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Introduction

The primary problems of best approximation theory 

from Ky Fan’s point of view a convexity advantage 

which require introducing a mapping with some 

hypotheses. In this article, the focus  was on Ky 

Fan’s type best approximation: Let 𝛺 be convex 

compact subset of a normed linear space Γ, 𝑓 is a 

continuous function on 𝛺 and 𝑢 is an element of Γ; 

that approximately to 𝑢 from the elements in 𝛺 

would be a vector  𝑣 ∈ 𝛺 such that    ‖𝑣 –  𝑓(𝑣)‖ =

𝑑 (𝑓(𝑣), 𝛺)1, where 𝑑 is a metric distance induced 

by norm .  

   The value of Ky Fan’s Theorem1 is due to its use 

in elicitation many fixed-point theorems as a 

corollary depending on weaker assumptions in 

many fields of nonlinear analysis1. This theorem has 

been of great importance in nonlinear analysis, 

approximation theory, fixed point theory and 

variational inequalities. The result is equivalent to 

the well-known topological fixed point theorem due 

to Brouwer introduced by Kanster, Knratowski, and 

Mazurkiewiez. They produced a very important 

result depending on Sperner’s lemma, presently, it 

is known as the (KKM-map) principle. This 

principle was employed to give a simplified proof 

of Brouwer’s theorem. An extension of KKM- map) 

theorem was presented by Ky Fan in topological 

vector spaces and gave several interesting 

applications, specially, in fixed point theory and 

best approximation theory.  Fixed point theorems 

have been used at many places in approximation 

theory. Later on, many results were developed using 

fixed point theorem to prove the existences of best 

approximation. By H. Kaneko sufficient conditions 

for the existence of a coincidence point of 

continuous multivalued mappings are derived in p-

normed spaces (0 < p < 1). As applications, some 

results on the set of best approximation for this 
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class of mappings are obtained. A. Latif obtained 

the coincidence point theorem for Banach spaces or 

thesis sources (for more details see 1-4).  

   The aim of this article is to establish some 

relations among approximate compact set, compact 

set and proximinal set in modular spaces. A first 

attempt was made by Birnbaum and Orlicz5. Their 

approach considers spaces of functions with some 

properties different from those provided by the Lp –

norm (𝑝 ≥ 1). This work found various applications 

in differential and integral equations. Another 

generalization was given by Luxemburg. The main 

idea is to consider, in a measure space, a functional 

that has the properties of a norm plus a monotony 

condition. For this historical narrative see6, 7. For 

known current notion of modular spaces see 8, who 

introduced it as a generalization of metric spaces. 

This idea has been based on replacing the particular 

form of the functional (integral formula) by an 

abstractly one which has some features was called a 

modular in (named by Nakano in 1950)6, 7. It was 

then redefined with some modification by Musielak 

and Ortiz in 1959 6.  

Example 1 Let  𝜃 be a non-negative convex Orlicz 

function such that 𝜃 (0) = 0. The Orlicz space is a 

modular function generated by 

𝜌( 𝑓 ) =  ∫𝜃( |𝑓 ( 𝑡 )| )𝑑𝑚 ( 𝑡 )
.

𝑅

 

Example 2 Let 𝜇 be a 𝜗- finite measure. Ƒ = 

{𝜏: 𝑅 → 𝑅:  𝜏 is measure preserving 

transformations, 𝜇𝜏( 𝐸 ) =  𝜇( 𝜏
−1( 𝐸 ))}. The 

group Ƒ is a modular function space generated by 

𝜌 (𝑓 ) = 𝑠𝑢𝑝𝜏∈𝑓 ∫ | 𝑓 ( 𝑡 )|
𝑝.

𝑅
𝑑𝜇𝜏(𝑡) is a Musielak-

Orlicz. Note, throughout the work, 𝑅 is a symbol of 

real numbers   

 

Example 3: Let 𝜇 be a 𝜎 – finite measure. Ƒ = {𝜏 ∶
𝑅 → 𝑅 measure preserving transformation, 𝜇𝜏(𝐸) =

𝜇(𝜏−1(𝐸))}. The group Ƒ is modular function space 

with 

𝜌 ( 𝑓 ) =  𝑠𝑢𝑝𝜏∈𝑓∫| 𝑓 ( 𝑡 )|
𝑝

.

𝑅

𝑑𝜇𝜏 (𝑡) 

 is a Lorentz 𝜌-space.  

 

Example 4 Let 𝜑 be an Orlicz function. Ƒ =
{𝜏: 𝑅 → 𝑅 is measure preserving transformations 

and 𝜇𝜏(𝐸) =

𝜇(𝜏−1(𝐸))}, 𝜇 is a 𝜑 –  finite measuer . The group 

Ƒ is a modular function space generated by  

𝜌 ( 𝑓 ) = 𝑠𝑢𝑝𝜏∈𝑓 ∫  𝜑  ( |𝑓(𝑡)|)𝑑𝜇𝜏(𝑡)

.

𝑅

 

is a Orlicz-Lorentz space. 

     In 2017, the best approximation modular spaces 

have been defined by Abed 8 and results about 

proximinal set, Chebysev set are proven also, see9. 

Various results in modular spaces and other related 

spaces about fixed point problem can be seen in 

Turkoglu and Nesrin9, Albundi10, Abdul Jabbar and 

Abed11, 12, Ahmed13, Mohammed and Abed14, 

Pathak and Beg15, Abed and Abdul Jabbar16, 17 , Ege 

and, Alac18 also Abed and Salman19. 

 

Preliminaries  
A generalization of modular space should be 

mentioned here as defined as modular b-metric 

space17. 

Definition 1 Let 𝛤 be a vector space over 𝐹(=
𝑅 𝑜𝑟 ₵), a function 𝜁:𝛤 → [0,∞] is called b-

modular if  

(i) 𝜁 (𝑣𝛬)= 0 if and only if 𝑣𝛬 =  0. 
(ii) 𝜁(𝛼𝑣𝛬) = 𝛼𝜁(𝑣𝛬),  𝛼 ∈ 𝐹 and |𝛼| =1,∀𝑣𝛬 ∈

𝛤. 
(iii) 𝜁(𝛼𝑣𝛬 +  𝛽𝑢𝛬) ≤ 𝑏[𝜁(𝑣𝛬) + 𝜁(𝑢𝛬)] 

iff 𝛼, 𝛽 ≥ 0, for all 𝑢𝛬, 𝑣𝛬 ∈ 𝛤, 𝑏 ≥ 1. 

If (iii) replaced by 

(iii) 𝜁(𝛼𝑣𝛬 + 𝛽𝑢𝛬) ≤  𝑏[𝛼𝜁(𝑣𝛬) + 𝛽𝜁(𝑢𝛬)], for 

𝛼, 𝛽 ≥ 0, 𝛼 + 𝛽 = 1, for all  𝑣𝛬, 𝑢𝛬 ∈𝛤 𝑏 ≥
1. Then 𝛤 modular 𝜁 is called con𝑣ex b- 

modular. 

When b=1, it will be convex modular. Similar to 8 

set the following  

Definition 2 A function 𝜁defines an identical b-

modular space 𝛤𝜁, as follows  

𝛤𝜁 = {𝑣
𝛬 ∈ 𝛤: 𝜁(𝛼𝑣𝛬) → 0 𝑤ℎ𝑒𝑛𝑒𝑣𝑒𝑟 𝛼 → 0}. 

Example 5 The space 𝑙𝑝 = {𝑢 = {𝑢𝑛
^} ⊂

𝑅,∑ |𝑢𝑛
^ |
𝑝
< ∞∞

1 }, 0 < 𝑝 < 1, with modular  

𝜁(𝑢) = (∑ |𝑢𝑛
^ |
𝑝∞

1 )1 𝑝⁄  is b-modular space with b=2 

by similar details in4. 

Remark 1 

i) If  𝑢𝛬 = 0 then 𝜁(𝛼𝑣𝛬) = 𝜁 (
𝛼

𝛽
 𝛽𝑣𝛬) ≤

𝜁(𝛽𝑣𝛬), for all 𝛼, 𝛽 𝑖𝑛 𝐹, 0 < 𝛼 < 𝛽, by 

condition (iii) above and by similar reasoning in 
6 and this shows that 𝜁 is increasing function. 

ii) The family of all 𝜁-balls in the space𝛤𝜁 gives a 

topology. 

    In the sense in 13, the following definition is 

stated 
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Definition 3 The distance between 𝑣𝛬 ∈ 𝛤𝜁 and 𝐵⊂

𝛤𝜁 is 

𝐷ζ(𝑣
𝛬, 𝐵) = inf {𝜁(𝑣𝛬 − 𝑢𝛬); 𝑢𝛬 ∈ 𝐵}. 

Definition 4 Let 𝛤𝜁 be a b-modular space 

(a) A sequence {𝑣𝑛
𝛬 } ⊂ 𝛤𝜁  converges to 𝑣𝛬 ∈  𝛤𝜁 if 

𝜁(𝑣𝑛
𝛬 − 𝑣𝛬) → 0 as n→ ∞. It is called 𝜁-

convergent to 𝑣𝛬write 𝑣𝑛
𝛬
𝜁
→𝑣𝛬    

(b) A sequence {𝑣𝑛
𝛬}⊂ 𝛤𝜁 is called 𝜁ــ Cauchy if 

𝜁(𝑣𝑛
𝛬-𝑣𝑚

𝛬 )→ 0 as 𝑛 → ∞. 

(c)  If every 𝜁ــ Cauchy sequence in 𝛤𝜁 is 𝜁ــ 

convergent to a point in 𝛤𝜁 then 𝛤𝜁 is called 𝜁ــ 

complete. 

(d) If every sequence {𝑣𝑛
𝛬}⊂𝐵 ⊂𝛤𝜁 is 𝜁ــ convergent 

to 𝑣𝛬 ∈ 𝐵 then 𝐵⊂𝛤𝜁 is called 𝜁ــ closed. And B 

is bounded if 𝑑𝑎𝑖𝑚𝜁(𝐵) < ∞ 

(daimeter w.r.t. 𝜁) 
(e) A subset 𝐵⊂𝛤𝜁 is called 𝜁ــ compact if every 

sequence {𝑣𝑛
𝛬}⊂ 𝐵 contains a 𝜁ــ convergent 

subsequence. 

  Here, 𝛤𝜁 be a b- modular space its b-modular 

function is 𝜁 and ∅ ≠ 𝛺 ⊂ 𝛤𝜁. Let 𝛤𝜁 and 𝑁𝜌 be two 

b-modular spaces and 𝑆: 𝛤𝜁 → 𝑁𝜌 each 𝑢𝛬 ∈ 𝛤𝜁 , ∅ ≠

𝑆(𝑢𝛬) ⊆ 𝑁𝜌 be a set-valued mapping. 

Definition 5 9  Let 𝑣𝛬 ∈ 𝛤𝜁,  𝑣
𝛬 is a fixed point of 𝑆 

if 𝑣𝛬 ∈ 𝑆𝑣𝛬 (or 𝑣𝛬 = 𝑆𝑣𝛬, when 𝑆 is single valued)  

     Reformed the concept of upper semi-continuous 

mapping (shortly, 𝑢. 𝑠. 𝑐.). 
Definition 6 16  A set-valued mapping 𝐹 is 𝑢. 𝑠. 𝑐., if 
the set {𝑢𝛬 ∈ 𝛤𝜁: 𝐹(𝑥) ∩ 𝐵 ≠ ∅} is closed whenever 

𝐵 is closed subset of 𝑁𝜌. In natural way, the 

following are defined, see 14. 

Definition 7  If 𝛺 is a subset of 𝛤𝜁 then: 

(i) 𝛺 is called proximinal if for all 𝑣𝛬 

𝛤𝜁, there exists a  𝑢𝛬 𝛺 such that  

𝜁|(𝑣𝛬 − 𝑢𝛬)| = 𝐷𝜁(𝑣
𝛬, 𝛺). 

(ii) 𝛺 is called Chebysev if for each 𝑣𝛬 

𝛤𝜁, there is a unique element 

𝑢𝛬𝛤𝜁 such that 𝜁|(𝑣𝛬 − 𝑢𝛬)| = 

𝐷𝜁(𝑣
𝛬, 𝛺). 

Definition 8 A collection of all best approximation 

of 𝑣𝛬 ∈ 𝛤𝜁 by 𝛺 is 

𝑃𝛺(𝑣
𝛬) = {𝑢𝛬 ∈ 𝛺: 𝜁(𝑣𝛬 − 𝑢𝛬) = 𝐷ζ(𝑣

𝛬, 𝛺)} 

and 𝑃𝛺:𝑀→2𝛺 is said to the metric projection on 𝛤𝜁, 

where 2𝛺  is the class of all nonempty subset of 𝛺. 

Results and Discussion 

The definition of a semi compact set in a b-modular 

vector space is introduced in this section. 

Definition 9 A subset 𝛺 of 𝛤𝜁 is called a semi-

compact if for every 𝑣𝛬𝛤 and every sequence 

<𝑣𝑛
𝛬> in 𝛺 with lim

𝑛→∞
𝜁(𝑣𝛬 − 𝑣𝑛

𝛬) = 𝐷𝜁(𝑣
𝛬, 𝛺), there 

exists a subsequence 〈𝑣𝑛𝑖
𝛬 〉 converges to 𝑤 ∈ 𝛺. 

Example 6 Consider the closed unit ball in the 1-

modular space𝑙𝑝 = {𝑢 = {𝑢𝑛
^}:⊂ 𝑅,∑ |𝑢𝑛

^ |
𝑝
< ∞∞

1 },

0 < 𝑝 < 1, with modular𝜁(𝑢) = (∑ |𝑢𝑛
^ |
𝑝∞

1 )1 𝑝⁄ , it 

is semi-compact but not compact. 

Remark 2 If 𝛺 is compact subset of𝛤𝜁, then 𝛺 is a 

semi-compact. To show, let 𝑣𝛬𝛤𝜁 and <𝑣𝑛
𝛬> be a 

sequence in 𝛺 with  lim
𝑛→∞

𝜁(𝑣𝛬 − 𝑣𝑛
𝛬) = 𝐷𝜁(𝑣

𝛬, 𝛺). 

Since 𝛺 is compact set, then by Definition 4 (e) 

there is a convergent subsequence 〈𝑣𝑛𝑖
𝛬 〉 of <𝑣𝑛

𝛬> in 

𝛺. Below, note that the converse is not true 

 

Definition 10  A b-modular space 𝛤𝜁 is uniformly 

convex if ∀ > 0, ∃() > 0, such that if  𝜁(𝑣𝛬) = 

𝜁(𝑢𝛬) = 1 and (𝑣𝛬 − 𝑢𝛬)  , then 𝜁 (
1

2
(𝑣𝛬 +

𝑢𝛬)) ≤ 1 − 𝛿. 

 When b=1, Abdul Jabbar and Abed 13 gave many 

facts about uniformly convex modular space. 

Proposition 1  If 𝛺 is closed convex subset of a 

uniformly convex space𝛤𝜁 then it is semi-compact. 

Proof: Suppose𝛤𝜁 uniformly convex, 𝛺⸦𝛤𝜁, 𝛺 is 

convex and closed and 𝑢𝛬𝛤𝜁 and < 𝑢𝑛
𝛬 >  𝛤𝜁  

such that 𝜁(𝑢𝑛
𝛬 − 𝑢𝛬)𝐷𝜁(𝑢

𝛬, 𝛺).Then sup 

𝜁(𝑢𝑛
𝛬) < ∞. The closeness and convexity of 𝛺 

implies there is 𝑢0
𝛬𝛺 and a sequence <𝑢𝑛

𝛬>  𝛺 

such that 𝑢𝑛
𝛬 𝑢0

𝛬. As lim
𝑛→∞

𝜁(𝑢𝑛
𝛬 − 𝑢𝛬) = 𝑢0

𝛬 − 𝑢𝛬. 

So,   

𝜁(𝑢0
𝛬 − 𝑢𝛬) ≤ lim

𝑛→∞
inf 𝜁(𝑢𝑛

𝛬 − 𝑢𝛬) = 𝐷𝜁(𝑢
𝛬, 𝛺)

≤ 𝜁(𝑢0
𝛬 − 𝑢𝛬) 

that is 𝜁(𝑢0
𝛬 − 𝑢𝛬) = 𝐷𝜁(𝑢

𝛬, 𝛺). By definition of 

<𝑢𝑛
𝛬>, getting(𝑢𝑛

𝛬 − 𝑢𝛬) → 𝐷𝜁(𝑢
𝛬, 𝛺) =

𝜁(𝑢0
𝛬 − 𝑢𝛬). 

https://dx.doi.org/10.21123/bsj.2023.8230
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Since 𝛤𝜁 is a uniformly convex, then getting(𝑢𝑛
𝛬 −

𝑢𝛬) → (𝑢0
𝛬 − 𝑢𝛬), that is then 𝑢𝑛

𝛬 → 𝑢𝛬 ∈ 𝐴, then 

𝐴 is a semi compact. 

Theorem 1  If 𝛺 is semi compact subset of  𝛤𝜁 , then 

𝛺 is a proximinal and closed  

Proof: Let  𝑣𝛬 ∈ 𝛤𝜁 .  𝑏𝑦 definition of 𝐷𝜁(𝑣
𝛬, 𝛺), 

from the set of the numbers{𝜁(𝑣𝛬 − 𝑢𝛬 ) ∶ 𝑢𝛬𝜖 𝛺}. 
Now, construct a sequence 〈𝜁(𝑣𝛬 − 𝑢𝑛

𝛬)〉 such that 

lim
𝑛→∞

𝜁(𝑣𝛬  − 𝑢𝑛
𝛬) = 𝐷𝜁(𝑣

𝛬 , 𝛺)   

since 𝛺 is a semi-compact. Then from 〈𝑢𝑛
𝛬〉, there is 

a subsequence converging to a point 𝑢0
𝛬 ∈ 𝛺.  

Hence, by the continuity of 𝜁 getting 

𝜁(𝑣𝛬 − 𝑢0
𝛬) = 𝜁 (𝑣𝛬 − lim

𝑖→∞
𝑢𝑛𝑖
𝛬 ) = lim

𝑖→∞
𝜁(𝑣𝛬 −

𝑢𝑛𝑖
𝛬 ) = 𝐷𝜁(𝑣

𝛬, 𝛺)  

when 𝑢0
𝛬 ∈ 𝑃𝛺(𝑣

𝛬), the proof of proximinal is 

complete. Finally, for an accumulation point  𝑣𝛬 of 

𝛺, then  ∃𝑢𝛬 ∈ 𝛺 such that (𝑣𝛬 − 𝑢𝛬) =
 𝐷𝜁(𝑣

𝛬, 𝛺) = 𝟶, so 𝑣𝛬 ∈ 𝛺 , and 𝛺 is  closed set. 

    Returning to Remark 2, to show the opposite 

fails, consider 𝛤𝜁 = 𝑙
2(𝑅)  uniformly convex 

complete space with convex modular 𝛾(𝑥) =

√∑ |𝑥𝑖|
2∞

1 , 𝛺 = {𝑣 ∈  𝛤𝜁 ; 𝜁 (𝑣) ≤ 𝑟}, 𝑟 > 0 , 

defined by 𝑢𝛬1 = 0 and 𝑢𝛬𝑛  =

(1,
1

𝑛
, 0, … ,0⏟  
𝑛−1

, 1,0, …) , 𝑛 ≥ 2  is proximal but not 

semi compact.  

 

Theorem 2 Let ∅ ≠ 𝛺 ⊆ 𝛤𝜁 and 𝛺 be a semi-

compact. If  𝜁(𝑢)𝛬 < ∞, for each 𝑢. Then 𝑃𝛺 maps 

𝛤𝜁  into 𝐶𝐵(𝛺) is 𝑢. 𝑠. 𝑐., where 𝐶𝐵(𝛺) = {Σ: ∅ ≠

 𝛴 ⊂ Ω, Σ is closed and bounded}. 
Proof: By Theorem 1, 𝛺 is proximinal set. Then 

𝑃𝛺(𝑣)
𝛬 is nonــ empty for each 𝑣𝛬 in 𝛤𝜁 . So, 𝑃𝛺 (𝑣) 

is closed and bounded (in the sense of 9). 

Thus 𝑃𝛺 (𝑣𝛬) maps 𝛤𝜁 into 𝐶𝐵(𝛺). Now, let 

∑ ∈ 𝐶𝐵(𝛺) and define the set 

𝐵= {𝑣𝛬 ∈ 𝛤𝜁 ∶  𝑃𝛺(𝑣
𝛬) ∩ ∑ ≠∅} 

To complete the proof, it is enough to prove B is 

closed. Let 〈𝑣𝑛
𝛬〉 be a sequence in 𝐵, converging to 

𝑣𝛬 ∈ 𝛤𝜁 . Assume 〈𝑣𝑛
𝛬〉 ⊆𝐵, then there is a sequence 

〈𝑢 𝑛
𝛬〉 ⊆ 𝛺 such that  〈𝑢 𝑛

𝛬〉 ∈ 𝑃𝛺(𝑣 𝑛
𝛬) ∩ ∑, (𝑛 =

1,2,… . ). By 〈𝑢 𝑛
𝛬〉 ∈ 𝑃𝛺(𝑣 𝑛

𝛬), (𝑛 = 1,2,… . ). You 

have 

lim
𝑛→∞

𝐷𝜁(𝑣 𝑛
𝛬, 𝛺) = lim

𝑛→∞
𝜁(𝑣 𝑛

𝛬 − 𝑢 𝑛
𝛬)  

⇒ 𝐷𝜁(𝑣
𝛬, 𝛺) = lim

𝑛→∞
𝜁(𝑣𝛬 − 𝑢 𝑛

𝛬) 

                       ≤ 𝑏[ lim
𝑛→∞

𝜁(𝑣𝛬 − 𝑣 𝑛
𝛬) +

lim
𝑛→∞

𝜁(𝑣 𝑛
𝛬 − 𝑢 𝑛

𝛬)] 

                       = lim
𝑛→∞

𝜁(𝑣𝛬 − 𝑢 𝑛
𝛬)  

                       = 𝐷𝜁(𝑣
𝛬, 𝛺) 

Thus lim
𝑛→∞

𝜁(𝑣𝛬 − 𝑢 𝑛
𝛬) = 𝐷𝜁(𝑣

𝛬, 𝛺). Consequently, 

the semi compactness provides a subsequence 

〈𝑢 𝑛𝑘
𝛬 〉 of <𝑢 𝑛

𝛬> converging to 𝑢 0
𝛬𝛺, so, there is a 

subsequence 〈𝑣 𝑛𝑘
𝛬 〉  of 〈𝑣 𝑛

𝛬〉. Now, since 𝑢 0
𝛬𝛺, 

then 

𝐷𝜁(𝑣
𝛬, 𝛺) ≤ 𝜁(𝑣𝛬 − 𝑢 0

𝛬 ) 

     ≤ 𝑏[𝜁(𝑣𝛬 − 𝑢 𝑛𝑘
𝛬 ) + 𝜁(𝑢 𝑛𝑘

𝛬 − 𝑢 0
𝛬)]    

   

     ≤ 𝑏2 𝜁(𝑣𝛬 − 𝑣 𝑛𝑘
𝛬 ) + 𝑏2𝐷𝜁(𝑣 𝑛𝑘

𝛬 , 𝛺) +

𝑏𝜁(𝑢 𝑛𝑘
𝛬 − 𝑢0

𝛬)    

for 𝑘, 𝜁(𝑣𝛬 − 𝑢0
𝛬) =𝐷𝜁(𝑣

𝛬, 𝛺), that is 𝑢0
𝛬 

𝑃𝛺(𝑣
𝛬). Also, since ∑ is a closed and 〈𝑢 𝑛𝑘

𝛬 〉  M, 

lim
𝑘→∞

𝑢 𝑛𝑘
𝛬 = 𝑢0

𝛬  have 𝑢0
𝛬𝑃𝛺(𝑣

𝛬) ∩ ∑. Thus, the 

proof is complete.   

Theorem 3 Suppose that 𝛺 Theorem 2, and 𝑃𝛺: 𝛤𝜁 

→ 2𝛺 is the metric projection of 𝛤𝜁 onto 𝛺. If ∑ 

compact subset of 𝛤 then 𝑃𝛺(∑) = ∪ {𝑃𝛺(𝑣
𝛬) ∶

𝑣𝛬 ∈ ∑} is compact.  

Proof: Assume 〈𝑢𝑛
𝛬 〉 be a sequence in 𝑃𝛺(∑). So, 

there is a sequence 〈𝑣𝑛
𝛬 〉 ⊆ ∑ such that for each 𝑛  

𝑢𝑛
𝛬 ∈ 𝑃𝛺 (𝑣𝑛

𝛬), that is  𝜁(𝑣𝑛
𝛬 − 𝑢𝑛

𝛬) = 𝐷𝜁(𝑣𝑛
𝛬 , 𝛺). 

Since ∑ is compact, then it may assume that there is 

a 𝑣𝛬 ∈ ∑ with 𝑣𝑛
𝛬 → 𝑣𝛬 and  

𝐷𝜁(𝑣
𝛬 , 𝛺) ≤ 𝜁(𝑣𝛬 − 𝑢𝑛

𝛬)  ≤ 𝑏[𝜁(𝑣𝛬 − 𝑣𝑛
𝛬) +

𝐷𝜁(𝑣𝑛
𝛬 , 𝛺)] 

Therefore, 

lim 𝐷𝜁(𝑣
𝛬, 𝛺)

𝑛→∞

≤ lim
𝑛→∞

𝜁(𝑣𝛬 − 𝑢𝑛
𝛬)

≤ lim
𝑛→∞

𝜁(𝑣𝛬 − 𝑣𝑛
𝛬)

≤ lim
𝑛→∞

𝐷𝜁(𝑣𝑛
𝛬, 𝛺) 

𝐷𝜁(𝑣
𝛬, 𝛺) ≤ lim

𝑛→∞
𝜁(𝑣𝛬 − 𝑢𝑛

𝛬) ≤ 𝐷𝜁(𝑣
𝛬, 𝛺)  ⇒   

𝐷𝜁(𝑣
𝛬, 𝛺) = lim

𝑛→∞
𝜁(𝑣𝛬 − 𝑢𝑛

𝛬)        

By semi compactness of 𝛺 and  〈𝑢𝑛
𝛬〉 ⊆ 𝑃𝛺(𝐶) ⊆ 𝛺 

, the above steps imply to the existences of𝑢𝛬 ∈ 𝛺 

and subsequence 〈𝑢𝑛𝑖
𝛬 〉 of 〈𝑢𝑛

𝛬〉 with 𝑢𝑛𝑖
𝛬 → 𝑢𝛬. This 

prove that 𝑃𝛺(∑) is compact. 
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Conclusion 

This paper includes many basic concepts and facts 

in the convex modular vector space, which were 

employed to obtain some results, such as, a semi-

compact subset of modular space is closed 

proximinal which means that,  𝑝𝛺𝑣
𝛬 ≠

 ∅ for each  𝑣𝛬  ∈ 𝛺  and images of 𝑝𝛺 is compact. 

In the future, you can use the results to obtain some 

applications in other fields, such as control. 

 

Open Problem 

It possible to combine the set 𝑃𝛺(∑)  into work in 11, 

12 and 16 to posing the following question: Could the 

limit of convergence iterative sequences in 11, 12 and 

16 be an invariant best approximation? 
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