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Introduction 

The optimization problem is a model among many 

mathematical approaches that deals with solving 

real life problems, solving exactly and numerically, 

for different branches; such as, statistics; physics 

and engineering. This leads to more attempted from 

the researchers to present more efficient methods 

continuously.     

Now, consider a minimization of unconstrained 

problem: 

 min 𝑓(𝑥),   𝑥 ∈ ℛ𝑛                                            1 

where, 𝑓: ℛ𝑛 → ℛ is bounded below and twice 

differentiable function. Many numerical methods 

are used for solving Eq.1. Quasi-Newton 

approaches are among the most recommended 

methods having the efficiency in solving these types 

of problems, due to their super-linear rate of 

convergence and global convergent property.  

The minimization of problem Eq.1 would be by 

many iteration steps in order to gain an acceptable 

solution, that is:  

𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘 ,  𝑘 = 0,1, …           2 
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for, 𝛼𝑘 ∈ ℛ is line search and 𝑑𝑘 ∈ ℛ𝑛 is direction 

search toward the reduction of the function. The 

direction of quasi-Newton methods is given by: 

𝑑𝑘 = −𝐵𝑘
−1𝑔𝑘                                                  3 

for which,  𝑔𝑘 is gradient of 𝑓 at the iteration step 

𝑥𝑘 and 𝐵𝑘
−1 is an approximation of Hessian matrix 

∇2𝑓(𝑥) at 𝑥𝑘, denoted by 𝐻𝑘. BFGS is one of 

effective procedure among quasi-Newton methods, 

in which its name takes from four developers 

named: Broyden, Fletcher, Goldfrab and Shanno;1. 

In this most popular algorithm, the inverse of 

Hessian matrix will be approximated by the 

formula: 

𝐻𝑘+1 = 𝐻𝑘 +
(𝑠𝑘+𝐻𝑘𝑦𝑘)′𝑦𝑘𝑠𝑘𝑠𝑘

′

(𝑠𝑘
′ 𝑦𝑘)

2 −
𝐻𝑘𝑦𝑘𝑠𝑘

′ +𝑠𝑘𝑦𝑘
′ 𝐻𝑘

𝑠𝑘
′ 𝑦𝑘

     4 

as, 

𝑠𝑘 = 𝑥𝑘 − 𝑥𝑘−1  , 𝑦𝑘 = 𝑔𝑘 − 𝑔𝑘−1                         5 

whereas, it begins with initial positive definite 

matrix 𝐻0 up to the required steps. The positive 

definite property of Hessian matrix approximation 

or the preserve it after any modifications is the 

matter that many researchers deal with it. For 

instance, Mahmood 2 gave a modification BFGS 

update formula the inverse version, tried to show 

how it remains symmetric and positive definite, this 

is the reason to make the problem convergence to 

the solution in minimization problems. 

Additionally, this issue is serious in other quasi-

Newton method types 3. The self-correcting 

property is a technique to overcome the ill-

conditioned problem, for this, Cheng and Li 4 scaled 

the quasi-Newton equation and suggested a new 

spectral scaling for BFGS method with this 

property. Their method has the property of self-

correcting alike as conventional BFGS has with 

more efficiency in correcting a large eigenvalue of 

Hessian matrix approximation might suffer from. 

This leads to the improvement in BFGS method. 

Minutely, in their work, they use the exact line 

search to minimize strictly convex problem from 

the dimension 𝑛, in which it is terminated in 𝑛 steps 

as steepest descent method. Also, in uniformly 

convex problems, the method with Wolfe condition 

is globally and R- linear convergent. Nakayama et 

al., 5 studied a symmetry rank 1 memoryless quasi-

Newton with a parameter of spectral scaling given 

in 4. Later, the global convergence of the formula 

proposed by  Nakayama and Narushima 6.  Finally, 

the hybridization of it with three-term conjugate 

gradient utilizing a spectral parameter was designed 

by Nakayama 7. Additionally, the efficiency of 

memoryless BFGS method using spectral scaling of 
4 in minimizing the eigenvalues was proved by Lv 

et al. 8. 

However, conjugate gradient methods (CGM) have 

many studies in this area. Firstly, a gradient 

parameter is used in proposing a new spectral 

scaling parameter 9.  Another idea was nested 

between spectral parameter and CGM one and this 

was given by Wang et al., 10 with presenting the 

importance of it in solving a large-scale problems. 

Furthermore, a fast CGM is given with combining a 

new direction with spectral parameter and previous 

direction, this is proposed in 11. Also, the convex 

combination idea take a place in this topic, the 

spectral scaling defined as a convex combination of 

two CGM coefficients 12. In a constrained 

optimization problem with bounded condition, there 

is a spectral parameter with memoryless property 

for Broydon class presented by Nakayama et al. 13.  

Eventually, for a real live example, scientist use the 

spectral algorithms to analyze the problems as a 

drug abuse problems; see 14. 

After all the presented works, SQNEI and SQNEv-Iv 

algorithms are proposed; that deal with new 

position for spectral scaling parameter and value.  

In more details, it is an idea to think how changing 

the involving parameters out of updating formula 

for Hessian matrix approximation in BFGS method 

is affecting in the optimization processing. This is 

aiming at finding more efficient algorithms in 

spectral scaling methods due to their importance in 

soling real-life problems. The article, presents two 

methods with their step algorithms in next section. 

The third section is proved the convergence of the 

two method and the relationship between them 

along with some mild assumptions. There is a proof 

for the sufficient decent, global and superlinear rate 

convergence. Finally, the numerical results are 

presented.  
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Materials and Methods 

In this work, two spectral quasi-Newton methods 

have been suggested as follows: 

 

The SQNEv-Iv Algorithm 

In the first part, the SQNEv-Iv algorithm is suggested, 

in which the acceleration parameter is involved in 

search direction; after the Hessian matrix inverse 

approximation has done. In other words, the search 

direction contains all required update for BFGS 

Hessian matrix formula, then it multiples with the 

spectral scaling parameter. Now, our new 

suggestion algorithm SQNEv-Iv; which the spectral 

parameter sets in the direction is as following:   

    𝑑𝑘 = {
−𝐻𝑘𝑔𝑘                                               𝑘=0

−(
𝑦𝑘

𝑇𝑠𝑘

2‖𝑦𝑘‖
2)

1
2⁄

𝐻𝑘𝑔𝑘                      𝑘≥1

             6 

with, the condition: 

   𝑦𝑘
𝑇𝑠𝑘 > ‖𝑦𝑘‖2                                             7 

  Thus, the algorithm steps are given as: 

Step 1: Initializations step: choose 𝐻0 identity 

matrix or positive definite matrix 𝑋0 ∈ ℝ𝑛,tolerance 

휀 = 1 × 10−7  

Step 2: Start with 𝑑0 = −𝐻0𝑔0 , 𝑘 = 1  

Step 3: Termination criteria, if  ‖𝑔𝑘‖ ≤ 휀  or 

maximum number of iterations reached Stop. 

Step 4: Find inexact step size  𝛼𝑘 satisfies Wolfe 

conditions 

Step 5: Compute 𝑠𝑘 = 𝑥𝑘 − 𝑥𝑘−1 and 𝑦𝑘 = 𝑔𝑘 −
𝑔𝑘−1 

Step 6: Check weather 𝑦𝑘
𝑇𝑠𝑘 > ‖𝑦𝑘‖2, if not; Stop 

Step 7: Update 𝐻𝑘 in Eq.4. 

Step 8: Evaluate search direction by Eq. 6 

Step 9: set 𝑘 = 𝑘 + 1,  go to step 3. 

The SQNEI Algorithm 

 This subsection is about another new algorithm 

named SQNEI. The spectral parameter of  Cheng 

and Li (2010) 4 is used but in different step of 

algorithm. The direction is given as this formula: 

    𝑑𝑘 = {
−𝐻𝑘𝑔𝑘                                               𝑘=0

−
𝑦𝑘

𝑇𝑠𝑘

‖𝑦𝑘‖
2𝐻𝑘𝑔𝑘                                   𝑘≥1

               8 

So, the steps of the SQNEI algorithm are the same as 

previous subsection, but without step 6 and in step 

8,  𝑑𝑘
 is defined as in Eq.8. 

The Convergence Analysis of SQNEv-Iv and 

SQNEI  

The convergence analysis of our algorithm is 

discussed in this part.  

A list of Assumptions: 

For conducting the analysis in section 3, some 

assumptions are needed as follows: 

(i) Assume that 𝑓, an objective function, is 

twice continuously differentiable. 

(ii) The Lipschitz continuous properties for the 

Hessian matrix at 𝑥∗, that is, it is satisfying 

the inequality: 

‖∇2𝑓(𝑥) − ∇2𝑓(𝑥∗)‖ ≤ 𝑐‖𝑥 − 𝑥∗‖ 

     with the existing of a positive constant c and all 

𝑥 in neighborhood of 𝑥∗ 

(iii) If the objective function  𝑓 ∈ 𝐶2 and  𝐷 =
{𝑥: 𝑓(𝑥) ≤ 𝑓(𝑥0)}  is a convex level set, 

then there exist two positives 𝑘1and 𝑘2  

satisfying  𝑘1‖𝑢‖2 ≤ 𝑢′∇2𝑓(𝑥)𝑢 ≤ 

𝑘2‖𝑢‖2  ∀ 𝑢 ∈ ℜ𝑛 , 𝑥 ∈ 𝐷 and ∇2𝑓(𝑥) is 

Hessian matrix of 𝑓. 

The Relationship between SQNEv-Iv and SQNEI  

Parameters 

It is obvious that, SQNEv-Iv parameter is a function 

of SQNEI. However, there is a relation between 

them; as long as there is a condition for the one in 

SQNEv-Iv, this means that: 

https://doi.org/10.21123/bsj.2023.8020
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𝑦𝑘

𝑇𝑠𝑘

‖𝑦𝑘‖2 > 1                                                     9 

Then, multiplying both sides of Eq.9  
𝑦𝑘

𝑇𝑠𝑘

‖𝑦𝑘‖2 , and 

taking the square root to them to obtain the 

following: 

(
𝑦𝑘

𝑇𝑠𝑘

‖𝑦𝑘‖2)

1
2⁄

<
𝑦𝑘

𝑇𝑠𝑘

‖𝑦𝑘‖2  

1

√2
(

𝑦𝑘
𝑇𝑠𝑘

‖𝑦𝑘‖2)

1
2⁄

<
1

√2
 

𝑦𝑘
𝑇𝑠𝑘

‖𝑦𝑘‖2  

(
𝑦𝑘

𝑇𝑠𝑘

2‖𝑦𝑘‖2)

1
2⁄

<  
𝑦𝑘

𝑇𝑠𝑘

‖𝑦𝑘‖2  

Which means the parameter of SQNEv-Iv is less than 

the parameter of SQNEI. 

Sufficient Descent Property of Two Algorithms 

In this algorithm, assumed that the direction as 

given in Eq.6 and Eq.8, that is; it is used to prove 

the descent direction: 

𝑔0
𝑇𝑑0 = −𝑔0

𝑇𝐻0𝑔0
 

                                                                                      ≤ −𝑐‖𝑔0‖2            
By Assumption 1 (iii) 

This means that it has descent direction property for 

𝑘 = 0. 

Now, it is wanted to prove for 𝑘 ≥ 1. 

Since, in this part the direction search is given as  

𝑑𝑘 = − (
𝑦𝑘

𝑇𝑠𝑘

2‖𝑦𝑘‖2)

1
2⁄

𝐻𝑘𝑔𝑘  

and  

𝑔𝑘
𝑇𝑑𝑘 = 𝑔𝑘

𝑇(− (
𝑦𝑘

𝑇𝑠𝑘

2‖𝑦𝑘‖2)

1
2⁄

𝐻𝑘𝑔𝑘)  

          = − (
𝑦𝑘

𝑇𝑠𝑘

2‖𝑦𝑘‖2)

1
2⁄

𝑔𝑘
𝑇𝐻𝑘𝑔𝑘  

𝑔𝑘
𝑇𝑑𝑘 ≤ −𝑐 (

𝑦𝑘
𝑇𝑠𝑘

2‖𝑦𝑘‖2)

1
2⁄

 .  

For positive constant 𝑐, since 𝑦𝑘
𝑇 and 𝑠𝑘  are in the 

same direction, and by the assumption 1. (iii), one 

can get  

𝑔𝑘
𝑇𝑑𝑘 ≤ −𝑐 

𝑦𝑘
𝑇𝑠𝑘

‖𝑦𝑘‖2  .  

Therefore, 𝑔𝑘
𝑇𝑑𝑘

 has descent direction property in 

SQNEv-Iv. In the same way for SQNEI the property 

holds for it is gotten. 

The Global Convergence Analysis 
In order to prove the global convergence of the 

proposed algorithms, Lemma 7 in 15 showed a line 

search with Armijo condition and the property of 

descent direction satisfies one or both following 

inequalities. That is, 

 if  ℎ(𝑥𝑘+1) = 𝑓(𝑥𝑘+1) − 𝑓(𝑥𝑘), then either:  

  ℎ(𝑥𝑘+1) ≤ −𝑛1
(𝑔𝑘

𝑇𝑑𝑘)2

‖𝑑𝑘‖2                                 10 

or 

   ℎ(𝑥𝑘+1) ≤ −𝑛2 𝑔𝑘
𝑇𝑑𝑘                                  11 

where 𝑛1 and 𝑛2 any positive constant. 

Theorem 1: Let assumption 1 is hold; search 

direction 𝑑𝑘 is given by Eq.8 satisfied descent 

condition and 𝛼𝑘 has Armijo condition inequality. 

Then. 
lim

𝑘→∞
inf  ‖𝑔𝑘‖ = 0 

Proof: It will prove by contradiction. Let 𝛿 > 0 and 
‖𝑔𝑘‖ > 𝛿 and  

𝑑𝑘 = −
𝑦𝑘

𝑇𝑠𝑘

‖𝑦𝑘‖2 𝐻𝑘𝑔𝑘  

‖𝑑𝑘‖ = ‖−
𝑦𝑘

𝑇𝑠𝑘

‖𝑦𝑘‖2 𝐻𝑘𝑔𝑘‖ ≤
‖𝑦𝑘

𝑇𝑠𝑘‖

‖𝑦𝑘‖2
‖𝐻𝑘‖‖𝑔𝑘‖  

‖𝑑𝑘‖

‖𝑔𝑘‖2 ≤
‖𝑦𝑘

𝑇𝑠𝑘‖‖𝐻𝑘‖

‖𝑦𝑘‖2‖𝑔𝑘‖
  

since 𝐻𝑘 is bounded then ‖𝐻𝑘‖ < 𝑢, therefore: 

‖𝑑𝑘‖

‖𝑔𝑘‖2 ≤
‖𝑦𝑘

𝑇𝑠𝑘‖ 𝑢

‖𝑦𝑘‖2‖𝑔𝑘‖
  

and by assumption 1 (iii), it is:  

https://doi.org/10.21123/bsj.2023.8020
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𝑚‖𝑠𝑘‖2 ≤ 𝑦𝑘
𝑇𝑠𝑘 ≤ 𝑀‖𝑠𝑘‖2  

where,  𝑚 and 𝑀 are positive constant. 

Since 𝑦𝑘
𝑇 = 𝑠𝑘

𝑇∇2𝑓, then: 

𝑦𝑘
𝑇𝑠𝑘

‖𝑦𝑘‖2 =
𝑠𝑘

𝑇∇2𝑓 𝑠𝑘

𝑠𝑘
𝑇(∇2𝑓)2𝑠𝑘

=
𝑟𝑘

𝑇𝑟𝑘

𝑟𝑘
𝑇∇2𝑓𝑟𝑘

=
1

𝑅𝑎𝑦(∇2𝑓,𝑟)
=

1

𝜆
> 0  

with 𝑀 =
1

𝜆
, therefore: 

‖𝑑𝑘‖

‖𝑔𝑘‖2 ≤
𝑀 𝑢

‖𝑔𝑘‖
  

Now, by our assumption, ‖𝑔𝑘‖ > 𝛿; then it is 

obtained:  

‖𝑑𝑘‖

‖𝑔𝑘‖2 ≤
𝑀 𝑢

𝛿
  

So,  

‖𝑔𝑘‖4

‖𝑑𝑘‖2 ≥
𝛿2

𝑀2𝑢2  

                                                                      

∑
‖𝑔𝑘‖4

‖𝑑𝑘‖2
∞
𝑘=0 ≥ ∑

𝛿2

𝑀2𝑢2 = ∞∞
𝑘=0   

Hence, 

∑
‖𝑔𝑘‖4

‖𝑑𝑘‖2
∞
𝑘=0 ≥ ∞  

But there is, 𝑔𝑘
𝑇𝑑𝑘 = −‖𝑔𝑘‖2 , thus: 

∑
‖𝑔𝑘‖4

‖𝑑𝑘‖2
∞
𝑘=0 = ∑

(𝑔𝑘
𝑇𝑑𝑘)2

‖𝑑𝑘‖2 ≥ ∞.∞
𝑘=0   

This is contradiction to Eq.9 and Eq.10. Therefore:  

lim
𝑘→∞

inf  ‖𝑔𝑘‖ = 0 

Hence, it is global convergent. 

Remark 1: Theorem 1 is hold, the global 

convergence, when the direction of SQNEI 

algorithm is used. Therefore, by subsection 2, the 

same result is obtained. 

Superlinear Rate of Convergence 

In this section, the superlinear convergence is 

presented and proved. In order to do that, some 

principles are need and recall them in 16 two lemmas 

4.9 and 4.10. Then with holding the assumption 1, a 

sequence of numbers as {𝜖𝑘}  such that  

‖𝑦𝑘−∇2𝑓(𝑥∗)𝑠𝑘‖

‖𝑠𝑘‖
≤ 𝜖𝑘   and    ∑ 𝜖𝑘

∞
𝑘=1 < ∞ 

whenever,  𝑦𝑘   and 𝑠𝑘 are given in Eq.5. These all 

tend to the boundedness of the sequence of Hessian 

matrix approximation and its inverse, that is,  {𝐻𝑘}   

and   {𝐻𝑘
−1}: 

Therefore: 

lim
𝑘→∞

‖(𝐻𝑘
−1 − ∇2𝑓(𝑥∗))𝑠𝑘‖

‖𝑠𝑘‖
= 0 

Theorem 2: Suppose assumptions 1 (i) and (iii) are 

holds, {𝑥𝑘} → 𝑥∗ and the sequence {𝐻𝑘} , {𝐻𝑘
−1} 

are bounded. If 𝑥𝑘+1 = 𝑥𝑘 + 𝑑𝑘 holds for all 

sufficiently large 𝑘 with  

lim
𝑘→∞

‖(𝐻𝑘
−1−∇2𝑓(𝑥∗))𝑑𝑘‖

‖𝑑𝑘‖
= 0, then  lim

𝑘→∞

‖𝑥𝑘+1−𝑥∗‖

‖𝑥𝑘+1−𝑥𝑘‖
=

0. 

Proof: 

[𝐻𝑘
−1 − ∇2𝑓(𝑥∗)]𝑑𝑘 = 𝐻𝑘

−1𝑑𝑘 − ∇2𝑓(𝑥∗)𝑑𝑘  

          = 𝐻𝑘
−1[− (

𝑦𝑘
𝑇𝑠𝑘

2‖𝑦𝑘‖2)

1
2⁄

𝐻𝑘𝑔𝑘] − ∇2𝑓(𝑥∗)𝑑𝑘  

                     = − (
𝑦𝑘

𝑇𝑠𝑘

2‖𝑦𝑘‖2)

1
2⁄

𝐻𝑘
−1𝐻𝑘𝑔𝑘 −

∇2𝑓(𝑥∗)𝑑𝑘 = − (
𝑦𝑘

𝑇𝑠𝑘

2‖𝑦𝑘‖2)

1
2⁄

𝑔𝑘 − ∇2𝑓(𝑥∗)𝑑𝑘  

= − (
𝑦𝑘

𝑇𝑠𝑘

2‖𝑦𝑘‖2)

1
2⁄

[𝑔𝑘 − ∇2𝑓(𝑥∗)𝑑𝑘] +

[− (
𝑦𝑘

𝑇𝑠𝑘

2‖𝑦𝑘‖2)

1
2⁄

− 1]∇2𝑓(𝑥∗)𝑑𝑘  

= − (
𝑦𝑘

𝑇𝑠𝑘

2‖𝑦𝑘‖2)

1
2⁄

𝑔𝑘+1 + [− (
𝑦𝑘

𝑇𝑠𝑘

2‖𝑦𝑘‖2)

1
2⁄

−

1] ∇2𝑓(𝑥∗)𝑑𝑘 + 𝑜(‖𝑑𝑘‖)  

Therefore: 

‖(𝐻𝑘
−1 − ∇2𝑓(𝑥∗))𝑑𝑘‖ = 𝑂(1)‖𝑔𝑘+1‖ + 𝑜(‖𝑑𝑘‖) 

https://doi.org/10.21123/bsj.2023.8020


 

Page | 2075  

2024, 21(6): 2070-2078 

https://doi.org/10.21123/bsj.2023.8020 

P-ISSN: 2078-8665 - E-ISSN: 2411-7986 
 

Baghdad Science Journal 

as it has given that: 

lim
𝑘→∞

‖(𝐻𝑘
−1 − ∇2𝑓(𝑥∗))𝑑𝑘‖

‖𝑑𝑘‖
= 0 

so that: 

lim
𝑘→∞

‖𝑔𝑘+1‖

‖𝑑𝑘‖
= lim

𝑘→∞

‖𝑔𝑘+1‖

‖𝑥𝑘+1 − 𝑥𝑘‖
= 0 

On the other hand: 

𝑔𝑘+1 − ∇2𝑓(𝑥∗) − ∇2𝑓(𝑥∗)(𝑥𝑘+1 − 𝑥∗) =
𝑜(‖𝑥𝑘+1 − 𝑥∗‖), with  ∇2𝑓(𝑥∗) = 0, 

Hence, lim
𝑘→∞

‖𝑥𝑘+1−𝑥∗‖

‖𝑥𝑘+1−𝑥𝑘‖
= 0. 

Remark 2: In the same manner of Theorem 1, 

easily it can prove that SQNEv-Iv has superlinear rate 

of convergence. 

Results and Discussion 

This section gives the results and presents all 

findings throughout the performance profile plots, 

the cumulative distribution function. In this way, 

the significant difference will only show in the 

interesting area. The time of CPU running and the 

number of iterations are two criterions in showing 

the effectiveness of the suggested algorithms in 

numerical optimization branch. This way is used in 

this paper. For the comparison, 46 function tests are 

used, that are in each of 17 and 18 , as listed in Table 

1. About the dimensions, the various dimensions for 

functions are taken when the function is 

multivariate. This means that, if 𝑛  is the dimension 

number, then for the first three functions in Table 1, 

when ID = 1, 2 and 3,  𝑛 = 2 is used, while for all 

other listed functions;  𝑛 = 2, 4, 6, 8, 15,30 is used 

except Diagonal 2, ID = 14, the used dinamsions 

were  𝑛 = 2,3,4,10,15. As a final result, the overall 

data becomes 260 for plotting the performance 

profile. 

The Fig.1 presents plots for the four procedures. In 

details,  Fig.1(a) shows how the SQNEv-Iv algorithm 

behaves in terms of iteration numbers for all test 

functions. The SQNEI is preferable than QNBFGS and 

SQNLC methods for reducing iteration numbers. 

However, this result is inaccurate with SQNEv-Iv 

algorithm after satisfying the condition Eq.7. 

Whenever the problem is convergent, SQNEv-Iv is 

more recommended among the four algorithms. 

Meanwhile,  Fig.1(b) reveals the time consuming of 

CPU for running all of contest algorithms. Again, 

the SQNEv-Iv procedure is better than others. For 

conducting the analysis in Fig.1, the number of test 

functions was 43; that is, all functions identify in 

Table 1 is utlized excluding functions 𝐼𝐷 =
24,37, 39. Furthermore, there were two functions, 

𝐼𝐷 = 5, 11, made a terrible for some dimension, for 

instance, function with 𝐼𝐷 = 5, 𝑛 = 6, 20, 30  and 

𝐼𝐷 = 11, 𝑛 = 20, 30 are excluded from the 

analysis. In other word, 43 test problems are filtered 

with Eq.7. 

On the other hand, Fig.2 demonstrates how the 

cumulative distribution line changes when involves 

all 46 problems named in Table 1; but inequality 

Eq.7 is ignored in SQNEv-Iv algorithm.  Along with 

this failure, SQNEv-Iv remains the selected algorithm 

comparing with QNBFGS and SQNLC except SQNEI.  

Overall, SQNEI is dominates the all engaged 

methods in this study without the inequality Eq.7 

holds.  

For all programs, the MATLAB 2018a codes are 

written with using inexact line search satisfying the 

strong Wolf condition and the error 휀 = 1 × 10−7 

or iteration number reached at maximum number, in 

which it was 1000𝑛; where 𝑛 is the dimension of 

objective function. Furthermore, the Table 1 

contains the name of all functions used in the 

comparison with some suggested dimensions. For 

running programs, the suggested initial values for 

those functions given in 17; is used  however,  there 

were some testing functions with no initial points; 

in this case, the border values of defined region is 

used as an initial point in 18. 
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Table 1. List of test functions with some dimension 

ID Function Name ID Function Name ID Function Name 

1 Camel Six Hump 17 Diagonal 4 33 HIMMELH 

2 Camel Three Hump 18 Diagonal 5 34 HIMMELBG 

3 Brent 19 Diagonal 6 35 SINCOS 

4 Raydan 1 20 Diagonal 7 36 BIGGSB1 

5 Raydan 2 21 Diagonal 8 37 DIXON3DQ 

6 Fletcher 22 Diagonal 9 38 LIARWHD 

7 Ext. White & Holst 23 Hager 39 Ext. DENSCHNF 

8 Gen. Quartic 24 Ext. Tridiagonal 1 40 NONSCOMP 

9 Gen.  Tridiagonal 1 25 Ext. TET 41 CUBE 

10 Ext. Freudenstein Roth 26 ARWHEAD 42 Ext. Penalty 

11 Ext. Beale 27 Ext. DENSCHNB 43 ENGVAL1 

12 Cliff 28 COSINE 44 POWER 

13 Diagonal 1 29 SINE 45 DQDRTIC 

14 Diagonal 2 30 Full Hessian FH3 46 Gen. Quartic 

15 Diagonal 3 31 Quartc   

16 
Almost Perturbed 

Quadratic 
32 

Ext. BD1 Block 

Diagonal  
 

 

(a)                                                                                 (b) 

Figure 1. Performance profile for four algorithms, with filtered functions (a) Number of iterations and 

(b) CPU running time 

 

(a)                                                                                 (b) 

Figure 2. Performance profile for algorithms, with all functions (a) Number of iterations and (b) CPU 

running time 
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Conclusion 

The paper suggested two new algorithms, SQNEI 

and SQNEv-Iv.  SQNEI depended on the new position 

in the usage of defined spectral parameter for the 

past work while, SQNEv-Iv beside the new place of 

it; there is a new value to accelerate the process of 

solving problems. In the past, one or two spectral 

parameters were used in a Hessian approximation 

matrix updating formula. However, this new 

technique shows the effectiveness of approaches in 

optimizing problems. That is to say, SQNEI and 

SQNEv-Iv algorithms were preferable in comparison 

to each of QNBFGS and SQNLC according to running 

computer system processer and iteration numbers. 

In general, SQNEI is better than others. However, 

there is a contest between the two proposed 

algorithms by a condition decision; it made SQNEv-

Iv better than all competitor methods in convergence 

and filtering its condition. Finally, SQNEv-Iv is the 

best among the four algorithms if it success in 

finding the optimal solution. 
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 على طريقة شبه نيوتن وخوارزميتها الطيفية لحل مشاكل التحسين غير المقيدة تحديثات

 2ايفان صبحي لطيف، 1ايفار لطف الله صدرالدين

 .العراق، اربيل، جامعة اربيل، كلية العلوم، الرياضيات قسم1
 .العراق، اربيل، جامعة صلاح الدين، كلية التربية، الرياضيات قسم2

 

 ةالخلاص

يتم   EISQNميات، المسماة  ز. في إحدى الخوارBFGSفي هذا البحث تم فرض تعديلين لخوارزمية شبه نيوتن الطيفية من النوع 

زميات المعروضة. اما الخوارزمية رخواالتختلف عن جميع  BFGSاستخدام معلمة طيفية معينة في احدى خطوات الخوارزمية 

في اتجاه البحث لخوازمية شبه  كلا الطرقتين تستخدم المعلمات قيمة جديدة لمعلمة طيفية. فيتقدم مكان جديد و  Iv -EvSQNالثانية  

بعض الفرضيات. بالاضافة الى ذلك، تم اثبات  بوجود فعالية الطريقتين وقد تم تبيان  التقريبية.   Hessianنيوتن بعد تحديث مصفوفة 

على خوازمية  الطرقتين تفوقتالمقترحة و ب الخطي الفائق للخوارزميات التقار و  الشامل مع التقاربخاصية الانحدار الكافي 

BFGS  زمية رالاساسية والخواLCSQN  معلمة ذاتها لل استخدمت مكان اخرالتي. 
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