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Abstract

Applications of microalgae in environmental studies have recently increased. Current uses of
immobilized microalga Chlorella vulgaris include reducing pharmaceutical substances such as
amoxicillin  AMX and potassium dichromate K:Cr.O; on freshwater clam Pseudodontopsis
euphraticus as a biotic model. Recent research pointed out a change in biomarkers of oxidative stress
in an evaluation of induced toxicity. Where clams were exposed to different concentrations100, 200,
and 400 mg/L for 7 days and 20, 30, and 50 mg/L for 5 days of amoxicillin and potassium dichromate,
respectively. The results showed that exposure to AMX and K;Cr,Oy led to a significant change in the
activity of antioxidant enzymes, with significant increases (p<0.05) in reactive oxygen species (ROS)
production. The highest ROS value was 51.05 pg/mg under concentrations of 50 mg/L of K;Cr,0Oy,
and the highest recorded percentage of Superoxide Dismutase SOD, Catalase CAT, Malondialdehyde
MDA, and Glutathione Reductase GSH, as: 33.40 U/m, 33.32KU/L, 23.22 umol/l and 21.30ug/g
respectively, in concentrations of 50 mg/L of K.Cr.O; non-treated. It was observed in this study that
potassium dichromate was more effective than amoxicillin in causing toxicity. According to the
current study, immobilized C. vulgaris was instrumental in decreasing chemicals toxicity, by relieving
oxidative stress on P. euphraticus clam, as it recorded a significant decrease p< 0.05 in ROS values
and oxidizing enzymes such as Superoxide Dismutase SOD, Catalase CAT, Malondialdehyde MDA,
as well as ascorbic acid. AA, total protein and GPX in treated samples.

Keywords: Biochemical
Pharmaceutical wastes.

markers, Chlorella vulgaris, Freshwater clam, Immobilized algae,

Introduction

The use of microalgae in biotechnology has
increased in recent times, frequent uses of
immobilized algae are the nutrients, inorganic ! ,
organic pollutants removal from aquatic systems,
culturing  for  metabolite  production, and
measurement of toxicity?.In the last years, growing

more attention has been paid to the presence of
pharmaceutical substances in aquatic ecosystems,
due to their potential to have detrimental impacts to
non-target aquatic species'. There are probably
entering freshwater systems by many pathways
including effluents from wastewater treatment
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plants (WWTPs), chemical industrialization plants,
and animal rearing and aquaculture 2,

Amoxicillin  AMX has been classified as an
emerging pollutant it causes great damage to
aquatic organisms, such as changes in embryonic
development and oxidative stress, and it has been
discovered that AMX is capable of causing DNA
damage and cytotoxic effects in common carp blood
cells 45 The most serious issue caused by
antibiotic-contaminated water, is the rise of
antibacterial drugs and genes for antibiotic
resistance, which result in the annual deaths of
700,000 people per year 25,

Chromium is a highly toxic inorganic pollutant that
enters environment from a variety of natural and
artificial sources, including medical facilities,
textile manufacturers  dye, and chrome
electroplating. Chromium has been designated as a
priority pollutant by numerous environmental and
health organizations, when present in excess, it
induces toxic effects on the cells such as
genotoxicity and oxidative damage and can damage
lipids, proteins, DNA, and cause carcinogenic and
mutagenic effects in living beings” 8.

The utilization of biomarkers as early warning tools
for contamination in an environment can be toxic
and dangerous to aquatic life °. Chemical
compounds can affect biological systems by
forming radicals or high-energy molecules, which
eventually reflect oxidative stress on organisms and

Materials and Methods
Tested Organisms

1-A freshwater clam, P. euphraticus, was selected
for toxicity testing and collected from the Euphrates
River in Al Hindiya District 32° 32' 29.9" N, 44°
13' 38.7" E, which is about 20 km east of Karbala
city and approximately the same distance west of
Hilla city ,Iraq .

2- The microalgal species used in this study was
Chlorella vulgaris that belonged to green algae and
most commonly used for wastewater treatment
which have high growth rates and can grow under a
wide range of culture conditions.This microalgal
strain was obtained from the Environmental

lead to the production of ROS in aquatic organisms
0 Thus, differences in the action of the enzymes
that make up the antioxidant protective mechanism
can be used as an early warning sign of toxic
compound contamination.t.

Bivalves are considered good bio-indicator
organisms for determining the degree of
contamination in  freshwater and  marine
ecosystems'23, This is due to several significant
characteristics, including their wide dispersion,
abundance, sedentary behaviour, physical size, and
frequently, their ecological and/or economic value.
As a result, various authors have studied responses
of molluscs reacting to environmental pressures and
contaminants 417

It has been shown that C. vulgaris can adapt to
antibiotic stress through its own physiological
adaptation and its ability to degrade pollutants, it is
therefore a good option for removing antibiotics
from aqueous systems®®. Algal immobilization
technology has received increasing attention and
has been used in many applications in the
environmental field, such as treating wastewater by
removing nutrients, pharmaceutical compounds,
hazardous textile dyeing, and heavy metals %22,

The current study aimed to use immobilized
alga as an eco-friendly method to a reduced the
toxic effect of amoxicillin and potassium
dichromate on some biomarkers in freshwater clam
Pseudodontopsis euphraticus.

Research and Studies
Babylon, Irag.

Center, University of

The C. vulgaris was identified by microscopic
observation and incubated under controlled
conditions of light intensity 286 pE/m?/s, light/dark
period 16:8 hours and temperature 252 °C. All
equipment and media were sterilized in an
autoclave at 121 °C, 1.5 h for 15 min. Modified
Chu-10 was used for the algal growth.

The method was followed by taking 50 ml of the
algae culture in the stabilization phase and
concentrate by centrifugation at 3000 rotation /
minute for a period 15 minutes. Afterwards, an
equal volume of 2% sodium genes solution was
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added to it and shaken well to homogenize the
mixture (algae and genes) which then placed in a
syringe or separating funnel. The contents of the
medical syringe or the funnel are gradually distilled
in the calcium chloride solution where the algae fall
in the beads form and leave for 5-10 minutes to
harden, then wash the beads from the calcium
chloride solution with tap water and rinse
thoroughly with distilled water by using a tea
strainer 23,

Pharmaceutical Substances

Pharmaceutical substances were used in this work,
including potassium dichromate K,Cr,O; and pure
amoxicillin  trihydrate (Cis6H19N305S.3H,0) was
obtained from the General Company for the
Manufacture of Medicines and Medical Supplies
Samarra, Irag.

Experimental Design

Cultivation of fresh clams was performed in 24
plastic containers 18 cm x 21 cm x 31 cm, which
were selected for the experiment. P. euphraticus.
which ranged in shell length from 3.5-4.6¢cm, were
collected from the Euphrates River and transported
to the laboratory. The stocks were prepared for all
macro, and microelements were dissolving the
weight of the salt, Table. S1The components and
concentration of modified Chu-10 medium and the
concentration of each component (Bleakley and
Hayes, 2017).

They were acclimated within standard conditions
with dechlorinated water for 5 days and exposed to
amoxicillin for 7 days at concentrations of 100, 200,

Results

Results recorded the experimental toxicity effects of
the amoxicillin (AMX) and potassium dichromate
(K2Cr,07) toxicity effects experiments on P.
euphraticus are shown in Figs.1,2. and Tables 1,2
respectively.

Exposing P.euphraticus to amoxicillin showed that
the ROS mean values in the exposure experiments
without the addition of immobilized alga ranged

and 300 mg/l, and they were also exposed to
K2Cr,07 for 5 days at concentrations of 20, 30, and
50 mg/l. On the other hand, 5-15beads of
immobilized C. wvulgaris were added to all
containers of treatments with pharmaceutical
substances. At the end of the exposure, the
haemolymph was extracted, to study the variation of
biochemical biomarkers 2.

Measuring Biomarkers

Method of Erel?® was used to determine reactive
oxygen species ( ROS )activity , and determine
super oxide dismutase (SOD) activity using the
method described by
Marklund&Marklund?.Catalase (CAT) activity was
determined according to Goth 2. Malondialdehyde
(MDA) tested by method of Buege and Aust?®.The
Glutathione peroxidase GPx activity determined
was completed by using the methodology adopted
from Hafeman et al,®®. GSH was determined
according to Moron et al,® . Total protein was
determined by Lowry et al., 3! moreover, ascorbic
acid AA was determined by McCormick and
Greene *2 by three replicates

Statistical Analysis

The results of statistical analyses study and the
significance level were considered at p<0.05.
Descriptive analyses included means and standard
deviations. Variables were tested for normality
distribution prior to analysis. To determine the
significance of differences, analysis of variance
(ANOVA) was used, and p-values less than 0.05
were considered significant. SPSS program was
also used for the analysis.

between 12.99 -22.52 pg/mg compared to the
control which recorded 11.77 pg/mg ,while with
C. vulgaris, ROS mean values decreased and
ranged from 8.89-16.73g/mg compared to 10.91
pg/mg in the control group for 100-300mg/L AMX
concentrations. In K,Cr,O7 experiment, the ROS
mean values recorded without C. vulgaris 37.50 -
51.05pug/mg compared to the control (which
recorded 12.58 ug/mg) but with added C.vulgaris,
ROS mean values were suppressed and ranged from
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33.88 -42.66ug/mg compared to 11.80pg/mg in the
control group of 20-50 mg/L concentrations.

In amoxicillin, without adding immobilized alga, in
the exposure experiments' CAT, mean values
ranged from 25.44-30.53 KU/L, compared the
control group of 24.14 KU/L, while with C.
vulgaris, a pronounced elevation of CAT values
was recorded which ranged from 17.56 -25.15
KU/L compared to 14.26 KU/L in the control group
for 100-300mg/L AMX concentrations. In K,Cr20v,
without C. wulgaris, higher CAT value was
recorded (26.88 -33.32KU/L) compared to the
control which recorded 23.60 KU/L ,but with
adding immobilized C. vulgaris, CAT mean values
were decreased and ranged from 27.16-25.76 KU/L
compared to 22.82 KU/L in the control group of 20
-50 mg/L concentrations.

Superoxide Dismutase (SOD) mean values for
AMX varied from 20.79 to 33.33 U/m in the
exposure trials without the addition of immobilized
C. vulgaris, compared to the control which recorded
17.51 U/m. while with C. vulgaris, SOD mean
values were significantly decreased and ranged
from 12.72 -21.62 U/m compared to 9.80 U/min the
control group of 100-300 mg/L concentrations. In
K2Cr,07, the SOD mean values without C. vulgaris
were 28.36 -33.40 U/m as opposed to the control
group 24.02 U/m values, but with the addition of C.
vulgaris, the SOD mean values ranged from 23.36 -
31.41U/m while that of control group's was 20.35 of
20-50 mg/L concentrations.

In AMX, the GPX mean values in the exposure
experiments without the addition of immobilized C.
vulgaris ranged between 5.70 to 8.36 U/L compared
to the control which recorded 18.48 U/L, While
with C. vulgaris, GPX mean values was apparently
not affected and ranged from 5.02-9.58 U/L
compared to 13.96 U/L in the control group for 100-
300 mg/L concentrations. However in case of
K2Cr207, The GPX mean values recorded without
C. vulgaris were 4.35 to 6.34 U/L compared to the
control which recorded 7.99 U/L but with added C.
vulgaris, GPX mean values ranged from 3.57-7.34
U/L compared in to 6.28 U/L in the control group of
20-30mg/L concentrations.

The GSH values for AMX mean ranged from 7.55 -
10.37ug/g in the exposure experiments without
adding immobilized C. vulgaris compared to the
control which recorded 5.92 pg/g, while with C.
vulgaris, GSH values slightly decreased and ranged
from 6.54 -9.46 pg/g compared to 5.14 pg/g in the
control group for 100 -300 mg/L concentrations. In
K>Cr,07, The GSH mean values recorded (without
C. vulgaris ) 21.30 - 16.30 pg/g compared to the
control which recorded 8.57 pg/g but on the
addition of C. vulgaris, GSH mean values ranged

from 14.52-22.47ug/g compared to 9.7ug/g in the
control group 20- 30mg/L concentrations.
The malondialdehyde (MDA) mean values

produced during the effect of AMX ranged from
17.69 -42.43 umol/L in the exposure experiments
without addition of immobilized C. vulgaris,
compared to the control which recorded 13.28
umol/1, while C. vulgaris, MDA mean values were
highly decreased and recorded from 11.60 -23.97
umol/l compared to 8.89 umol/l in the control group
for 100-300 mg/L concentrations. While in K2Cr,O7
experiment, the MDA mean values recorded
(without C. vulgaris) from 12.68 to 23.22 umol/l
compared to the control which showed 7.99 pmol/l
but with added C.vulgaris, MDA mean values were
largely decreased and ranged from 9.81-
11.44pmol/l compared to 8.86pmol/l in the control
group of 20-50 mg/L concentrations.

In AMX, the total protein (TP) mean values in the
exposure experiments without the addition of
immobilized C. vulgaris ranged from 9.65 to 11.14
mg/g compared to the control, which recorded
13.17 mg/g, while with C. vulgaris. TP mean values
significantly increased and recorded ranged from
14.25 to 15.60mg/g, compared to 12.44 mg/g in the
control group for 100-300mg/L. In KyCr,O7. The
TP mean values recorded without C. vulgaris were
from 10.86 tol7.25mg/g compared to the control,
which recorded 12.12mg/g but with C. vulgaris, TP
mean values recorded ranged from 10.93 to 15.42
mg/g compared to 29.21 mg/g in the control group
at a 20-30mg/L concentrations.

The Ascorbic acid AA mean values for AMX
ranged from 13.41 to 14.48 pM in the exposure
experiments without the addition of immobilized C.
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vulgaris compared to the control which recorded
11.59 uM, while with C. vulgaris, AA mean values
were apparently unaffected and ranged from 10.31 -
13.40 uM compared to 11.47 uMin the control

vulgaris were 25.27-27.93uM compared to the
control which recorded 25.36 UM but with adding
C. vulgaris. AA mean values were apparently
unaffected and ranged from 24.83-27.94 uM

group for 100-300 mg/L concentrations. In compared to 23.92 uMin the control group in a 20-
K2Cr,07.The AA mean values recorded without C. 50 mg/L concentrations.
4 30— [ =200 —300—)

o200 23.41 25.15
W Control ® 100 ,5,, 3053 = 100 ' '
B 24.14 25.49 B = H Control 17.56 .
§ g 14.26
: Bl ] I
2 f: —
© _|l®
o
concentrations mg/| J n concentrations mg\| Y,
= 200
100 . 16.73
B Control o 13 66 15 2
1.9 al
11.77 —=-—Centrol —
1001 ™ 100 200
S 9.8
& — | | £ 8.89 : |
2 =
(%) 3
2 — 3 —
o
A
concentrations mg/| / concentrations mg/I /
/ 300\ / suu\
42.43 23.97
= = 200 — = 100 13.96
g o 259 < = Controt—TT% —
£ wIee — || B 8.89
< @ Control 17.93 £ |
s 1378 — s :.
I B 2 ~
concentrations mg/ | J n concentrations mg/ | /
/ "W Confrol \ / —Controt \
3 g ® 100
9.58 ™ 200
® 100 75
= 235 - 200 300 § ’ 300
o) 6.91 5.028
= 5.7 x
© _— (V)
concentrations mg/ | / n concentrations mg/I /

Page | 293


https://doi.org/10.21123/bsj.2023.8214

2024, 21(2): 0289-0304
https://doi.org/10.21123/bsj.2023.8214
P-ISSN: 2078-8665 - E-ISSN: 2411-7986

o

S
Baghdad Science Journal

-

= 200
= 100 879

W Control 7.55

GSH ug/g

| I I

- [ 300—)
= 200

1?)0;)7 = 100 e 9.46
‘ B Control 6.54 N

GSH pg/g

| I I

concentrations mg/I

j n concentration mg/| /
s

Tm_l TOO =) W—I00 = 200 300
11.14 10 38 300 ® Control  15.6 1474 1475
9.65 1247
.% c
= g B
+ L
s E T2
g 5 E [
[ o
'—
K concentrations mg/I / p concentrations mg/! J

Figure 1. Effect of the antibiotic amoxicillin (AMX) on mean of biochemical markers
SOD,CAT,ROS,MDA,GPX, GSH, Total Protein and Ascorbic Acid in mussel in P.euphraticus. A-
without Immobilization of (C. vulgaris), B- with using Immobilized C. vulgaris
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Figure 2. Effect of the Potassium Dichromate (K2Cr.07) on mean of biochemical markers
SOD,CAT,ROS,MDA,GPX, GSH, Total Protein and Ascorbic Acid in mussel in P.euphraticus. : c-
without Immobilization of (C. vulgaris), D- with Immobilization of the alga.

Table 1. The mean of biochemical markers in P. euphraticus during acute exposure period to antibiotic
amoxicillin (Min., Max., Mean£SDof three replicates).

Biochemical Without Immobilization of (C. vulgaris)

markers

Immobilization with ( C. vulgaris)

control

ROS (ng/mg)  9.63-
11.92
1177+
0.94

soD(U/m)  16.22-
18.92
17.51
1.35

CAT (KU/L) 24.14-
24.9
24.14
0.39

MDA (um/l)  12.19-
14.36
13.28
1.06

GPX (U/L)  16.82
21.82
18.48
2.88

I+

I+

I+

I+

100 (mg/l)

10.56
17.00
12.99
3.49

I+

18.92- 22.14
20.79 +1.67

23.93-26.77
25.44 +1.42

12.18-23.21
17.69 +5.51

6.94-9.78
8.36 +1.42

200 (mg/l)

14.83 -
12.38
13.66
1.22

I+

16.49 -
32.43
25.04
8.03

I+

27.08 -
29.15
28.21
1.04

I+

25.90-
25.90
25.9+0.00

6.50-7.38
6.91+0.44

300(
mg/1)

19.35
25.93
22.52
3.29

27.03-
40.54
33.33
6.80

27.39-
35.28

30.53
4.18

40.01-
44.87
42.43
243

5.26
6.02
5.70
0.39

I+

I+

I+

I+

I+

control

8.54
13.54
10.91
2.37

I+

8.11-
10.81
9.80
1.47

I+

1158 -
17.49

14.26
2.99

I+

7.69-9.62
889 =+
1.04

11.90 -
15.90
1396 =+
2.00

100 200
(mg/l)  (mg/l)

7.22- 11.72
11.26 8.54
889 + 09.80
2.10 1.68
11.62- 10. 81
13.92 20.54-
12.72 = 16.75
1.15 521
15.86- 22.42
18.42 24. 56
17.56 23.41
+1.47 1.07
11.60- 12.79-
11.69 15.13
1160 *= 13.96
0.00 1.17
562 - 6.14
15.14 9.43
958 =+ 750
4.95 1.71

I+

I+

I+

I+

I+

300
(mg/l
)

14.46
18.75
16.73
+

215
16.22

27.03
21.62
+
5.40
23.59

26.24

25.15
+

1.38
20.51

26.47
23.97
+

3.09
4.98 -
5.06

5.02
+
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GSH(ug/9)

Total
(mg/g)

protein

Ascorbic acid
(AA) uM

5.82 -
6.00
5.92
0.09

I+

12.74-
14.38
13.17
0.58

I+

10.95-
12.28
11.59
0.91

I+

5.64 -8.81
7.55 +1 .68

9.37-12.58
11.14 +1.63

10.08-15.65
13.41+2.94

546-11.81 9.11
8.79+3.18 17.32
10.37
1.25
9.04-11.39 8.67-
10.38 + 10.45
1.20 9 .65
0.905
11.66- 12.49-
16.66 17.14
13..37+ 14.48+
291 2.39

- 3.96
6.90
5.14
1.55

I+

11.09-
13.95
12.44
1.43

I+

10.34-
12.65
11.47
1.13

- 5.55
7.31
6.54+
0.90

I+

13.59-
17.18
15.60
+1.83

I+

10.47-
11.99
11.31
0.77

I+

0.04
- 4.86 - 7.25-
9.40 12.13
6.95 + 0.46+
2.29 247
14.43- 12.66
15.06 -
1474 + 1545
0.31 14.25
+
1.43
7.11- 11.80
13.51 -
+ 10.31+ 14.27
3.19 13.40
+
1.39

Table 2. The mean of biochemical markers in P. euphraticus during acute exposure period to
Potassium dichromate. (Min., Max., MeanzSD of three replicates)

Biochemical
markers

ROS (ng/mg)

SOD(U/m)

CAT (KUIL)

MDA (pumol/1)

GPX (UIL)

GSH(pg/g)

without Immobilization of (C. vulgaris)

Immobilization with (C. vulgaris)

control

10.74-
14.77
12.58
1.76

21.62-
27.03
24.02
2.75

22.67
25.13
23.60
1.33

8.00
11.70
9.70+
1.86

6.18-
9.06
7.99
1.57

6.42
10.79
8.57
2.18

I+

I+

I+

I+

I+

20(
mg/l)

30.70-
44.17
37.50
6.73

+

27.62-
29.05
28.36
+0.71

26.61 -
27.16
26.88
+0.38

10.77-
14.6
12.68
2.70

I+

4.26
8.42
6.34
2.08

I+

14.38 -
18.46
16.30
+2.05

30 50( mg/l)
(mg/l)

36.31- 45.08 -
45.94 57.20
40.97 51.05 =+
+4.82 6.06
29.73- 3355 -
3243 36.04
31.10 3340 %
+135 144
30.52 - 30.99-
31.20 3541
30.86 33.32 £
+048 222
17.38-  22.38-
12.38 24.13
19.69 + 2322 %
2.52 0.87
278 - 370 -
7.42 5.34
528 + 435
2.34 0.86
18.15- 1899 -
16.06 25.56
18.01+ 2130 =+
1.88 3.69

Control

9.53
13.54
11.80
2.05

I+

19.11-
21.62
20.35
1.255

I+

21.59-
24.59
22.82
1.57

I+

5.77
5.86
8.86
0.09

I+

6.14 -
6.14
6.28
0.14

I+

6.42 -
10.79
9.7
2.89

I+

20( mg/l)

31.62
36.55
33.88+
2.48

24.32-
29.73.
23.36
+1.18

25.08-
26.45
25.76
0.68

I+

8.40-
11.22
9.81
1.41

I+

6.66—
8.02
7. 34
0.68

I+

18.46-
25.70
22.47
+3.68

30(
mg/l)

34.03
38.69
36.86
2.48

I+

25.62 -
28.92
27.43
1.67

I+

2411 -
29.25
26.30
2.65

I+

8.97-
12.82
10.87+
1.92

3.10
4.34
3.57+
0.67

11.03-
18.01
14.52
4.39

+

50(
mg/l)

40.06
43.64
42.06
1.82

I+

33.25
29.34
3141
1.96

I+

25.27-
28.92
27.16
1.82

I+

11.5-
11.73
11.44
0.41

I+

3.02
5.10
3.87
1.08

I+

15.00
22.77
18.78
3..88

I+
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Total protein 10.29 — 10.16 - 1542 - 11.03- 2824 — 993 - 1249 - 14.40-
(mg/g) 13.95 11.39 17.25 14.43 30.07 12.22 18.35 15.50
1212 + 1086 + 17.25+ 1279 + 2921 + 1093 + 1542+ 1556 +
1.83 0.62 1.83 1.70 0.92 1.17 2.93 1.06
Ascorbic acid 2452 - 2635 - 24.14 - 27.68- 2357 - 2286 - 26.73- 27.03 -
(AA) uM 26.54 27.11 26.29 28.32 24.27 26.10 26.99 28.86
2536 + 26.37 + 2527+ 27.93+ 2392 + 2483 + 26.88 + 27.94 +
1.05 0.38 1.08 0.33 0.34 1.73 0.13 0.91
Discussion

In this study, it was found that exposure to AMX
and K3Cr,O7 enhanced the production of ROS, this
is consistent with many studies which indicated that
these pharmaceutical substances led to an increased
production of ROS in aquatic organisms 333

Previous studies showed that AMX and K;Cr,0Oy
caused significant changes in the activity of

antioxidant enzymes and induced oxidative stress
36,37

In this study, increased levels of the antioxidant
enzymes CAT, SOD, GSH, and MDA were
observed in oysters’ P. euphraticus after exposure
to the pharmaceuticals AMX and K,Cr,O7 than the
control group, which possibly due to increased
oxidative stress on the clams (Tables 1,2 and
Figs.1,2. respectively) .

The Super oxide dismutase SOD and CAT are the
most important first lines of defence to remove
Reactive oxygen radicals in antioxidant enzymes.
They are mostly used as an indicator of oxidative
stress to determine pollution stress on organisms 3
% and could indicate that the cells are attempting to
defend itself against the scenario of oxidative stress.
It is a protective mechanism for the conversion of
excess oxygen and free radicals resulting from
exposure to hydrogen peroxide 4, Cellular
biomarkers have a prognostic or diagnostic value
for long-term toxicological or ecological effects by
early identifying the onset of biological changes
induced by chemical pollutants #*. Our results are
consistent with Elizaldi-Velasquez who reported
that the AMX induced oxidative stress, and it was
also responsible for raising the activity of the
enzymatic antioxidants (superoxide dismutase,
catalase, and glutathione peroxidase) in the gills,

kidneys, and brain of C. carpio during acute
exposure*?. Also the study of #3, showed that Cr®*
affects antioxidant responses and causes increased
SOD-CAT activity, DNA damage and apoptosis in
fish Channapunctatus. In this study, GPx levels in
P. euphraticus decreased considerably following
chromium and AMX exposure, this may be due to
the fact that Cr(\VI) compounds cause a decrease in
glutathione concentrations due to an increase in
glutathione disulphide (GSSG), which is an
important marker of oxidative stress in cells as
reported by 4445,

The enzyme activity of the glutathione system can
be induced by pharmaceutical preparations in
bivalves, as in M. galloprovincialis and Curbicula
fluminea®, hexavalent chromium increased GSH in
Venus verrucosa soft tissues, due to oxidative
stress®.

The enzyme activity of the glutathione system can
be induced by pharmaceutical preparations in
bivalves, as in M. galloprovincialis and Carbicula
fluminea “. According to a study carried out by
Shaaban et al. ,Hexavalent chromium increased
GSH in Venus verrucosa soft tissues, due to
oxidative stress®®. MDA is widely used as a
biomarker of oxidative stress, and increased level of
oxidative damage in terms of lipid oxidation has
been reported in different species of snails exposed
in vitro to environmental pollutants 4. Excess ROS
produced within the organism's body may react with
the lipid of the cell membrane, forming lipid
peroxides that are further degraded into
malondialdehyde. The MDA formation is an
indicator of cell damage, which leads to tissue
damage and, in extreme cases, death of the
organism “8, Rusdi et al. suggested that the elevated
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MDA level in green-lipped mussels (Pernaviridis)
indicated that an organism has experienced
oxidative stress “°. Proteins are the most important
organic molecules in a living system. Proteins play
an essential role in an organism's physiology and
providing an information on an animal's general
energy mobilization. Proteins are broken down into
amino acids under stress conditions by organisms to
meet their metabolic needs *0.In clams, an
environment with high levels of pollution leads to a
rise in protein breakdown and a decrease in cell
protective proteins “°.

The study carried out by Ahmad et al. showed that
potassium dichromate caused a considerable
reduction in renal tissue proteins, albumin levels
and hepatic tissue proteins when compared the
control group of mollusks *°. Ascorbic acid or
vitamin C is a primary nutrient that, acts as a
reducing factor and a non-enzymatic antioxidant in
the cell. Ascorbic acid is used as a reducing agent
for potassium dichromate from Cr (V1) to Cr (1l1).
According to Chadabane et al. chromium (V1) causes
a significant increase in the levels of both GSH and
vitamin C in soft tissues of Venus verrucosa®.
Increased Catalase, SOD enzyme activity and MDA
level as well as reduced GPx activity significantly
indicated that P. euphraticus clams had experienced
oxidative stress.

The present study indicated that C.vulgaris has a
distinct role in relieving oxidative stress in clams
through its pronounced effect on biochemical
biomarkers during the study period. A gradual
decrease in the values of ROS, SOD, CAT, GSH,
TP and MDA was observed compared to untreated
samples (p<0.05). Because C. vulgaris has been
used to remove many environmental pollutants,
(such as (heavy metals, organic compounds or
pharmaceuticals), due to its widespread occurrence
in aquatic habitats, rapid growth rates, and tolerance
to harsh environmental conditions %> %3, Algae can at
the same time utilize many methods or mechanisms
that supplement each other to remove medicines
and other toxic compounds from the environment.
These mechanisms included intracellular and
extracellular biodegradation, adsorption,
bioaccumulation photolysis and hydrolysis 4
Additionally, Xiong et al. used C. vulgaris to

eliminate some antibiotics such as levofloxacin and
fluoroquinolones; with an initial concentration was
of 5 mg/L, after 7 days, about 15% of the antibiotic
had been eliminated 5. There are several studies
indicating the ability of C. vulgaris to clear the
amoxicillin antibiotic, such as the study by Rickey
et al. who indicated the susceptibility of C. vulgaris
to removal of AMX (by 37%) from the medium by
a biodegradation mechanism®. In a similar the
study of Xiao et al. 5 who used Chlorella
pyrenoidosa to remove amoxicillin which achieved
about 91% clearance, within 6 hours. As well as
study performed by Zhao et al., AMX was removed
by C. vulgaris with an efficiency of 25% 58

Many investigators reported that  cell
immobilization could protect the organism's growth
against the toxicity of both heavy metals at LC50 as
compared to lethal concentrations and maintain
metabolic cell activity for a longer period ¢ %°, This
makes it more effective in removing these
compounds from the medium and thus reducing
toxic effects on the organism. Immobilization of
microalgal cells are recently used to remove many
pollutants such as heavy metals, nitrogen,
phosphorus, and pharmaceutical materials from
polluted wastewater, because microalgae have a
high ability to adapt to various and harsh
environmental conditions ® and can act as a good
biological absorbent, and provide a high absorption
capacity for minerals and nutrients. This study
agrees with the results of Xie et al. who reported
that immobilized C. vulgaris disrupted the toxicity
of SMX and increased the removal efficiency by
85.1% and 86.2% SMX, respectively from the
medium ©*.

The possibility of using C. vulgaris as a cheap and
effective sorbent material to remove chromium ions
from wastewater without the need for pretreatment.
The maximum chromium ion removal (99.75%)
was under the following conditions; pH, 60 min.,
contact time, 60 mg/50 mL at a concentration of
100 ppm ©. The alga removed chromate by
adsorption, the alga contain functional groups, such
as carboxyl (COO-), amino (NH2-), sulfate
(SO42-), and hydroxyl (OH-), which acted as
binding sites for metals %. Also, the possibility of
using green algae as a good bio absorbent for
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removing Cr(VI) from aqueous solutions in the
environment, and showed that C. glomerata dry

Conclusion

According to the obtained results of the present
study, the pharmaceutical substances; AMX and
K2Cr,0; cause oxidative stress in P. euphraticus
due to increased ROS formation and CAT, SOD,
MDA, GSH, and Ascorbic Acid activities in clams.
So it might suggest the critical role of these
enzymes in cell protection against the deleterious
effects of pharmaceutical compound. Also, it
showed that K,Cr.O; is the most harmful and
effective toxin in clams. A recent study confirmed
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