851477564 | p,  0.7640911730 @ B, 0.4135136276 | B, 0.4754310591
=70 | B, 0.2662747644 | B, 0.5477475715 =0.09 | B, 03797457088 | g, 0.2967041282
From the above tables, it is noted that the value of S;
, 1=0,1,2,.. are sandwiched between 0 and 1,
therefore the presented solutions are convergence.
Fig. 5 describes the curves behaviors of the fluid flow
in convergent- divergent channels.
Physical parameters
Converge [ Diverge | Converge Diverge | Converge Diverge l Converge Diverge I

=

o

Figure 5. The behaviors of the curves of velocity profiles.
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Conclusion:
While working in this manuscript, the
approximate analytical PIS of the velocity

distribution of the Jeffrey-Hamel flow problem with
nanoparticles was used. Since PIS is an effective and
efficient approach to address all kinds of Jeffrey-
Hamel flow problems, the method has been
successfully  demonstrated  using  similarity
transformation through which the governing
equations (continuity, momentum) of this problem
have been converted into an ordinary differential
equation, in addition to that it has been compared
with other numerical methods. Note that the
imposed method is more accurate among the
methods, and the parameters were made semi-
basically and their values were controlled to discuss
the variation that occurs in the velocity profiles, as it
was presented briefly in Fig. 5, which roughly
illustrates the behavior that this method causes when
changing the parameters on the velocity profile in the
two converging/divergent channels. So, we can say
that this method is useful to work on in detecting the
behavior of nanofluids during their flow and
knowing the velocity and convergence that they
cause when taking water as a basic liquid with
nanoparticles such as (copper, silver, titanium and
aluminum). The future study of this method is done
by expanding the horizons of working on nanofluids
by taking fluids with higher densities. For example,
we can replace water with oil or alcohol, or a mixture
between oil and water, and so on, with different
nanoparticles to obtain a more complex fluid and an
advanced issue that can be used in various fields.
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