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Abstract: 
 The use of silicon carbide is increasing significantly in the fields of research and technology. 

Topological indices enable data gathering on algebraic graphs and provide a mathematical framework for 

analyzing the chemical structural characteristics. In this paper, well-known degree-based topological indices 

are used to analyze the chemical structures of silicon carbides. To evaluate the features of various chemical 

or non-chemical networks, a variety of topological indices are defined. In this paper, a new concept related to 

the degree of the graph called "bi-distance" is introduced, which is used to calculate all the additive as well 

as multiplicative degree-based indices for the isomer of silicon carbide, Si2C3-1[t, h]. The term "bi-distance" 

is derived from the concepts of degree and distance in such a way that second distance can be used to 

calculate degree-based topological indices. 

 
Keywords: Bi-distance edges, Molecular graph, Randic index, Silicon Carbide Si2C3-1[t, h], Topological 

index, Zagreb index. 

 

Introduction:
Leonhard Euler (1702–1782) originated the 

term "graph" in graph theory in the eighteenth 

century. He was a mathematician from Switzerland. 

He used graph manipulation to solve Konigsberg 

Bridge problems 1. 

The subject of mathematics termed "graph 

theory" deals with structures of vertices represented 

by a series. Graph theory has evolved into an 

important field of mathematical research with 

relevance in chemistry, operations research, the 

social sciences, and computer science. All of the 

graphs in this paper are simple, connected, and 

planar. A graph is formed of vertices, nodes, or 

points that are connected by edges, arcs, or lines. 

"Graph theory" is the word used in mathematics to 

describe the analysis of graphs, which are 

mathematical patterns used to express pair-wise 

relationships among variables. 

Graphs are one of the major aspects of 

discrete mathematics, and they have diverse 

applications in our daily life. The implementation of 

graph theory can be seen in nano-chemistry, 

computer networks, Google maps, and molecular 

graphs. Chemical graph theory is a sub-field of 

mathematical chemistry that uses graph theory to 

mathematically model chemical structures. It 

integrates chemistry and graph theory to investigate 

the physical and chemical properties of substances 

in more depth 2. 

According to the IUPAC terminology3, a 

"topological index" is a numerical number 

associated with a chemical composition that is used 

to correlate the chemical structure with numerous 

physical attributes, chemical reactivity, or 

bioactivities. In the recent two decades, it has 

become very widespread to investigate the 

physicochemical and structural features of 

molecular graphs, which are vital to chemical 

engineering and pharmaceutical research, using 

graph-theoretical methods. The T-indices are a 
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method for calculating network properties. The 

usefulness of topological indices is determined by 

the correlation between experimental and estimated 

values. The distance-related indices in network 

theory and the degree-based indices in the chemical 

and pharmaceutical industries have both been 

shown to be extremely efficient. T-indices provide a 

simple and theoretical method to obtain in-depth 

knowledge about drugs by estimating the structural 

characteristics of a series of pharmaceuticals 4-7. 

Topological indices are quantitative 

measurements that do not depend on the geometry 

of the graph. Topological indices are used in the 

establishment of quantitative structure-activity 

relationships, which connect the bioactivity or other 

features of molecules using their chemical 

composition 8. 

The heat of formation, the heat of 

evaporation, density, and pressure are a few more 

factors that may be evaluated using these graph 

descriptors. For understanding chemical processes 

like evaporation, heating, and flashpoints, 

topological indices are significant. It is a numerical 

number that describes the structure of the chemical 

graph in other aspects. Many researchers are 

interested in this advanced method for estimating 

compound features without conducting any 

experiments. Due to their great significance, T- 

indices are classified into various categories, such 

as degree-based, eccentricity-based, distance-based, 

and ev-degree-based. 

Sardara recently investigated the 

characteristics of a certain isomer of silicon carbide 

and presented double silicon graphs9. He used the 

additive and multiplicative topological versions of 

topology to learn more about SiC. Pan used the 

degree-related Banhatti and Revan indices10 to 

investigate the two-dimensional structures of a 

particular class of silicon  𝑆𝑖2𝐶3 − [𝑟, 𝑠]. The silicon 

material has greatly inspired and motivated research 

interest due to its extraordinary mechanical, optical, 

and electrical capabilities. Xing-Long successfully 

used the entropy technique to analyze the shape and 

structure of silicon carbide11. Sadia Akhter12 

employed a novel topological approach to study the 

structure of two silicon isomers in 2019.  

 

Preliminaries   
A graph 𝐺 = (𝑉, E) is composed of a 

collection of links 𝐸 and a collection of vertices V. 

The term ժ(𝑢, 𝑣) represents the distance between 

any two vertices in the simple and connected graph 

G. The degree of a vertex 𝑢 in G is represented by 

ժ(𝑢), and the degree of a vertex 𝑣 in G by ժ(𝑣). All 

the graphs used in this article are simple (without 

multiple edges and loops), connected, and planar 

(without edge crossings) 13. The indices are degree-

based, both additive and multiplicative indices. 

 First and Second Zagreb Index: 

The degree-based Zagreb indices were proposed 

by Gutman and Trinajstic in 1972 14. The first 

and second Zagreb indices, M1 and Z2, 

respectively, are equal to the sum of the squares 

of the degrees of the vertices and the products of 

the degrees of the pairs of adjacent vertices in 

the molecular graph. The formulae of these 

indices are:  

𝑀1(G) =  ∑ (ժ𝑢 + ժ𝑣)

𝑢𝑣 ∈ 𝐸(G)

𝑍2 (G)

= ∑ (ժ𝑢 × ժ𝑣)

𝑢𝑣 ∈ 𝐸(G)

 

Horoldagva used these indices for various 

classes of graphs 15. He proposed the 

generalization of M-indices for different kinds of 

regular and non-regular graphs. Javed wrote a 

detailed and interesting article on M-indices for 

sum graphs under Strong Product 16. 

 First and Second Multiplicative Zagreb 

Indices: 

Todeschini  introduced two new types of Zagreb 

indices in 2010: the first and second 

multiplicative Zagreb indices, abbreviated as 

PM1(G) and PM2(G)17. The multiplicative 

version of the classical degree-related Zagreb 

indices are defined as: 

𝑃𝑀1(G) = ∏ (ժ𝑢 + ժ𝑣)

𝑢𝑣 ∈ 𝐸(G)

𝑃𝑀2(G)

= ∏ (ժ𝑢 × ժ𝑣)

𝑢𝑣 ∈ 𝐸(G)

 

The multiplicative form of the Zagreb indices is 

used to investigate the other silicon carbide 

isomers18,19. The properties of unicycle graphs 

and graphs with bridges are investigated using 

multiplicative M-indices 20.  

 First and Second Zagreb Polynomials: 

Fath-Tabar introduced Zagreb polynomials in 

200921. The Zagreb index is calculated using 

polynomials. These polynomials are denoted by 

M1(G, K) and M2(G, K) are defined as:  

𝑀1(G, K) = ∑ 𝐾(ժ𝑢+ժ𝑣)

𝑢𝑣 ∈ 𝐸(G)

𝑀2(G, K)

= ∑ 𝐾(ժ𝑢×ժ𝑣)

𝑢𝑣 ∈ 𝐸(G)

 

The Isaac graph is a very important graph; 

hence, these polynomials are a useful tool for 

studying Isaac graphs in depth22. 

 

 Hyper-Zagreb Index: 
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The Hyper-Zagreb index is a modified Zagreb 

index that was proposed by Shirdel, Rezapour, 

and Sayadi23 and publicized in 2013. They 

explain the newly proposed index for the 

cartesian product, composition, join, and 

disjunction of graphs.  

Hyper-Zagreb index is denoted by HM(G) and 

computed as: 

HM(G)  = ∑ (ժ𝑢 + ժ𝑣)2

𝑢𝑣 ∈ 𝐸(G)

 

 

 Second Modified Zagreb Index:  
The modified versions of the Zagreb indices are 

inspired by the usefulness of the classical Zagreb 

indices. The M2(G) is determined as:  

𝑀2(G)  = ∑
1

(ժ𝑢×ժ𝑣)
𝑢𝑣 ∈𝐸(G)

 

 Reduced Second Zagreb Index: 

Furtula, Gutman, and Ediz 24 investigated the 

difference between Zagreb indices and 

discovered that it is closely connected to the 

vertex-degree-based invariant known as the 

reduced second Zagreb index, written as: 

𝑅𝑀2(G)  = ∑ (ժ𝑢 − 1 × ժ𝑣 − 1)

𝑢𝑣 ∈ 𝐸(G)

 

To study further information about all Zagreb 

indices see 25.   

 Atom Bond Connectivity Index: 

In 1998, Ernesto Estrada and Fernando Torres 

proposed the ABC- index after being inspired by 

Milan Randic's work 26. It is used to simulate the 

thermal properties of organic substances. 

ABC(G) = ∑ √
ժ𝑢+ժ𝑣−2

ժ𝑢×ժ𝑣
𝑢𝑣 ∈𝐸(G)

 

 𝐑𝐚𝐧𝐝𝐢�́� Index: 

Millan Randić suggested the first degree-based 

index in 1975 to understand the branching 

structure of carbon atoms in organic compounds 
27. The Randić The index is defined as: 

R(G) = ∑
1

√ժ𝑢ժ𝑣
𝑢𝑣 ∈𝐸(G)

 

 General 𝐑𝐚𝐧𝐝𝐢�́� Connectivity Index: 

In 1998, Bollob and Erdos generalized Milan’s 

index by replacing 1\2 with any general number 

𝛼 28. 

𝑅∝(G) = ∑ (ժ𝑢ժ𝑣)∝

𝑢𝑣 𝜖 𝐸(G)

 

 Reciprocal 𝐑𝐚𝐧𝐝𝐢𝐜 ́ Index: 

Favaron, Maheó and Saclé were the first to 

introduce this form of R-index. The 

mathematical formula of RR- index is: 

RR(G) = ∑ √ժ𝑢×ժ𝑣

𝑢𝑣 ∈𝐸(G)

 

 Reduced Reciprocal 𝐑𝐚𝐧𝐝𝐢�́� Index: 

    It is the advanced form of the R-index and its 

mathematical definition is: 

RRR(G) = ∑ √(ժ𝑢−1)(ժ𝑣−1)

𝑢𝑣 ∈ 𝐸(G)

 

 Geometric Arithmetic Index: 

Vukicevic and Furtula suggested the GA-

index in 2009 29 which is described as: 

GA(G) = ∑ 2
√ժ𝑢×ժ𝑣

ժ𝑢+ժ𝑣
𝑢𝑣 ∈𝐸(G)

 

 Forgotten Index: 

Gutman and Furtula published this index in 

201530, and it is represented as F(G) which is 

described as: 

F(G) =  ∑ (ժ2
𝑢

𝑢𝑣 ∈𝐸(G)

+ ժ2
𝑣) 

 

 General Sum Connectivity Index: 

Zhou and Trinajstić suggested the general form 

of the sum connectivity index. The 𝑋∝(G)-index 

is mathematically written as: 

𝑋∝(G) = ∑ (ժ𝑢 + ժ𝑣)∝

𝑢𝑣 ∈𝐸(G)

 

 Symmetric Division Index: 

   The degree based symmetric division index 

was introduced by Vukicević and Furtula. 

SD(G) =  ∑
ժ2

𝑢 +  ժ2
𝑣

(ժ𝑢×ժ𝑣)
𝑢𝑣 ∈ 𝐸(G)

 

      This index is very effective to predict the 

total surface area for poly-chloro-biphenyls. 

 Harmonic Index: 

In graph theory, Siemion Fajtlowicz created a 

computer program that generates conjectures 

automatically in 1990. He discovered a vertex 

degree-based quantity while working on this 

project. Zhang later retrieved that unknown 

quantity (in 2012) and termed it harmonic index 
31. It's written like this: 

                      

H(𝐺) =  ∑
2

(ժ𝑢+ժ𝑣)
𝑢𝑣 ∈𝐸 (G)

 

This article deals with the degree-based 

topological indices of silicon carbides. Silicon 

carbide is a highly unusual structure since it has 

various properties such as low density, strong 

strength, good high-temperature strength, low 

thermal expansion, and high thermal conductivity. 

Due to the requirements of the SiC, its properties 

are explored with the help of indices. A large 

number of articles are present on the topological 
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indices of the different isomers of SiC 32-35. Graph 

theory defines broad and advanced ideas to 

facilitate the understanding of many problems 

in different fields 36-39.  

 
Comparison of Single and Bi-Distance Edge 

Based Indices 

 All the classical degree-based TIs are single-

distance. The word "single distance" does not 

appear in these indices. Due to the usefulness of TIs 

in real life, many approaches have been introduced, 

like distance-based, eccentricity-based, metric-

based, additive type, multiplicative type, etc. The 

bi-distance strategy is a new method that is 

suggested in this article for determining these 

indices. A bi-distance edge is formed by combining 

two edges. The bi-distance concept is also used for 

finding the wiener index. The Wiener index just is 

concerned with all types of distances, but here the 

special term "two-distance" is proposed. In this 

section, the methyl-heptane single-distance edge 

and bi-distance edge partitions are examined. 

 

 
 Single-distance Edge Partitions: 
The methyl-heptane structure's edges are separated 

into several groups using the method for edge 

separation discussed above. Four distinct methyl-

heptane edge bundles are presented in Table 1. The 

parcel 𝐸1 has 2 edges, where ժ𝑢 = 1 and ժ𝑣 = 3. The 

bundle 𝐸2 consist of only one edge, where ժ𝑢 = 3 

and ժ𝑣 = 2. The pack 𝐸3 has 3 edges, where ժ𝑢 = 2 

and ժ𝑣 = 2. The fourth edge bundle 𝐸4 is made up 

of 1 edge, where ժ𝑢 = 2 and ժ𝑣 = 1. All the 

calculations related to edge separation are given in 

Table 1.  

 
Table 1. Single-distance edge partition of 

Methyl-heptane  

Edges (ժ𝒖, ժ𝒗) Frequency 

𝑬𝟏 (1,3) 2 

𝑬𝟐 (3,2) 1 

𝑬𝟑 (2,2) 3 

𝑬𝟒 (2,1) 1 

 
The M1(G) –index for methyl heptane is determined 

by using the formula and the data given in Table 1.   

M1(G)  =  ∑ (ժ𝑢 + ժ𝑣)

𝑢𝑣 ∈ 𝐸(G)

 

        = ∑ (ժ𝑢 + ժ𝑣) 𝑢𝑣 ∈ 𝐸1(G) + ∑ (ժ𝑢 +𝑢𝑣 ∈𝐸2(𝐺)

ժ𝑣)  +  ∑ (ժ𝑢 + ժ𝑣) + ∑ (ժ𝑢 + ժ𝑣)𝑢𝑣 ∈𝐸4(G)𝑢𝑣 ∈ 𝐸3(G)  

        = |𝐸1(𝐺)|4 + |𝐸2(𝐺)|5 + |𝐸3(𝐺)|4 +
|𝐸4(𝐺)|3 

        =  2(4)  +  1(5) +  3(4) +  1(3)  =  28 
 Bi-distance Edge Partitions: 

The edge partition technique is applied to split 

the bi-distance edges of methyl-heptane into four 

packets given in Table 2. The parcel 𝐸1 composed 

of 3 edges, where ժ𝑢 = 1 and ժ𝑣 = 2. The bundle 𝐸2 

is made by 1 edge, where ժ𝑢 = 3 and ժ𝑣  = 2. The 

third edge bundle has two edges, while the fourth 

edge parcel has just one edge. 

Table 2. Bi-distance edge partition of 

Methyl-heptane 

Edges (ժ𝒖, ժ𝒗) Frequency 

𝑬𝟏 (1, 2) 3 

𝑬𝟐 (3, 2) 1 

𝑬𝟑 (2, 2) 2 

𝑬𝟒 (1, 1)                 1 

 
The M1(G)-index is determined as: 

        𝑀1(G) = ∑ (ժ𝑢 + ժ𝑣)

𝑢𝑣 ∈ 𝐸(G)

 

= ∑ (ժ𝑢 + ժ𝑣)  +𝑢𝑣 ∈ 𝐸1(G)

∑ (ժ𝑢 + ժ𝑣)  +  ∑ (ժ𝑢 + ժ𝑣) +𝑢𝑣 ∈ 𝐸3(G)𝑢𝑣 ∈𝐸2(G)

∑ (ժ𝑢 + ժ𝑣)𝑢𝑣 ∈𝐸4(G)  

            = |𝐸1(𝐺)|3 + |𝐸2(𝐺)|5 + |𝐸3(𝐺)|4 +
 |𝐸4(𝐺)|2 

            =  3(3) +  1(5) +  2(4) +  1(2) 

            = 24 
Methods 

There are several methods and techniques 

for obtaining results, such as vertex degree, edge 

partitioning, graph analytical approaches, and 

numerical comparison of the results. Different 

software is used in this article. For computations 

and rechecking, MATLAB is really beneficial 

software. Software like Mathematica is used for 2D 

and 3D graphs that are used to represent the 

comparison of topological indices. ChemSketch was 

used for the structural graphs of Si2C3-I [t, h]. 

ChemDraw can also be used for drawing chemical 

structures in an easy way. 

2D Structure and Importance of Silicon Carbide 

Si2C3-I[t, h] 

Fig 1 shows the 2D molecular graph of 

silicon carbide, Si2C3-I[t, h]. The characteristics of 

the molecular graph are discussed using two 

parameters. The number of connected unit cells in a 

row (network) is indicated by t, while the number of 

connected rows containing t numbers of cells is 

indicated by h. Fig 2 shows how cells join to form a 

row (a string) and how one row interacts with 

another. The chemical structures of inorganic 
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compounds are explored due to the use and great 

importance of SiC in the modern world. Silicon has 

decreased the size of electronic devices and 

enhanced their quality. Silicon carbide is a 

crystalline combination of silicon and carbon that is 

extremely hard. Silicon carbide has been a crucial 

component of cutting tools, grinding wheels, and 

sandpaper since the late 19th century. In 1891, the 

American inventor Edward G. Acheson discovered 

silicon carbide while attempting to make an 

artificial diamond. Today, silicon carbide elements 

are used in the melting of glass and nonferrous 

metals, the heat treatment of metals, float glass 

manufacture, ceramics, and electronic component 

production, igniters in pilot lights for gas heaters, 

and other applications. The unit cell is the basic cell 

of all large and complex structures. The unit cell of 

the special isomer of SiC is shown in (a) part of Fig. 

1. These basic cells are connected in different 

patterns to form new structures. 

 
(a) Unit cell of Si2C3-I[t, h]            (b)  Si2C3-I[4, 3]. 

Figure 1. 2D structure of Si2C3-I[t, h]. (a) A chemical unit cell of Si2C3-I[t, h]. Si2C3-I[4, 3]. The carbon 

atom C is brown, while the silicon atom Si is blue 

 

       
                  (a) One row of Si2C3-I[t, h]                    (b) Connection of two rows of Si2C3-I[t, h] 

Figure 2. 2D structure of Si2C3-I[t, h]. (a) Si2C3-I[t, h], one row with t = 4 and h = 1; (b)Si2C3-I[4, 2], 

two rows are being joined together. The upper and lower rows are interlinked by red lines (edges). 

 

There are two major ways to partition a simple, 

connected, and planar graph. A graph can be 

partitioned into groups by using vertex degree and 

edge degree. The edge separation technique can be 

used to partition the Si2C3-I[t, h]. There are five 

different edge bundles of Si2C3-I[t, h] given in 

Table 3. The bundle 𝐸1 is made up of 2 edges, 

where ժ𝑢 = 1 and ժ𝑣 = 2. The bundle 𝐸2 consist of 

only one edge, where ժ𝑢 = 1 and ժ𝑣  = 3. Parcel 3, 

composed of 2h + 2t edges, where ժ𝑢 = 2 and  ժ𝑣 = 

2. The packet 𝐸4, consist 10ℎ + 16𝑡 − 20 edges, 

where ժ𝑢 = 2 and ժ𝑣  = 3. The pack 𝐸5 has 30𝑡ℎ −
20ℎ − 30𝑡 + 19 edges, where ժ𝑢 = 3 and ժ𝑣 = 3.  

The partition of edges: 

𝐸1 = {𝑒 = 𝑢𝑣 ∈  |𝐸(𝑆𝑖2𝐶3 − 𝐼[𝑡, ℎ]|, ժ𝑢

= 1 𝑎𝑛𝑑 ժ𝑣 = 2 } 

𝐸2 = {𝑒 = 𝑢𝑣 ∈ |𝐸(𝑆𝑖2𝐶3 − 𝐼[𝑡, ℎ]|, ժ𝑢 =
1 𝑎𝑛𝑑 ժ𝑣  = 3}  

𝐸3 = {𝑒 = 𝑢𝑣 ∈ |𝐸(𝑆𝑖2𝐶3 − 𝐼[𝑡, ℎ]|,  ժ𝑢

= 2 𝑎𝑛𝑑 ժ𝑣 = 2} 

𝐸4 = {𝑒 = 𝑢𝑣 ∈ |𝐸(𝑆𝑖2𝐶3 − 𝐼[𝑡, ℎ]|, ժ𝑢

= 2 𝑎𝑛𝑑 ժ𝑣 = 3} 

𝐸5 = {𝑒 = 𝑢𝑣 ∈ |𝐸(𝑆𝑖2𝐶3 − 𝐼[𝑡, ℎ]|, ժ𝑢

= 3 𝑎𝑛𝑑 ժ𝑣 = 3} 

  
Table 3. Degree-based partition of edges of 

Si2C3-I[t, h] 
Edges (ժ𝒖, ժ𝒗) Frequency 

𝑬𝟏 (1,2) 2 

𝑬𝟐 (1,3) 1 

𝑬𝟑 (2,2) 2ℎ +  2𝑡 

𝑬𝟒 (2,3)                10ℎ + 16𝑡 − 20 

𝑬𝟓 (3,3) 30𝑡ℎ − 20ℎ − 30𝑡 + 19 
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Theorem 1: Consider G ≅ Si2C3 − I[t, h] be a 

simple graph of the particular isomer of silicon 

carbide, then:  

 𝑀1(G) = 180ht − 62h − 92t + 24 

 𝑀2(G) = 270ht − 112h − 166t + 58 
Proof: Suppose G is a connected and planar graph 

of Si2C3 − I[t, h]. The edges collection 𝐸(G) is 

divided into 5 distinct groups. The values of the first 

Zagreb index can be computed with the help of 

Table 3 of the edge partition.   

M1(G) = ∑ (ժ𝑢 + ժ𝑣)

𝑢𝑣 ∈ 𝐸(G)

 

       = ∑ (ժ𝑢 + ժ𝑣)  + ∑ (ժ𝑢 +𝑢𝑣 ∈𝐸2(G)𝑢𝑣 ∈ 𝐸1(G)

ժ𝑣)  +  ∑ (ժ𝑢 + ժ𝑣) +  ∑ (ժ𝑢 +𝑢𝑣 ∈𝐸4(G)𝑢𝑣 ∈ 𝐸3(G)

ժ𝑣) 

+ ∑ (ժ𝑢 + ժ𝑣)𝑢𝑣 ∈𝐸5(G)  

       = |𝐸1(G)|3 +  |𝐸2(G)|4 + |𝐸3(G)|4 +
|𝐸4(G)|5 + |𝐸5(G)|6 

       =  2 × 3 +  1 × 4 +  2ℎ + 2𝑡 × 4 +  (10ℎ +
 16𝑡 −  20)5 + (30𝑡ℎ −  20ℎ −  30) 
     𝑀1(G) = 180ht − 62h − 92t + 24 

The Z2(G)-index is determined as: 

𝑍2(G) = ∑ (ժ𝑢 × ժ𝑣)

𝑢𝑣 ∈𝐸(G)

 

 𝑍2(G)  = ∑ (ժ𝑢 × ժ𝑣)𝑢𝑣 ∈𝐸1(G) + ∑ (ժ𝑢 ×𝑢𝑣 ∈𝐸2 (G)

ժ𝑣) + ∑ (ժ𝑢 ×  ժ𝑣) + ∑ (ժ𝑢 ×𝑢𝑣 ∈𝐸4(G)𝑢𝑣 ∈𝐸3 (G)

 ժ𝑣)  

           + ∑ (ժ𝑢 × ժ𝑣) 𝑢𝑣 ∈𝐸5 (G)  

        = |𝐸1(𝐺)|2 +  |𝐸2(𝐺)|3 + |𝐸3(𝐺)|4 +
|𝐸4(𝐺)|8 + |𝐸5(𝐺)|9 

        =  2 × 2 +  3 × 1 +  4(2ℎ +  2𝑡)  +
 6(10ℎ +  16𝑡 −  20)  +  9(30𝑡ℎ − 20ℎ −
30𝑡 +  19) 

        = 270𝑡ℎ −  112ℎ −  166𝑡 +  58 
Theorem 2: Consider 𝐺 ≅  Si2C3 − I[t, h] be the 

graph of a special isomer of silicon carbide, then the 

multiplicative version of Zagreb indices are: 

𝑃𝑀1(𝐺) = 36 × 42ℎ+2𝑡 × 510ℎ+16𝑡−20

× 630𝑡ℎ−20ℎ−30𝑡+19 

𝑃𝑀2(𝐺) = 12 × 42ℎ+2𝑡 × 410ℎ+16𝑡−20

× 930𝑡ℎ−20ℎ−30𝑡+19 

Proof: Assume that G is a simple graph of Si2C3 −
I[t, h] with no crossings. The whole set of edges in 

G is classified into five classes. The PM1 (G)-index 

is computed by using the formula and calculations 

given in Table 3.  

𝑃𝑀1(𝐺) = ∏ (ժ𝑢 + ժ𝑣)

𝑢𝑣 ∈ 𝐸(𝐺)

 

         = ∏ (ժ𝑢 + ժ𝑣)𝑢𝑣 ∈𝐸1(𝐺) × ∏ (ժ𝑢 +𝑢𝑣 ∈𝐸2(𝐺)

ժ𝑣) × ∏ (ժ𝑢 + ժ𝑣)𝑢𝑣 ∈𝐸3(𝐺) ×  ∏ (ժ𝑢 + ժ𝑣)𝑢𝑣 ∈𝐸4(𝐺)  

             × ∏ (ժ𝑢 + ժ𝑣)𝑢𝑣 ∈𝐸5(G)   

          = 3|𝐸1(G)| × 4|𝐸2(G)| × 4|𝐸3(G)| × 5|𝐸4(G)| ×
6|𝐸5(G)| 

          = 32 × 4 × 42ℎ+2𝑡 × 510ℎ+16𝑡−20 +
630ℎ𝑡−20ℎ−30𝑡+19  

          = 36 × 4 × 42ℎ+2𝑡 × 510ℎ+16𝑡−20 +
630ℎ𝑡−20ℎ−30𝑡+19 
The PM2(G)-index is determined as: 

PM2(G) =  ∏ (ժ𝑢 × ժ𝑣)𝑢𝑣 ∈ 𝐸(G)  

         = ∏ (ժ𝑢 × ժ𝑣)𝑢𝑣 ∈𝐸1(G) × ∏ (ժ𝑢 ×𝑢𝑣 ∈𝐸2(G)

ժ𝑣) × ∏ (ժ𝑢 × ժ𝑣)𝑢𝑣 ∈𝐸3(G) ×  ∏ (ժ𝑢 ×𝑢𝑣 ∈𝐸4(G)

ժ𝑣) 

              ×  ∏ (ժ𝑢 × ժ𝑣)𝑢𝑣 ∈𝐸5(G)   

         = 2|𝐸1(G)| × 3|𝐸2(G)| × 4|𝐸3(G)| × 6|𝐸4(G)| ×

9|𝐸5(G)| 

         =  12 × 42ℎ+2𝑡 × 610ℎ+16𝑡−20 ×
930𝑡ℎ−20ℎ−30𝑡+19 

Theorem 3: Suppose G ≅Si2C3-I[t, h] is the graph 

of silicon carbide, then the outcomes of both the 

Zagreb polynomials are: 

M1(G, K) = 2𝐾3 + 𝐾4 + (2h + 2t)𝐾4 +
(10h + 16t − 20)𝐾5 + (30𝑡ℎ − 20ℎ −
30𝑡 + 19)𝐾6 

      M2(G, K) = 2𝐾2 + 𝐾3 + (2ℎ + 2𝑡)𝐾4 +
(10ℎ + 16𝑡 − 20)𝐾6 + (30𝑡ℎ − 20ℎ − 30𝑡 +
19)𝐾9 

Proof: The edges E are classified into 5 classes. 

By using Table 3, it is easy to calculate the values 

of both Zagreb polynomials. The definition of 

M1(G, K) is: 

 𝑀1(G, K) = ∑ 𝐾(ժ𝑢+ժ𝑣)
𝑢𝑣 ∈𝐸(G)  

           = ∑ 𝐾(ժ𝑢+ժ𝑣)
𝑢𝑣 ∈𝐸1(G) + ∑ 𝐾(ժ𝑢+ժ𝑣)

𝑢𝑣 ∈𝐸2(G) + 

∑ 𝐾(ժ𝑢+ժ𝑣)
𝑢𝑣 ∈𝐸3(G) + 

∑ 𝐾(ժ𝑢+ժ𝑣)
𝑢𝑣 ∈𝐸4(G) + 

∑ 𝐾(ժ𝑢+ժ𝑣)
𝑢𝑣 ∈𝐸5(G)  

           = ∑ 𝐾3
𝑢𝑣 ∈𝐸1(G) + ∑ 𝐾4

𝑢𝑣 ∈𝐸2(G) + 

∑ 𝐾4
𝑢𝑣 ∈𝐸3(G) + ∑ 𝐾5

𝑢𝑣 ∈𝐸4(G) + 

∑ 𝐾6
𝑢𝑣 ∈𝐸5(G)  

           = |𝐸1(G)|𝐾3 + |𝐸2(G)|𝐾4 + |𝐸3(G)|𝐾4 + 

|𝐸4(G)|𝐾5 + |𝐸5(G)|𝐾6 

           = 2𝐾3+𝐾4+ (2h+2t)𝐾4+ (10h+16t-

20)𝐾5+(30th-20h-30t+19)𝐾6 

The M2(G, K)-polynomial for Si2C3-I[t, h] is 

calculated as bellow:   

M2(G, K) = ∑ 𝐾(ժ𝑢×ժ𝑣)
𝑢𝑣 ∈𝐸(G)  

            = ∑ 𝐾(ժ𝑢×ժ𝑣)
𝑢𝑣 ∈𝐸1(G) + ∑ 𝐾(ժ𝑢×ժ𝑣)

𝑢𝑣 ∈𝐸2(G) + 

∑ 𝐾(ժ𝑢×ժ𝑣)
𝑢𝑣 ∈𝐸3(G) + 

∑ 𝐾(ժ𝑢×ժ𝑣)
𝑢𝑣 ∈𝐸4(G) + 

∑ 𝐾(ժ𝑢×ժ𝑣)
𝑢𝑣 ∈𝐸5(G)  

            = ∑ 𝐾2
𝑢𝑣 ∈𝐸1(G) + ∑ 𝐾3

𝑢𝑣 ∈𝐸2(G) + 

∑ 𝐾4
𝑢𝑣 ∈𝐸3(G) + ∑ 𝐾6

𝑢𝑣 ∈𝐸4(G) + 

∑ 𝐾9
𝑢𝑣 ∈𝐸5(G)  

            = |𝐸1(G)|𝐾2 + |𝐸2(G)|𝐾3 + |𝐸3(G)|𝐾4 + 

|𝐸4(G)|𝐾6 + |𝐸5(G)|𝐾9 
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            =  2𝐾2 + 𝐾3 +  (2ℎ + 2𝑡)𝐾4 +  (10ℎ +
16𝑡 − 20)𝐾6 + (30𝑡ℎ − 20ℎ − 30𝑡 + 19)𝐾9 
Theorem 4: Let 𝐺 ≅Si2C3-I[t, h] be the graph of 

silicon carbide, then two different forms of Z-

indices are computed as: 

𝐻𝑀(𝐺)  =  1080𝑡ℎ −  438ℎ −  648𝑡 + 218  

𝑀2(𝐺)  =  
10

3
ℎ𝑡 −  

ℎ

18
 −  

𝑡

6
 +  

1

9
 

Proof: The HM-index is a vertex degree-related 

index that can be calculated by using Table 3 and 

the mathematical formula for this index.  
𝐻𝑀(𝐺) = ∑ (ժ𝑢 + ժ𝑣)𝑢𝑣 ∈𝐸(G)

2 

         = ∑ (ժ𝑢 + ժ𝑣)2 + ∑ (ժ𝑢 +𝑢𝑣 ∈𝐸2 (G)𝑢𝑣 ∈𝐸1(G)

ժ𝑣)2 + ∑ (ժ𝑢 + ժ𝑣)2 + ∑ (ժ𝑢 +𝑢𝑣 ∈𝐸4(G)𝑢𝑣 ∈𝐸3 (G)

ժ𝑣)2  
           + ∑ (ժ𝑢 + ժ𝑣)2

𝑢𝑣 ∈𝐸5 (G)  

         =  |𝐸1(𝐺)|9 + |𝐸2(𝐺)|16 + |𝐸3(𝐺)|16 +
|𝐸4(𝐺)|25 + |𝐸5(𝐺)|36 

         =  9(2) + 16(1) + 16(2ℎ + 2𝑡) + 25(10ℎ +
16𝑡 − 20) + 36(30𝑡ℎ − 20ℎ − 30𝑡 + 19) 

         =  1080𝑡ℎ −  438ℎ −  648𝑡 + 218 
The M2(G)-index is calculated as:  

𝑀2(𝐺) =  ∑
1

(ժ𝑢×ժ𝑣)
𝑢𝑣 ∈𝐸(G)  

 

       =  
1

2
|𝐸1(𝐺)| +  

1

3
 |𝐸2(𝐺)| +  

1

4
|𝐸3(𝐺)| +

 
1

6
|𝐸4(𝐺)| +  

1

9
|𝐸5(𝐺)| 

       =  
2

2
+  

1

3
+  

2ℎ+2𝑡

4
+ 

10ℎ+16𝑡−20 

6
+

 
30𝑡ℎ−20ℎ−30𝑡+17

9
  

       =  
10𝑡ℎ

3
− 

ℎ

18
−

𝑡

6
+  

1

9
 

Theorem 5: Let G ≅Si2C3-I[t, h] be the graph of 

silicon carbide. The results of indices are computed 

as: 

𝑅𝑀2(𝐺) = 120𝑡ℎ − 58ℎ − 86𝑡 + 36 

𝐴𝐵𝐶(𝐺) =  
1

√2
(12ℎ + 18𝑡 − 18) +

√2

√3
+ 20𝑡ℎ

−  
40ℎ

3
− 20𝑡 +

38

3
 

Proof: The whole edges of graph G are consisting 

of five distinct groups. By utilizing the edge 

separation Table 3, the values of RM2(G) are: 

𝑅𝑀2(𝐺) =  ∑ (ժ𝑢 − 1 × ժ𝑣 − 1)

𝑢𝑣 ∈𝐸(G)

 

         = |𝐸1(G)|(1-1×2-1) + |𝐸2(G)|(1-1×3-1) + 

|𝐸3(G)|(2-1×2-1) + |𝐸4(G)|(2-1×3-

1) + |𝐸5(G)|(3-1×3-1) 

         = 2(0×1) + 1(0×2) + 1(2h+2t) + (10h+16t-

20)(1×2) + (30th-20h-30t+19)(4) 
         = 120𝑡ℎ −  58ℎ − 86𝑡 + 36 

 The ABC(G)-index is computed as: 

 𝐴𝐵𝐶(𝐺) = ∑ √
ժ𝑢+ժ𝑣−2

ժ𝑢×ժ𝑣𝑢𝑣∈𝐸(G)  

           =  |𝐸1(𝐺)|
1

√2
+ |𝐸2(𝐺)|

√2

√3
+ |𝐸3(𝐺)|

1

√2
+

|𝐸4(𝐺)|
1

√2
+ |𝐸5(𝐺)|

2

3
  

           =  2 (
1

2
) + √

2

3
+ (2ℎ + 2𝑡)

1

√2
+

(10ℎ + 16𝑡 − 20)
1

√2
+ (30𝑡ℎ − 20ℎ − 30𝑡 +

19)
2

3
 

           = 
1

√2
(12ℎ + 18𝑡 − 18) + √

2

3
+ 20𝑡ℎ −

40

3
ℎ − 20𝑡 +

38

3
 

 

Theorem 6: Consider G ≅Si2C3-I[t, h] to be the 

two-dimensional graph of SiC, then the results of 

two different forms of R-index are given below. 

             R∝(G) = 270th − 112h − 166t +
58 

            R(G) = 10.02th − 1.5980h −
2.489t + 0.1736 
Proof: The R-index is the most common and 

significant index. The values of the R-index and its 

generalized form can be easily calculated by using 

Table 3.  

R∝(G)  =  ∑ (ժ𝑢ժ𝑣)∝
𝑢𝑣 𝜖𝐸(G)   

        =  ∑ (ժ𝑢ժ𝑣)∝ + ∑ (ժ𝑢ժ𝑣)∝  +𝑢𝑣 𝜖𝐸2(G)𝑢𝑣 𝜖𝐸1(G)

∑ (ժ𝑢ժ𝑣)∝ + ∑ (ժ𝑢ժ𝑣)∝ 𝑢𝑣 𝜖𝐸4(G)𝑢𝑣 𝜖𝐸3(G)    

          + ∑ (ժ𝑢ժ𝑣)∝
𝑢𝑣 𝜖𝐸5(G)  

        = |𝐸1(𝐺)|2 + |𝐸2(𝐺)|3 + |𝐸3(𝐺)|4 +
|𝐸4(𝐺)|6 + |𝐸5(𝐺)|2 
        = 2(2) + 3(1) + 4(2h+2t) + 6(10h+16t-20) + 

(30th - 20h - 30t + 19) 

        = 270𝑡ℎ −  112ℎ −  166𝑡 + 58 
The R(G)-index is determined as: 

   R(G) = ∑ 1

√ժ𝑢ժ𝑣
𝑢𝑣 ∈𝐸(G)  

         = ∑ 1

√ժ𝑢ժ𝑣
𝑢𝑣 ∈𝐸1(G)  + ∑ 1

√ժ𝑢ժ𝑣
𝑢𝑣 ∈𝐸2(G)  + 

∑ 1

√ժ𝑢ժ𝑣
𝑢𝑣 ∈𝐸3(G)  + ∑ 1

√ժ𝑢ժ𝑣
𝑢𝑣 ∈𝐸4(G)  

+ ∑ 1

√ժ𝑢ժ𝑣
𝑢𝑣 ∈𝐸5(G)  

         = 0.7071(2) + 0.5774(1) + 0.5(2h + 2t) + 

0.4082(10h + 16t - 20) + 0.334(30th - 20h - 30t + 

19) 

         =  10.02th −  1.5980h −  2.489t +  0.1736 

Theorem 7: Suppose G ≅Si2C3-I[t, h] is the planar 

graph of an isomer of SiC, then the results related to 

the Randic type indices are determined below. 

   RR(G) = 90th - 31.50 h - 46.808t + 

12.5705 

  RRR(G) = 60th - 38h - 58t + 38 

+√2(10h + 16t - 20)  

Proof: The collection of edges of Si2C3-I[t, h] are 

split into five different groups according to the 

degree and written as 𝐸(G) = 𝐸1(G)∪ 𝐸2(G)∪
𝐸3(G)∪ 𝐸4(G)∪ 𝐸5(G). By using the definition of 

RR(G): 
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RR(G) = ∑ √ժ𝑢ժ𝑣𝑢𝑣 ∈𝐸(G)  

       = ∑ √ժ𝑢ժ𝑣𝑢𝑣 ∈𝐸1(G)  + ∑ √ժ𝑢ժ𝑣𝑢𝑣 ∈𝐸2(G)  + 

∑ √ժ𝑢ժ𝑣𝑢𝑣 ∈𝐸3(G)  + ∑ √ժ𝑢ժ𝑣𝑢𝑣 ∈𝐸4(G)   

         + ∑ √ժ𝑢ժ𝑣𝑢𝑣 ∈𝐸5(G)  

       = 1.4142(2) + 1.7321(1) + 2(2h + 2t) + 

2.4495(10h + 16t - 20) + 

3(30th - 20h - 30t + 19) 

       = 90th - 31.50 h - 46.808t + 12.5705 

The RRR(G)-index is computed as: 

RRR(G) = ∑ √(ժ𝑢−1)(ժ𝑣−1)𝑢𝑣 ∈𝐸(G)  

         = ∑ √(ժ𝑢−1)(ժ𝑣−1)𝑢𝑣 ∈𝐸1(G)  + 

∑ √(ժ𝑢−1)(ժ𝑣−1)𝑢𝑣 ∈𝐸2(G)  + ∑ √(ժ𝑢−1)(ժ𝑣−1)𝑢𝑣 ∈𝐸3(G)   

           + ∑ √(ժ𝑢−1)(ժ𝑣−1)𝑢𝑣 ∈𝐸4(G)  + 

∑ √(ժ𝑢−1)(ժ𝑣−1)𝑢𝑣 ∈𝐸5(G)  

         = |𝐸1(𝐺)|0 + |𝐸2(𝐺)|0 + |𝐸3(𝐺)|1 +

|𝐸4(𝐺)|√2 + |𝐸5(𝐺)|2 

         =  60th −  38h −  58t +  38 +  √2(10h +
 16t −  20) 

Theorem 8: Let 𝐺 ≅Si2C3-I[t, h] be the graph of 

silicon carbide.   

                 GA(G) = 30th - 28t - 18h + 1

3√3
 (4√6 + 

63) + 
2 √6

5
 (10h + 16t - 20)  

                 𝑆𝐷(𝐺) = 60𝑡ℎ −
43

3
ℎ − 64𝑡 − 5 

Proof: By using Table 3 and the definition of GA-

index, it can be easily computed as: 

    GA(G) = ∑ 2√ժ𝑢×ժ𝑣
ժ𝑢+ժ𝑣𝑢𝑣 ∈𝐸(G)  

            = ∑ 2√ժ𝑢×ժ𝑣
ժ𝑢+ժ𝑣𝑢𝑣 ∈𝐸1(G)  + ∑ 2√ժ𝑢×ժ𝑣

ժ𝑢+ժ𝑣𝑢𝑣 ∈𝐸2(G)  + 

∑ 2√ժ𝑢×ժ𝑣
ժ𝑢+ժ𝑣𝑢𝑣 ∈𝐸3(G)   + 

∑ 2√ժ𝑢×ժ𝑣
ժ𝑢+ժ𝑣𝑢𝑣 ∈𝐸4(G)   + 

∑ 2√ժ𝑢×ժ𝑣
ժ𝑢+ժ𝑣𝑢𝑣 ∈𝐸5(G)   

            = 
2√2

3
 |𝐸1(𝐺)| + 

2

√3
|𝐸2(𝐺)| + 1|𝐸3(𝐺)| +

2√6

5
|𝐸4(𝐺)| +  1|𝐸5(𝐺)|   

            = 2 √2

3
 (2) + 2

√3
 (1) +  1(2h +  2t) + 

2 √6

5
 

(10h + 16t −  20) + 1(30th −
 20h −  30t + 19) 

            = 30ℎ𝑡 − 28𝑡 − 18ℎ + 1

3√3
(4√6 + 63)+ 

2 √6

5
 (10ℎ + 16𝑡 − 20)  

The SD(G)-index can be identified as: 

     SD(G) = ∑ ժ2
𝑢 +  ժ2

𝑣
(ժ𝑢×ժ𝑣)𝑢𝑣 ∈ 𝐸(G)   

            = ∑ ժ2𝑢 + ժ2𝑣

(ժ𝑢×ժ𝑣)𝑢𝑣 ∈ 𝐸1(G)  

+∑ ժ2
𝑢 +  ժ2

𝑣
(ժ𝑢×ժ𝑣)𝑢𝑣 ∈ 𝐸2(G) +

∑ ժ2
𝑢 +  ժ2

𝑣
(ժ𝑢×ժ𝑣)𝑢𝑣 ∈ 𝐸3(G)  + 

∑ ժ2
𝑢 +  ժ2

𝑣
(ժ𝑢×ժ𝑣)

 𝑢𝑣 ∈ 𝐸4(G)  

+ ∑ ժ2
𝑢 +  ժ2

𝑣
(ժ𝑢×ժ𝑣)𝑢𝑣 ∈ 𝐸5(G)  

            = 
5

2
|𝐸1(𝐺)| +  

10

3
|𝐸2(𝐺)|  +  

8

4
|𝐸3(𝐺)| +

 
13

6
|𝐸4(𝐺)| +  

18

9
|𝐸5(𝐺)|  

            =
5

2
(2) +

10

3
(1) + 

8

4
(2ℎ + 2𝑡) +

13

6
(10ℎ + 16𝑡 − 20) +

18

9
(30ℎ𝑡 −

20ℎ − 30𝑡 + 19) 

            = 60ℎ𝑡 −
43

3
ℎ − 64𝑡 − 5 

Theorem 9: Consider G ≅Si2C3-I[t, h] be the graph 

of a particular isomer of SiC, then resultant values 

of F-index and H-index are given below: 

𝐹(G) = 540ht − 86h − 316t + 9 

𝐻(G) = 10ht −
5

3
h −

13

5
t +

1

6
  

Proof: The 2D general structure of Si2C3-I[t, h] is 

composed of five different parcels of edges. Based 

on the data given in Table 3 and its definition, the 

F-index is easily computed as follows: 

    F(G) = ∑ (ժ2
𝑢𝑢𝑣 ∈𝐸(G) + ժ2

𝑣)  

          = ∑ (ժ2
𝑢𝑢𝑣 ∈𝐸1(G) + ժ2

𝑣) + 

∑ (ժ2
𝑢𝑢𝑣 ∈𝐸2(G) + ժ2

𝑣) + 

∑ (ժ2
𝑢𝑢𝑣 ∈𝐸3(G) + ժ2

𝑣) + 

∑ (ժ2
𝑢𝑢𝑣 ∈𝐸4(G) + ժ2

𝑣) 

+ ∑ (ժ2
𝑢𝑢𝑣 ∈𝐸5(G) + ժ2

𝑣) 

          =  |𝐸1(G)|5 +  |𝐸2(G)|10 + |𝐸3(G)|8 +
|𝐸4(G)|13 + |𝐸5(G)|18 

          = 5(1) + 10(1) + 8(2ℎ + 2𝑡) +
13(10ℎ + 16𝑡 − 20) + 18(30ℎ𝑡 −
20ℎ − 30𝑡 + 19) 

          = 540ℎ𝑡 − 86ℎ − 316𝑡 + 97 
The H(G)-index is calculated as: 

     H(G)  = ∑ 2

(ժ𝑢+ժ𝑣)𝑢𝑣 ∈𝐸 (G)  

           = ∑ 2

(ժ𝑢+ժ𝑣)𝑢𝑣 ∈𝐸1(G)  +∑ 2

(ժ𝑢+ժ𝑣)𝑢𝑣 ∈𝐸2(G)  

+∑ 2

(ժ𝑢+ժ𝑣𝑣)𝑢𝑣 ∈𝐸3(G)  +∑ 2

(ժ𝑢+ժ𝑣) 𝑢𝑣 ∈𝐸4(G)  

+ ∑ 2

(ժ𝑢+ժ𝑣)𝑢𝑣 ∈𝐸5(G)  

           = |𝐸1(𝐺)|
2

3
+  |𝐸2(𝐺)|

2

4
+  |𝐸3(𝐺)|

2

4
+

 |𝐸4(𝐺)|
2

5
+  |𝐸5(𝐺)|

2

6
 

           = 
2

3
(2) +

1

2
(1) +

1

2
(2ℎ + 2𝑡) +

2

5
(10ℎ + 16𝑡 − 20) +

1

3
(30𝑡ℎ −

20ℎ − 30𝑡 + 19) 

           = 10ℎ𝑡 −
5

3
ℎ −

13

5
𝑡 +

1

6
 

Theorem 10: Let G ≅Si2C3-I[t, h] be the graph of 

silicon carbide without loops and multiple edges 

than the values of 𝑋∝(G) are: 

𝑋∝(G) = 180ht − 62h − 92t + 24 

Proof: The edges collection 𝐸(G) splits into 5 

different edges which can be written as 𝐸(G) = 

𝐸1(G)∪ 𝐸2(G)∪ 𝐸3(G)∪ 𝐸4(G)∪ 𝐸5(G). According 

to Table 3, the outcome of 𝑋∝(G) is calculated as:  

 𝑋∝(G) = ∑ (ժ𝑢 + ժ𝑣)∝
𝑢𝑣 ∈𝐸(G)   
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        = ∑ (ժ𝑢 + ժ𝑣)∝
𝑢𝑣 ∈𝐸1(G) +∑ (ժ𝑢 +𝑢𝑣 ∈𝐸2(G)

ժ𝑣)∝+ ∑ (ժ𝑢 + ժ𝑣)∝
𝑢𝑣 ∈𝐸3(G) + 

∑ (ժ𝑢 + ժ𝑣)∝
𝑢𝑣 ∈𝐸4(G)  

+ ∑ (ժ𝑢 + ժ𝑣)∝
𝑢𝑣 ∈𝐸5(G)  

        = |𝐸1(𝐺)|(3)𝛼 + |𝐸2(𝐺)|(4)𝛼 +
 |𝐸3(𝐺)|(4)𝛼 + |𝐸4(𝐺)|(5)𝛼 +
|𝐸5(𝐺)|(6)𝛼 

        = (3)∝(2) + (4)∝+ (4)∝(2h +2t) + (5)∝(10h 

+16t -20) + (6)∝(30th -20h -30t 

+19) 

If ∝=1 then, 

        =  180𝑡ℎ −  62ℎ −  92𝑡 +  24 
Numerical Analysis 

This section represents the numerical 

calculation of silicon carbide, Si2C3-I[t, h]. All 

topological indices demonstrate strong variation 

with a small change in parameter values. The values 

of the entire mentioned topological indices rise as 

the input data is increased (t or h). The results of the 

first and second multiplicative Zagreb indices are 

very high compared to the results of the other 

indices. The input data range of parameters t = s = 

1, 2, 3, 4, 5. All values—aside from the values of 

the symmetric division index—are increased by 

increasing the inputs with positive values. 

Numerical computational procedures are the 

approaches used to design mathematical problems 

that can be solved using arithmetic operations. The 

comparison of all outcomes can be easily observed 

from the data given in Table 4. These calculated 

values are used to draw the 3D graphs. The 

numerical values of all the topological indices are 

listed below in Table 4. 

 

Table 4. Numerical Analysis for Si2C3-I[t, h] 

Topological indices (t, h)=[1, 1] (t, h)=[2, 2] (t, h)=[3, 3] (t, h)=[4, 4] (t, h)=[5, 5] 

𝐌𝟐(𝐆) 50 436 1182 2288 3754 

𝐙𝟐(𝐆) 50 582 1654 3266 5418 

PM1(G) 1.247× 1039 4.074× 1043 3.520× 1046 2.136× 1049 1.068× 1052 

PM2(G) 4.972× 1044 1.612× 1049 1.393× 1052 1.290× 1050 4.031× 1051 

HM(G) 212 2366 6680 13154 21788 

M2(G) 3.23 13 29.45 52.56 82.34 

RM2(G) 12 228 684 1380 2316 

ABC(G) 8.6321 56.52 144.399 272.28 440.16 

 𝐑∝(𝐆) 50 582 1654 3266 5418 

 𝐑(𝐆) 6.1066 32.08 78.093 144.15 230.24 

RR(𝐆) 24.27 215.96 587.65 1139.34 1871.04 

RRR(G) 10.49 131.26 372.03 732.794 1213.57 

GA(G) 23.89 113.37 263.42 460.56 741.79 

SD(G) -23.34 78.34 300 641.67 1103.34 

F(G) 235 1453 3751 7129 11587 

H(G) 5.9 31.64 77.37 143.1 228.84 

𝑿∝(G) 50 436 1182 2288 3754 

 

Graphical Analysis of Data 
In this section, the results are presented and 

discussed using graphs. It is important to note that 

the estimated areas and graphs below show how t 

and h affect each topological index. These examples 

make it simpler to understand how the other 

topological indexes react differently to the 

parameters t and h. Graphs and charts summarized a 

lot of information in simple formats that express  

 

 

 

key ideas simply and effectively. According 

to the type of data, there are several graph types, 

including bar charts, line graphs, area graphs, 

scatter plots, pie charts, pictographs, column charts, 

and bubble charts. The 3D axis graphs are used here 

to understand the relationship between the T-indices 

and the physical-chemical properties of the silicon 

structures. The x- and y-axes are used to represent 

the input values of parameters t and h, but the 3D 

space is used to display the outcomes. The variants 

in all the indices are described in Fig. 3.  
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(a) The first and second Zagreb indices        (b) The HM and second modified Zagreb indices 

 

 
(c) The RM2 and ABC indices               (d) The general R-index and R-index 

 

 
(e)  The RR-index and RRR-index          (f) The GA-index and SD-index 

 

       
             (g) The F-index and H-index                (h) The SC-index 

Figure 3. All the 3D graphs of degree based indices 

 

Comparison of Classical and Bi-distance 

TIs: 

 Single Distance Topological Index:   
The classical first and second Zagreb indices for the 

special isomer of silicon carbide Si2C3-1[t, h] are:-  

𝑀1(G)  =  90𝑡ℎ −  20𝑡 −  30ℎ +  4 
𝑍2(G)  =  135𝑡ℎ −  41𝑡 −  61ℎ +  14 

M.K. Siddiqui submitted an article that describes 

many classical indices for silicon carbide 35.  

 The behavior and variation of any TI can be 

observed by the numerical values shown in 

Table 5, but graphs are a better way to express 

the data. The smaller measurements are used to 

understand the changes as t = h = 1, 2, 3, 4, and 

5. 
 

Table 5. Numerical Analysis for Si2C3-1[t, h] 
Topological indices (t, h)=[1, 1] (t, h)=[2, 2] (t, h)=[3, 3] (t, h)=[4, 4] (t, h)=[5, 5] 

𝑀1(𝐺) 44 264 664 1244 2004 

𝑍2(𝐺) 47 350 923 1766 2879 
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 Fig 4 illustrates the graphical representations of 

the first and second Zagreb indices for the 

isomer of SiC.  

 
Figure 4. First and second Zagreb indices for 

Si2C3-1[t, h] 

 Bi- distance Topological Index 

The bi-distance first and second Zagreb indices for 

Si2C3-1[t, h] are determined as: 

𝑀1(G)  =  180𝑡ℎ −  62ℎ −  92𝑡 +  24 
𝑍2(G)  =  270𝑡ℎ −  112ℎ −  166𝑡 +  58 

 The values of the bi-distance indices are quite 

comparable to those of the previous indices and 

even more precise for some characteristics. So 

these indices also have a good correlation with 

the properties of silicon carbide. The values of 

TIs for t = h = 1, 2, 3, 4, and 5 are given in 

Table 6. 

 

Table 6. Numerical Analysis for Si2C3-1[t, h] 
Topological indices (t, h)=[1, 1] (t, h)=[2, 2] (t, h)=[3, 3] (t, h)=[4, 4] (t, h)=[5, 5] 

𝑀1(𝐺) 50 436 1182 2288 3754 

𝑍1(𝐺) 50 582 1654 3266 5418 

   

 The graphical representation of the bi-distance 

first and second Zagreb indices is shown in Fig. 

5. 

 
Figure 5. The bi-distance M1 and M2-indices of 

Si2C3-I[t, h] 

 
The significant connection between both 

indices is made clear by the comparison of both the 

classical and bi-distance indices. Bi-distant indices 

have excellent correlation coefficients that 

accurately represent a wide range of physical and 

chemical characteristics of various organic and 

inorganic materials. 

 

Conclusion: 
 The graphic is a simple technique to portray the chemical nature of a database association. Graphs are an important tool in science and engineering for developing and visualizing techniques, data organizations, networking, electric streams, socializing, and many other phenomena. Numerous pictorial invariants (topological indices) were explored 

above, which analyzed fixed variables connected to 

chemical structure graphs. In chemistry, silicon 

carbide, Si2C3-I[t, h], plays a crucial role, especially 

in manufacturing techniques and host–guest 

collisions. Silicon carbide is often used in protective 

jackets, automobile clutches, vehicle brake pads, 

LED bulbs, and sensors. The effect of various 

multiplicative implementations of degree-based 

topological invariants of silicon carbide, Si2C3-I[t, 

h] was explored. The results of this study can be 

used to better understand the biological activities 

and physical characteristics of silicon carbide. 

Similar to the classical degree-based approach, it is 

also a good way to estimate the properties of graphs 

because of the good correlation with the 

experimental features of Si2C3-I [t, h]. 

 Although a huge number of indices and 

techniques are proposed to examine the geometry 

and characteristics of various chemical structures, 

these indices are still insufficient to analyze several 

features of chemical and non-chemical networks. 

As a result, topological indices will be increasingly 

important in the future. 

A similar study might be conducted for 

many chemical substances that would be valuable to 

chemists in their future research. New 

methodologies, such as the bi-distance method, can 

be created and applied to all degree- or distance-

related topological indices. Topological indices can 

be used to investigate a wide range of complicated 

structures. Because classical degree-based indices 

are extremely strong and powerful, these indices 

will be applied to the structure that has to be 

explored. The most significant aspect of the 

significance of topological indices is the correlation 

coefficient values, which must be strong. 
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 بولوجية لكربيد السيليكونتنهج المسافة الثنائية لتحديد الثوابت ال
 

 1اقرأ حنيف           2جلال حاتم حسين البياتي        1محمد وحيد رشيد          1 عابد محبوب 

 3ساجد محبوب علام 

 
 .باكستان ،والتكنولوجيا، جامعة التربية، لاهورقسم الرياضيات ، شعبة العلم  1
 .العراق ،بغداد ،جامعة بغداد ،كلية العلوم للبنات ،قسم الرياضيات 2
 .قسم الرياضيات، جامعة منهاج، لاهور، باكستان 3

 

 الخلاصة:
الطوبولوجية جمع البيانات على يتزايد استخدام كربيد السيليكون بشكل كبير في مجالات البحث والتكنولوجيا. تمكن المؤشرات 

ية الرسوم البيانية الجبرية وتوفر إطارا رياضيا لتحليل الخصائص الهيكلية الكيميائية. في هذه الورقة ، يتم استخدام المؤشرات الطوبولوج

ميائية أو غير الكيميائية المختلفة ، يتم المعروفة القائمة على الدرجة لتحليل الهياكل الكيميائية لكربيدات السيليكون. لتقييم ميزات الشبكات الكي

"  ،نقدم مفهوما جديدا يتعلق بدرجة الرسم البياني يسمى" ثنائية المسافة ،تحديد مجموعة متنوعة من المؤشرات الطوبولوجية. في هذه الورقة

مصطلح"  3C2Si-[t, h]1  ،السيليكون والذي يستخدم لحساب جميع المؤشرات المضافة وكذلك المضاعفة القائمة على الدرجة لأيزومر كربيد

ئمة ثنائية المسافة " مشتق من مفاهيم الدرجة والمسافة بطريقة يمكن من خلالها استخدام المسافة الثانية لحساب المؤشرات الطوبولوجية القا

 على الدرجة.

 

، فهرس طوبولوجي، مؤشر 3C2Si-[t, h]1رسم بياني جزيئي، مؤشر راندي، كربيد السيليكون  ،حواف ثنائية المسافة الكلمات المفتاحية:

 زغرب.
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