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Introduction 

Abstract algebra was used in many fields of science,  

notions of  Abstract algebra are discussed by many 

researchers see1,2 . Many applications were  used as 

hyper-structures in both pure and applied sciences. 

In 2014 Redfar A et al,  used the hyperstructures to 

define the concept of hyper BE-algebra3. In4 the 

hyperstructure applied by Jun Y et al. to BCK-

algebra and he defined the notion hyper BCK-

algebra that generalization of BCK-algebra. In 2018 

Surdive A et al, used hyper structures to define the 

concept of BCK-algebra5. Also, Uzay D and Firat A 

introduced the notion of the multiplier of a hyper 

BCI-algebra6. 

    A new concept of a hyper BZ-algebra 

generalization of BZ-algebra was introduced by DU 

Y and Zhang X  H7.  Also, the concept of 

hyperstructure KU-algebra was defined and some 

properties were investigated by Moustafa S  et al.8.   

    In 2019 the concept of hyper UP-algebras was 

discussed by Romano D 9. Also, khan M and 

another researcher introduced the notion of BCH-

algebra10. In 2020 Tawfeeq A et al. defined the 

concept of Hyper AT- ideal on AT-algebra11.       

    A hyper operation * on ¥ ≠ ⌀  is a mapping from 

¥ × ¥  to the non-empty power set 𝑃∗(¥) =
𝑃(¥)/∅  i.e.  ∗∶ ¥ × ¥ → 𝑃∗(¥) , (𝜎1, 𝜎2) ↦ 𝜎1 ∗
𝜎2 ⊆ ¥, ∀ 𝜎1,𝜎2 ∈ ¥  and for all ∅ ≠ 𝛾1, 𝛾2 ⊆ ¥ 

then 𝛾1 ∗ 𝛾2 defined as  𝛾1 ∗ 𝛾2 = ⋃ 𝜎1 ∗𝜎1∈𝛾1,𝜎2∈𝛾2

𝜎2  and  𝛾1 ∗ 𝜎2 = 𝛾1 ∗ {𝜎2},   𝜎1 ∗ 𝛾2 = {𝜎1} ∗ 𝛾2 .    

    Let (¥,∗)  be a hyper structure such that 1 ∈ ¥   

in hyper structure (¥,∗)  a hyper order is a relation 

was defined by  ∀𝛾1, 𝛾2 ∈ 𝑃∗(¥)) (𝛾1 ≪ 𝛾2  ↔
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 (∀𝑎 ∈ 𝛾1) ∃𝑏 ∈ 𝛾2))(1 ∈ 𝑎 ∗ 𝑏). This relationship 

is called hyper-order. Let 𝜎1 ≪ 𝜎2 be instead of 
{𝜎1} ≪ {𝜎2}. Then for every 𝜎1,𝜎2 ∈ ¥ →
(𝜎1 ≪ 𝜎2 ↔ 1 ∈ 𝜎1 ∗ 𝜎2).  

    The concept of 𝜌 −algebra was introduced and 

discussed by Mahmood S. and Alredha M. 12. The 

constructions of  δ −algebra were proposed by 

Khalil S and Hassan A 13 

    In this work the concept of hyper 𝜌 −algebra and 

some new concepts like hyper 𝜌 −subalgebra, hyper 

𝜌 −ideal, hyper 𝜌 −ideal and hyper 𝛿 −algebra, 

hyper 𝛿 −subalgebra, hyper  𝛿 −ideal were 

introduced. And the relationship between them was 

studied. 

Preliminaries 

Definition 110: A 𝜌 −algebra (Ω,∗) is a non-empty 

set  Ω with a constant 1 ∈ Ω and a binary operation 

* that satisfying the following for every 𝜎1, 𝜎2 ∈ Ω:   

(1) 𝜎1 ∗ 𝜎1 = 1, 

(2) 1 ∗ 𝜎 = 1, 

(3) 𝜎1 ∗ 𝜎2 = 1 = 𝜎2 ∗ 𝜎1 imply that 𝜎1 = 𝜎2, 

(4) 𝐹𝑜𝑟 𝜎1 ≠ 𝜎2, imply 𝜎1 ∗ 𝜎2 = 𝜎2 ∗ 𝜎1 ≠ 1. 

Definition 2 10: Let (¥,∗ ,1) be a 𝜌 −algebra and 

∅ ≠ 𝜇 ⊆ ¥ then  𝜇  is called 𝜌 −ideal of 𝜌 −algebra 

if: 

(1) 𝜎1,𝜎2 ∈ 𝜇 imply   𝜎1 ∗ 𝜎2 ∈ 𝜇,    

(2)  𝜎1 ∗ 𝜎2 ∈ 𝜇 and  𝜎2 ∈ 𝜇 imply  𝜎1 ∈ 𝜇 for all  

𝜎1,𝜎2 ∈ ¥.    

Definition 3 10: Let (¥,∗ ,1) be a 𝜌 −algebra and I 

be a subset of ¥. Then I is called 𝜌 −ideal of 

𝜌 −algebra ¥ if:   

 (1) 1 ∈ 𝐼,  

(2)𝜎1 ∈ 𝐼 and 𝜎2 ∈ ¥ → 𝜎1 ∗ 𝜎2 ∈ 𝐼, for all 𝜎1, 𝜎2 ∈
¥.                                      

Definition 4 10: Let (Ω,∗) be a 𝜌 − algebra and let  

∅ ≠ 𝐻 ⊆ Ω . H is called a 𝜌 −subalgebra of (Ω,∗) if  

𝑥 ∗ 𝑦 ∈ 𝐻 whenever 𝑥 ∈ 𝐻 and 𝑦 ∈ 𝐻.         

Definition 5 5: An algebra(¥,∗ ,1) of type (2,0) is 

called a hyper BCK-algebra if it satisfies the 

following hold:  

(1) (σ1 ∗ σ2) ∗ (σ2 ∗ σ1) ≪ σ1 ∗ σ2, 

(2) (σ1 ∗ σ2) ∗ σ3 = (σ1 ∗ σ3) ∗ σ2, 

(3) σ1 ∗ ¥ ≪ {σ1}, 

(4) σ1 ≪ σ2 and σ2 ≪ σ1 ≪ σ1 → σ1 = σ2  , 

Definition 6 8: Let ∅ ≠ Ψ with a constant 1  and * 

be a hyper operation defined on ¥. Then (𝐻,∗ ,1) is 

called a hyper BCH-algebra: 

(1)  𝜎1 ≪ 𝜎2,      

(2) (𝜎1 ∗ 𝜎2) ∗ 𝜎3 = (𝜎1 ∗ 𝜎3) ∗ 𝜎2,   

(3)𝜎1 ≪ 𝜎2 and 𝜎2 ≪ 𝜎1 → 𝜎1 = 𝜎2 for 

all 𝜎1, 𝜎2, 𝜎3 ∈ ¥   

And 𝜎1 ≪ 𝜎2  is defined by 1 ∈ 𝜎1 ∗ 𝜎2 ∀  𝛾1, 𝛾2 ⊆

¥, 𝛾1 ≪ 𝛾2  is defined by: for all 𝑎 ∈ 𝛾1 ∃ 𝑏 ∈ 𝛾2 

such that 𝑎 ≪ 𝑏.                                              

Proposition 1 8: Any hyper BCK-algebra is a hyper 

BCH-algebra. 

Definition 7 7: Let ¥ be a non-empty set such that 

1 ∈ ¥ and  (¥,∗, ≪ ,1) be a hyper-structure. Then 

(¥,∗, ≪ ,1) is called a hyper UP-algebra if: 

(1) (∀ 𝜎1, 𝜎2, 𝜎3 ∈ ¥)(𝜎2 ∗ 𝜎3 ≪ (𝜎1 ∗ 𝜎2) ∗
(𝜎1 ∗ 𝜎3)) 

(2) (∀ 𝜎1 ∈ ¥)(𝜎1 ∗ 1 = {1},  

(3) (∀ 𝜎1 ∈ ¥)(1 ∗ 𝜎1 = {𝜎1}, 

(4)  (∀𝜎1, 𝜎2 ∈ ¥) ((𝜎1 ≪ 𝜎2˄𝜎2 ≪ 𝜎1 

Definition 8 11: Algebra system (Ω,∗, ≪, 𝑓) is a 

𝛿 −algebra if 𝑓 ∈ Ω and the following hold: 

(1) 𝜎 ∗ 𝜎 = 𝑓, 

(2) 𝜎1 ∗ 𝜎2 = 𝑓, 

https://doi.org/10.21123/bsj.2023.8279
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(3) 𝜎1 ∗ 𝜎2 = 𝑓 and 𝜎2 ∗ 𝜎1 = 𝑓 → 𝜎1 = 𝜎2, for all  

𝜎1, 𝜎2 ∈ Ω, 

(4) For all 𝜎1 ≠ 𝜎2 ∈ Ω − {𝑓} → 𝜎1 ∗ 𝜎2 = 𝜎2 ∗

𝜎1 ≠ 𝑓, 

(5) For all 𝜎1 ≠ 𝜎2 ∈ Ω − {𝑓} → (𝜎1 ∗ (𝜎2 ∗ 𝜎3)) ∗

(𝜎3 ∗ 𝜎2) = 𝑓. 

The Concept of Hyper ρ −Algebra: 

The concept of hyper 𝜌 −algebra, hyper  

𝜌 −subalgebra, hyper 𝜌 −ideal and hyper  ideal 

are discussed. 

Definition 9:  Let   be a non-empty set such that 

1 ∈ Ω and  (Ω,∗, ≪ ,1) be a hyper structure. Then, 

(Ω,∗, ≪ ,1) is called a hyper 𝜌 −algebra if the 

following hold:  

 (1)  𝜎1 ≪ 𝜎2,                 

 (2)  1 ∗ 𝜎1 = {1},                                                                         

 (3)   𝜎1 ∗ 1 = {𝜎1},         

 (4)  (∀𝜎1 ≠ 𝜎2 ∈ Ω − {1} → 𝜎1 ∗ 𝜎2 = 𝜎2 ∗ 𝜎1 ≠
{1},   

 (5) (∀𝜎1, 𝜎2 ∈ Ω)(𝜎1 ≪ 𝜎2˄𝜎2 ≪ 𝜎1) → 𝜎1 = 𝜎2.                                 

Example 1: Let  Ω = {1,2,3,4,5} be a set, define a 

hyper operation (*) on Ω as follows in Table 1: 

   

Table 1. (Ω,∗, ≪, 𝟏) is a hyper 𝝆 −algebra 

with 𝜸 = {𝟏, 𝟐, 𝟑, 𝟒, 𝟓} 

* 1 2 3 4 5 

1 {1} {1} {1} {1} {1} 

2 {2} {1,2} {3} {4} {5} 

3 {3} {3} {1,3} {4} {5} 

4 {4} {4} {4} {1,4} {5} 

5 {5} {5} {5} {5} {1,5} 

Then (Ω,∗, ≪ ,1) is a hyper 𝜌 −algebra. 

Proposition 2: Let (Ω,∗, ≪ ,1) be a hyper 

𝜌 −algebra then for every   𝜎1, 𝜎2 ∈ Ω:     

(1) 𝜎1 ∈ 𝜎1 ∗ 1,                             

(2) 1 ≪ 𝜎1,                                              

(3)  𝜎1 ≪ 𝜎2, ∀𝜎1, 𝜎2 ∈ Ω 𝑤𝑖𝑡ℎ    𝜎1 = 𝜎2                                           

(4)  𝜎1 ∗ 𝜎2 = 𝜎2 ∗ 𝜎1  ∀ 𝜎1, 𝜎2 ∈ Ω/
{1}  𝑤𝑖𝑡ℎ    𝜎1 ≠ 𝜎2,                         

(5)  𝜎1 ∗ 𝜎2 = {𝜎1} ↔ 𝜎2 = 1,                                    

(6)  𝜎1 ∗ 𝜎2 = {1} ↔ 𝜎1 = 1, 𝜎2 = 1,                   

(7)  𝛾2 ∗ 1 = 𝛾2,    ∀𝛾2 ⊆ Ω,                                  

(8)  1 ∗ 𝛾1 = 1,     ∀ 𝛾1 ⊆ Ω,                               

(9) (1 ∗ 𝜎) ∗ 1 = {1},     ∀ 𝜎 ∈ Ω,                  

(10)  𝜎 ∗ (1 ∗ 1) = {𝜎},  ∀𝜎 ∈ Ω,                                             

(11) 𝜎 ∗ 𝜎 = {𝜎},    ↔ 𝜎 = 1,                                

Proof: (1) It is clear (by condition 3 definition 9.). 

(2) by Definition 3.1 condition 2 {1} ⊆ 1 ∗ 𝜎, then 

1∈ 1 ∗ 𝜎 that mean 1 ≪ 𝜎. (3) Since 𝜎1 = 𝜎2 that 

means 1 ∈ 𝜎1 ∗ 𝜎2  and 1 ∈ 𝜎2 ∗ 𝜎1  then 𝜎1 ≪ 𝜎2 . 

(4) It is verifier (by condition 4 of Definition 9). (5) 

Suppose that 𝜎1 ∗ 𝜎2 = {𝜎1};  wanted to prove that 

𝜎2 = 1,  from definition 3.1 condition 3 then 𝜎2 =

1. Now, suppose that 𝜎2 = 1, wanted to show that 

𝜎1 ∗ 𝜎2 = {𝜎1}; since 𝜎2 = 1, then 𝜎1 ∗ 1 = {𝜎1}.  

(𝟔) Suppose that 𝜎1 ∗ 𝜎2 = {1}, wanted to prove 

that 𝜎1 = 1 = 𝜎2  or 𝜎1 = 1. Now, suppose that 

𝜎1 ≠ 1 ≠ 𝜎2 and 𝜎1 ≠ 1, then if  𝜎1 ≠ 1 then 𝜎1 ∗

𝜎2 = {𝜎1 ∗ 𝜎2}, and that contradiction with 𝜎1 ∗

𝜎2 = 1, then 𝜎1 = 1 = 𝜎2 or 𝜎1 = 1. Now, suppose 

that 𝜎1 ∗ 𝜎2 = 1, then 𝜎1 = 1 = 𝜎2 or 𝜎1 = 1,  we 

wanted 𝜎1 ∗ 𝜎2 = {1}, by Definition 3.1 condition 5 

deduces that 1 ∈ 1 ∗ 𝜎1 ˄ 1 ∈ 𝜎21condition 3 ∗ 𝜎1, 

and since 𝜎1 = 1 = 𝜎2, then 1 ∈ 1 ∗ 𝜎2 ˄ 1 ∈ 1 ∗

𝜎1, that mean 𝜎1 ∗ 𝜎2 = 𝜎2 ∗ 𝜎1 = {1}, when 𝜎1 =

1 = 𝜎2,   or  𝜎1 = 1.  

(7) Since 𝜎1 ∗ 1 = {𝜎1}, that is clear, take any ∅ ≠

𝛾2 ⊆ Ω, then 𝛾2 ∗ 1 = 𝛾2. (8) Since 1 ∗ 𝜎1 = {1}, 

then 1 ∗ 𝛾1 = {1}, ∀∅ ≠ 𝛾1 ⊆ Ω.  (9) Since 1 ∗ 𝜎1 =
{1}, then {1} ∗ 1 = {1}. (10) Since 1 ∗ 1 = {1}, then 

𝜎1 ∗ {1} = {𝜎1}, ∀ 𝜎1 ∈ Ω. (11) Suppose that 𝜎1 ∗

https://doi.org/10.21123/bsj.2023.8279
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𝜎1 = {𝜎1}, wanted 𝜎1 = 1. Since 𝜎1 ∗ 𝜎1 = {𝜎1}, 

that means 𝜎1 = 1. Now, suppose 𝜎1 = 1, wanted to 

prove that 𝜎1 ∗ 𝜎1 = {𝜎1}, since 𝜎1 ∗ 𝜎1 = 1 ∗ 1 =
{1}, then 𝜎1 ∗ 𝜎2 = {𝜎1}.  

Definition 10: Let (Ω,∗, ≪ ,1) be a hyper 

𝜌 −algebra and let 𝛾 ⊆ Ω, be a proper subset of Ω. 

Then (𝛾,∗, ≪ ,1) is called a hyper 𝜌 −subalgebra if 

it satisfies the following:     

∀ 𝜎1, 𝜎2 ∈  𝛾 → 𝜎1 ∗ 𝜎2 ⊆ 𝛾 

Example 2: Take a hyper ρ −algebra (Ω,∗, ≪ ,1) in 

Example 1 and let 𝛾 ⊆ Ω. where  𝛾 = {1,2,3}.  
Table 2 will be: 

Table 2. (𝜸,∗, ≪, 𝟏) is a hyper 𝝆 −subalgebra 

with 𝜸 = {𝟏, 𝟐, 𝟑} 

* 1 2 3 

1 {1} {1} {1} 

2 {2} {1,2} {3} 

3 {3} {3} {1,3} 

Then (𝛾,∗, ≪ ,1) is a hyper 𝜌 − subalgebra since  

∀ 𝜎1, 𝜎2  ∈ 𝛾, then  𝜎1 ∗ 𝜎2 ⊆ 𝛾.   

Remark 1: There is no relation between hyper 

𝜌 −algebra and hyper UP/BCK/BCH –algebra. 

Example 3: Let Ω = {1,2,3,4,5,6}, and * be a hyper 

operation defined on Ω as in Table 3:  

Table 3. (Ω,∗, ≪, 𝟏) is a hyper 𝝆 −algebra with 

Ω = {𝟏, 𝟐, 𝟑, 𝟒, 𝟓, 𝟔}. 

* 1 2 3 4 5 6 

1 {1} {1} {1} {1} {1} {1} 

2 {2} {1,2} {3} {4} {5} {6} 

3 {3} {3} {1,3} {4} {5} {6} 

4 {4} {4} {4] {1,4} {5} {6} 

5 {5} {5} {5} {5} {1,5} {6} 

6 {6} {6} {6} {6} {6} {1,6} 

   Then (Ω,∗, ≪ ,1) is a hyper 𝜌 −algebra. But it is 

not hyper UP-algebra since if take 𝜎1 = 2,  and𝜎2 =

1, then  2 ∗ 1 = {2} ≠ {1}. Also, the system is not 

hyper BCK-algebra to verify that if 𝜎1 = 2, 𝜎2 = 3, 

𝜎3 = 4, then (2 ∗ 3) ∗ (3 ∗ 4) ≪ 2 ∗ 3 → {3} ∗ {4} 

≪ {3} → {4} ≪ {3}, but 1 ∉ {4} ∗ {3},  and by 

Proposition 2.7 then the system is not BCH-algebra.                                                                

Definition 11: Let (Ω,∗, ≪ ,1)be a hyper 

𝜌 −algebra and let a non-empty set 𝛾 ⊆ Ω then 𝛾 is 

called a hyper 𝜌 −ideal of a hyper 𝜌 −algebra if:  

 (1)  ∀ 𝜎1, 𝜎2 ∈ 𝛾  imply 𝜎1 ∗ 𝜎2 ⊆ 𝛾,        

 (2) if   𝜎1 ∗ 𝜎2 ⊆ 𝛾, and 𝜎2 ∈ Ω then 𝜎1 ∈ Ω  

∀𝜎1, 𝜎2 ∈ Ω.                               

Example 4: Let Ω = {1,2,3,4}  and   be a hyper 

operation defined on Ω as in Table 4: 

Table 4.  (Ω,∗, ≪, 𝟏) is a hyper 𝝆 −algebra with 

Ω = {𝟏, 𝟐, 𝟑, 𝟒} 

* 1 2 3 4 

1 {1} {1} {1} {1} 

2 {2} {1,2} {1} {2} 

3 {3} {1} {1,3} {3} 

4 {4} {2} {3} {1,4} 

and let 𝛾 = {1,2}, then Table 5 will be:  

Table 5. (𝜸,∗, ≪, 𝟏) is a hyper 𝝆 −ideal of hyper 

𝝆 −algebra 

* 1 2 

1 {1} {1} 

2 {2} {1,2} 

Note that, ∀ 𝜎1, 𝜎2 ∈ 𝛾, then 𝜎1 ∗ 𝜎2 ⊆ 𝛾 and take 

any 𝜎1 ∗ 𝜎2 ⊆ 𝛾 and 𝜎2 ∈ Ω since 𝜎1 ∈ 𝛾, then  

(𝛾,∗, ≪ ,1) is a hyper 𝜌 −ideal of hyper 𝜌 −algebra.                               

Remark 2: Every hyper 𝜌 −ideal is a hyper 

𝜌 −subalgebra. But the converse is not true in fact.     

Example 5: Take 𝛾 = {1,3,5} in Example 3 Table 6 

will be:  

Table 6. (𝜸,∗, ≪, 𝟏) is not hyper 𝝆 −ideal 

* 1 3 5 

1 {1} {1} {1} 

3 {3} {1,3} {5} 

5 {5} {5} {1,5} 

https://doi.org/10.21123/bsj.2023.8279
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It is clear that 𝛾 is a hyper 𝜌 −subalgebra, but it is 

not hyper 𝜌 −ideal since if  𝜎1 ∗ 𝜎2 = {5} ⊆ 𝛾  and 

𝜎2 = 5, then  𝜎1 = 4 ∉ 𝛾.       

Proposition 3: The intersection of hyper 𝜌 −ideals 

is a hyper 𝜌 −ideal. 

Proof: Suppose that 𝛾𝑖 , 𝑖 ∈ 𝐼  be a hyper 𝜌 −ideal of 

a hyper 𝜌 −algebra Ω and let 𝜎1, 𝜎2 ∈ ∩𝑖∈𝐼 𝛾𝑖, 

then 𝜎1 ∗ 𝜎2 ⊆ 𝛾𝑖,  ∀ 𝑖 ∈ 𝐼  (since 𝛾𝑖 is a hyper 

𝜌 −ideal), so 𝜎1 ∗ 𝜎2 ⊆ 𝐼𝑖∈𝐼𝛾𝑖 .          

Now, let  𝜎1 ∗ 𝜎2 ⊆∩𝑖∈𝐼 𝛾𝑖 . And 𝜎2 ∈ 𝛾𝑖 , so, since 

𝜎1 ∗ 𝜎2 ⊆ 𝛾𝑖   and 𝜎2 ⊆ 𝛾𝑖, ∀ 𝑖 ∈ 𝐼 (since 𝛾𝑖 is  a 

hyper 𝜌 −ideal in Ω   ∀ 𝑖 ∈ 𝐼 ) then 𝜎1 ⊆ 𝛾𝑖 ∀ 𝑖 ∈ 𝐼, 

thus   𝜎1 ⊆∩𝑖∈𝐼 𝛾𝑖. 

Remark 3: The union of two hyper 𝜌 −ideals of 

hyper 𝜌 −algebra is not necessary to be hyper 

𝜌 −ideal.  

Example 6: Let Ω a hyper 𝜌 −algebra where Ω =
{1,2,3,4,5} with Table 7:  

Table 7. The union of two hyper 𝝆 −ideals of 

hyper 𝝆 −algebra is not necessary to be hyper 

𝝆 −ideal 

* 1 2 3 4 5 

1 {1} {1} {1} {1} {1} 

2 {2} {1,2} {4} {5} {4} 

3 {3} {4} {1,3} {5} {4} 

4 {4} {5} {5] {1,4} {4} 

5 {5} {4} {4} {4} {1,5} 

And let 𝛾1 = {1,2}, 𝛾2 = {1,3} be a hyper 𝜌 −ideal 

in a hyper 𝜌 −algebra Ω, but 𝛾1 ∪ 𝛾2 = {1,2,3} is 

not hyper 𝜌 −ideal since  2 ∗ 3 = {4} ⊄ 𝛾1 ∪ 𝛾2.       

Definition 12: Let (Ω,∗, ≪ ,1) be a hyper 

𝜌 −algebra and let  𝜆  be a subset of Ω. Then 𝜆 

called a hyper 𝜌 − ideal of a hyper 𝜌 −algebra if:  

 (1) 1 ∈ 𝜆,  

 (2)  𝜎1 ∈ 𝜆,  𝜎2 ∈ Ω → 𝜎1 ∗ 𝜎2 ⊆ 𝜆, 𝜎1, 𝜎2 ∈ Ω.          

Example 7: Let Ω= {1,2,3,4} be a hyper 𝜌 −  

algebra with Table 8:    

Table 8. (Ω,∗, ≪, 𝟏) a hyper 𝝆 − algebra with 

Ω={1,2,3,4} 

* 1 2 3 4 

1 {1} {1} {1} {1} 

2 {2} {1,2} {3} {3} 

3 {3} {3} {1,3} {2} 

4 {4} {3} {2} {1,4} 

Then 𝛾1 is a hyper 𝜌 −ideal with Table 9:      

Table 9.(𝛾1,∗, ≪, 𝟏) is a hyper 𝜌 −ideal 

* 1 2 3 

1 {1} {1} {1} 

2 {2} {1,2} {3} 

3 {3} {3} {1,3} 

But  𝛾2 = {1,2} is not hyper 𝜌 −ideal of Ω since  

2 ∈ 𝛾2 and 3 ∈ Ω, but 2 ∗ 3 ∉ 𝛾2.          

Lemma 1: Every hyper 𝜌 −ideal is a hyper 

𝜌 −subalgebra.      

Proof: Suppose that 𝛾 is hyper 𝜌 −ideal of hyper 

𝜌 −algebra; wanted to show that 𝛾 is hyper 

𝜌 −subalgebra. Now, since 𝛾 is hyper 𝜌 −ideal then  

∀𝜎1, 𝜎2 ∈ Ω,  then  𝜎1 ∈ 𝛾,  𝜎2 ∈ Ω,  → 𝜎1 ∗ 𝜎2 ⊆ 𝛾 , 

Put 𝜎2 ∈ 𝛾, then ∀𝜎1, 𝜎2 ∈ 𝛾, 𝜎1 ∗ 𝜎2 ⊆ 𝛾 then 𝛾 is 

hyper 𝜌 −subalgebra.    

Remark 4: The converse of the above lemma is not 

true in fact.  

Example 8: Let 𝛾 = {1,3} in Example 6 then 𝛾 is 

hyper 𝜌 −subalgebra, but it is not hyper 𝜌 −ideal, 

take 𝜎1 = 3, and 𝜎2 = 4,  show that  𝜎1 ∗ 𝜎2 =
{2} ⊄ 𝛾.                             

Proposition 4: The intersection of hyper 𝜌 −ideals 

is a a hyper 𝜌 −ideal.                                    

 Proof: Suppose that 𝛾𝑖 , 𝑖 ∈ 𝐼 be a hyper 𝜌 −ideal of 

hyper 𝜌 −algebra then  1 ∈ 𝛾𝑖 , 𝑖 ∈ 𝐼, that mean 1 ∈

∩𝑖∈𝐼 𝛾𝑖 , Now, let  𝜎1 ∈ 𝛾𝑖 , 𝑖 ∈ 𝐼,    and  𝜎2 ∈ Ω,  and 

since 𝛾𝑖 , 𝑖 ∈ 𝐼 are hyper 𝜌 −ideal then 𝜎1 ∗ 𝜎2 ⊆ 𝛾𝑖 ,

∀𝑖 ∈ 𝐼  that mean  𝜎1 ∗ 𝜎2 ⊆∩𝑖∈𝐼 𝛾𝑖 ,  is a hyper 

𝜌 −ideal.     
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The Concept of Hyper δ −Algebra: 

    The concept of hyper 𝛿 −algebra, hyper 𝛿 −
𝑠𝑢𝑏algebra, hyper 𝛿 −ideal and the relation 

between them with the conceptions hyper 

𝜌 −algebra, hyper 𝜌 − 𝑠𝑢𝑏algebra, hyper 𝜌 −ideal 

and hyper 𝜌̅ −ideal are discussed in this section. 

Definition 13: Let (Ω,∗, ≪ ,1) be a hyper 

𝜌 −algebra. Then (Ω,∗, ≪ ,1) is called a hyper 

𝛿 −algebra if the following hold: 

(𝜎1 ∗ (𝜎2 ∗ 𝜎3)) ∗ (𝜎3 ∗ 𝜎2) = {1} 

Theorem 1: Every hyper 𝛿 −algebra is a hyper 

𝜌 −algebra.  

Remark 5: The converse of the above theorem is 

not true in general. 

Example 9: Suppose that Ω = {1, 𝑣, 𝑤, 𝜎} and the 

binary operation ∗ is described as in a Table 10: 

Table 10. (Ω,∗, ≪, 𝒇) is a hyper 𝝆 −algebra but it 

is not hyper 𝜹 −algebra   

* F V W 𝜎 

F {f} {f} {f} {f} 

V {v} {f} {v} {w} 

W {w} {v} {f} {v} 

 𝜎 {𝜎} {w} {v} {f} 

Hence   (Ω,∗, ≪, 𝑓) is a hyper 𝜌 −algebra. 

However, it is not hyper 𝛿 −algebra, since 𝑣 ≠ 𝜎 ∈

Ω − {𝑓} and (𝑣 ∗ (𝑣 ∗ 𝜎)) ∗ (𝜎 ∗ 𝑣) = (𝑣 ∗ {𝑤}) ∗

𝑤 = {𝑣} ∗ 𝑤 ≠ {𝑓}. 

Definition 14: Assume that ∅ ≠ 𝐻 ⊆ Ω, where 

(Ω,∗, ≪, 𝑓) is a hyper 𝛿 −algebra, then 𝐻 is a hyper 

𝛿 −subalgebra of Ω if: 

𝜎1 ∗ 𝜎2 ⊆ 𝐻, whenever 𝜎1 ∈ 𝐻 and 𝜎2 ∈ 𝐻. 

Example 10: In Example 9 let 𝛾 = {𝑓, 𝑣} then 

(𝛾,∗, ≪, 𝑓) is a hyper 𝛿 − 𝑠𝑢𝑏algebra of Ω since 

∀ 𝜎1, 𝜎2 ∈ 𝛾 → 𝜎1 ∗ 𝜎2 ⊆ 𝛾.    

Theorem 2: Let (Ω,∗, ≪, 𝑓) is a hyper 𝛿 −algebra 

and let ∅ ≠ 𝛽 ⊆ Ω is a hyper 𝛿 − 𝑠𝑢𝑏algebra of Ω, 

then 𝛽 is a hyper 𝜌 −subalgebra of Ω. 

Proof: Assume ∅ ≠ 𝛽 ⊆ Ω is a hyper 𝛿 −
𝑠𝑢𝑏algebra of Ω. Then Ω is a hyper 𝜌 −subalgebra 

and 𝛽 satisfies that 𝜎1 ∗ 𝜎2 ⊆ 𝛽 whenever 𝜎1 ∈

𝛽 and 𝜎2 ∈ 𝛽. Thus 𝛽 is a hyper 𝜌 −subalgebra of 

hyper 𝜌 −algebra Ω. 

Definition 15: Assume (Ω,∗, ≪, 𝑓) a hyper 

𝛿 −algebra and ∅ ≠ 𝜇 ⊆ Ω. Then 𝜇 is said to be 

hyper  𝛿 −ideal of a hyper 𝛿 −algebra Ω if:  

(1) 𝜎1, 𝜎2 ∈ 𝜇 → 𝜎1 ∗ 𝜎2 ⊆ 𝜇, 

(2) 𝜎1 ∗ 𝜎2 ⊆ 𝜇 and 𝜎2 ∈ 𝜇 → 𝜎1 ∈ 𝜇 ∀𝜎1, 𝜎2 ∈ 𝜇 

Lemma 2: In a hyper 𝛿 −algebra, every hyper  

𝛿 −ideal is a hyper  𝜌 −ideal.  

Lemma 3: The intersection of family of hyper 

𝛿 −ideals in a hyper 𝛿 −algebra Ω is a hyper 

𝛿 −ideal in Ω.  

Remark 6: The Diagram1 shows the results: 

 

Diagram 1 

 

Conclusion 

    In this paper new concepts of algebra structures 

such as hyper ρ −algebra, Hyper  δ −algebra were 

defined. And the concepts of a hyper 𝜌/𝛿 −

𝑠𝑢𝑏algebra, hyper ρ/𝛿 −ideal and hyper 𝜌— ideal 

were studied. In this work, we extracted the 

following:  

    There is no relationship between 

hyper ρ −algebra and hyper 𝐵𝐶𝐻/𝑈𝑃/
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𝐵𝐶𝐾 −algebra. If (Ω,∗, ≪ ,1) is a hyper 𝛿 −algebra 

then it is hyper ρ −algebra but the converse is not 

true. If (𝐹,∗, ≪ ,1) is a hyper ρ/𝛿/ 𝜌 −ideal then it 

a hyper 𝜌/𝛿 − 𝑠𝑢𝑏algebra but the converse is not 

true. And the relationship between these concepts 

was discussed and illustrated in diagram 1. 
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 المفرط ρ\δ -الجبرحول 

 حمزةمروة عبد الرضا كاسب، زينب عبد الامير 

 وزارة التربية، المديرية العامة للتربية في محافظة البصرة، البصرة، العراق

 

 ةالخلاص

المفرط و درست مفاهيم الجبر الجزئي و المثالي مثل الجبر  ρ\δ -في هذا العمل تم تعريف مفاهيم جديدة للبنية الجبرية مثل الجبر

المفرط. وقد تم تقديم هذه المفاهيم باستخدام العملية المفرطة *  ρ̅-و الجبر المثالي المفرط  ρ\δ -المفرط و الجبر المثالي ρ\δ -الجزئي

 مع اعطاء بعض المبرهنات و الامثلة لتوضيح هذه المفاهيم بالإضافة الى مناقشة العلاقة بينها.¥. على المجموعة غير الخالية 

 ρ\δ-المثالي المفرط، الجبر الجزئي ρ̅ -المثالي المفرط، الجبر ρ\δ-الجبر ,المفرط δ-المفرط، الجبر ρ-الجبركلمات المفتاحية: ال

  المفرط.
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