ON G-OPEN SET

Jalal Hatem Hussein*

Date of acceptance 9/5/2007

Abstract:

A new class of generalized open sets in a topological space, called *G*-open sets, is introduced and studied. This class contains all semi-open, preopen, b-open and semi-preopen sets. It is proved that the topology generated by G-open sets contains the topology generated by preopen,b-open and semi-preopen sets respectively.

1. Introduction

In recent years a number of generalizations of open sets have been considered. Seven of these notions were defined similarly using closure operator (cl) and the interior (int) in the following way.

DEFINITION 1. A subset S of a space (X,T) is called:

(1) α -set if S \subseteq int(cl(intS)),

(2)Semi-open if Ccl(intS),

(3)Preopen if $S \subseteq int(clS)$,

(4)Regular open if S=int(clS),

(5)Semi-regular if and only if there exists a regular open set u with $u \subseteq S \subseteq clu$,

(6)b-open if $S \subset cl(intS) \cup int(clS)$,

(7)Semi-preopen if $S \subseteq cl(int(clS))$.

The first three notions are due to Njastad [10], Levine [1] and Mashhour [11], respectively. The concept of a preopen set was introduced by Corson and Michael [2] who used the term "locally dense". D. Andrijevic was introduce the concept of b-open and semi-preopen in [9], [3] respectively. We denote the classes of α -set semiopen, preopen, b-open and semi-preopen sets in a space (X,T) by T α , SO(X), PO(X), BO(X) and SPO(X) respectively. All of them are larger than T and closed under forming arbitrary unions. Njastad [10] showed that $T\alpha$ is a topology on X. In general, SO(X) need not be a topology on X, but the intersection of a semi-open set and an open set is semiopen. The same holds for PO(X), BO(X)

SPO(X) respectively. and The complement of a semi-open set is called semi-closed. Thus S is semi-closed if and only if int(clS) S. Preclosed set is similarly defined. For a subset S of a space X preclosure of S, denoted by pclS is the intersection of all preclosed of X containing S. subsets The preinterior (resp. semi-preinterior)of S, denoted by pintS (resp., spintS) is the union of all preopen (resp. semipreopen) subsets of X contained in S. The definitions(4),(5) was defined by, Maio and Noiri [5], D.S.Jankovic [4], respectively. By cl_{α} and int_{α} we denote the closure and the interior operator in $(X,T_{\alpha}).$

An extensive study of these operators was done in [3]. We recollect some of the relations that, together with their duals, we shall use in the sequel.

PROPOSITION 1.1. Let S be a subset of (X,T). Then:

- (1) $pclS=S \cup cl(intS)$,
- (2) pintS=S \cap int(clS),
- (3) $int_{\alpha}S=S \cap int(clintS)$,
- (4) spintS=S \cap cl(int(clS),
- (5) $pcl(pintS)=pintS \cup cl(intS)$.

2. Some properties of G – open sets.

Now we consider a new class of generalized open sets.

DEFINITION 2. A subset S of a space (X,T) is called G-open if $S \subseteq cl(int(clS)) \cup int(cl(intS))$. The class of all G-open sets in X will be denoted by GO(X).

*Department of Mathematics, College Science for Women, University of Baghdad

It is obvious that $PO(X) \cup SO(X) \subseteq BO$ (X) $\subseteq SPO(X) \subseteq GO(X)$ and we shall show that the equality inclusions cannot be replaced with equalities between GO(X) and PO(X), SO(X) respectively.

EXAMPLE. Consider the set R of real numbers with the usual topology, and let $S=[0,1] \cup ((1,2) \cap Q)$ where Q stands for the set of rational numbers. Then S is G-open but neither semi-open nor preopen.

PROPOSITION 2.1. Let *S* be a subset of a space (*X*,*T*), if $S \subseteq pcl(pintS)$ then *S* is *G*-open set. **Proof.** Since $S \subseteq pcl(pintS)$ then by Proposition1. we have: $S \subseteq pintS \cup cl(intS)$ and $S \subseteq int(clS) \cup cl(intS)$ and so $clS \subseteq cl(int(clS) \cup cl(int S)$ and since $cl(intS) \subseteq cl(int(clS))$ so $S \subseteq clS \subseteq cl(int(clS))$ therefore $S \subseteq cl(int(clS)) \cup int(cl(intS))$ so *S* is *G*-

open set.∎

PROPOSITION 2.2. Let *S* be a subset of a space (*X*,*T*), if *S* is *G*-open and if int ($cl \ S$) $\subseteq B \subseteq cl \ (S)$ then *B* is semiregular

Proof. since $S \subseteq cl(int(clS)) \cup int(cl(intS))$ Then $clS \subseteq cl(int(clS)) \cup cl(int (cl(intS)))$ so $clS \subseteq cl(int(clS))$. Therefore int (clS) $\subseteq B \subseteq clS \subseteq cl(int(clS))$, then $int(clS) \subseteq$ $B \subseteq cl (int(clS))$ and since int(clS) is regular open. Then B is semi-regular.

3. On topology generated by *G*-open sets.

Although none of SO(X), BO(X), PO(X), and GO(X) is a topology on X, each these classes generates a topology in a natural way. Let $T(s) = \{V \subseteq V \subseteq V\}$ $V \cap S \in swhenever S \in s$, where s Xstands for SO(X), PO(X), GO(X) SPO(X) respectively. Clearly T(s) is a topology on X larger than T. The topology generated by PO(X) was studied in [6] and denoted by T_{γ} . The closure and the interior of a set S in (X,T_{γ}) are denoted by $cl_{\gamma} S$ and $int_{\gamma}S$, respectively. In [8] the

the topology generated by SPO(*X*) was studied and we will denoted by T_{spo} . In [9] the the topology generated by BO(*X*)was studied and denoted by T_b . The topology generated by *G*-open sets will be denoted by T_G and we shall prove that $T_{\gamma} \subseteq T_b \subseteq T_{spo} \subseteq T_G$. We first recollect some results.

PROPOSITION 3. If S is G-open subset of a space (X,T) then: $S=spint S \cup int_{\alpha}S$. **Proof.** By Proposition 1.1 we have spint $S \cup int_{\alpha}S=[S \cap cl(int(clS)] \cup [S \cap int(clintS)]=S \cap [cl(int(clS) \cup int(clintS)]=S$

PROPOSITION 3.1 Let S be a G-open subset of a space (X,T) such that $intS=\Phi$ Then S is semi-preopen.

Proof. The proof is very easy and will not be given■

PROPOSITPION 3.2.[6] Let S be a subset of a space (X,T). Then cl_{γ} int S=cl(intS).

PROPOSITPION 3.3.[8] Let *S* be a subset of a space (X,T). Then $S \in T_{\gamma}$ if and only if $S=G \cup H$ with $G \in T\alpha$ and $\{h\} \in PO(X)$ for every $h \in H$

The last result has an immediate consequence.

COROLLARY 3.4. [9] Let $v \in T_{\gamma}$ and $G \in$ SO(*X*) then $v \cap G \in BO(X)$.

By previous corollary, and since $BO(X) \subseteq GO(X)$ we have the following-ng Lemma

LEMMA 3.5. Let $v \in T_{\gamma}$ and $D \in SO(X)$ then $v \cap D \in GO(X)$.

PROPOSTPION 3.6. [7] *The intersection of semi-open and a preopen set is semi-preopen set.*

Since every semi-preopen set is G-open set. Therefore the previous Proposition tell the following Proposition.

PROPOSTPION 3.7. The intersection of semi-open and a preopen set is G-open set.

PRROPOSITION 3.8. [7] For a space (X,T) and $x \in X$ the following are equivalent:

(a) $\{X\} \in SPO(X)$

 $\{X\} \in PO(X).$ (b)

 $\{X\} \in T_{\gamma}$ (c)

Since every semi-preopen set is G-open set. Therefore the previous Proposition tell the following Proposition

PRROPOSITION 3.9. If $\{X\} \in GO(X)$. Then $\{X\} \in T_{\gamma}$.

Now we are in ready to prove our main result.

PRROPOSITION 3.10. Let (X,T) be a space and $v \in T_G$. Then $S = v \setminus int(cl(int$ v))is semi-preopen set.

Proof. Since int(cl(intv)) is semi-closed, then [int(cl(intv))]^c is semi-open and so G-open set, but $v \in T_G$, then $v \setminus int(cl(int$ v))=v \cap [int(cl(intv))]^c=S is G-open .On other hand ,intS= Φ and so S is semipreopen by proposition 3.1.

LEMMA 3.11. In any space (X,T)we have: (1) [9] $T_{\gamma}=T_{b}$.

(2) [7] $T_{\gamma} = T_{spo}$.

THEOREM 3.12. Let (X,T) be a space Then $T_{\gamma} \subseteq T_G$.

Proof. Let $v \in T_{\gamma}$ and $S \in GO(X)$, Then *S*=spint*S* \cup int_{α}*S* by proposition 3. Hence $v \cap S = (v \cap spintS) \cup (v \cap int_{\alpha}S)$ is *G*-open by Lemma 3.5 and so $v \in T_G$.

By Theorem 3.12 and Lemma3.11, it is very easy to proof the following Corollary

COROLLARY 3.13. In any space (X,T)we have $T_{v} \subseteq T_{b} \subseteq T_{spo} \subseteq T_{G}$.

REFERENCES:

1.Levine, N., 1963. semi-open sets and semi-continuity in topological space, Amer. math. Monthly 70 :36-41.

2.Corson, H.H. and Michael E., 1964. Metrizability of certain countable unions, Illinois J.Math. 8: 351-360.

3. Andrijevic, D., 1986. Semi-preopen sets, ibid. 38:24-32.

4.Jancovic, D.S., 1985. On semiseparation properties, Indian J. pure Appl. Math., 16 (9): 957-964.

5.Maio, D. and Noiri T., 1987.On sclosed space, Indian J. pure Appl. Math.,18 no.3: 226-233.

6.Andrijevic, D., 1987.On the topology generated by preopen sets, ibid. 39 : 367-376.

7.Janster, M. and Andrijevic D., 1988. On some questions concerning semipreopen sets, J. Inst. Math. and Comp. Sci. (Math. Ser.) 1: 65-75.

8. Andrijevic, D . , 1992. On SPOequivalent topologies, Suppl. Rend.Circ. Mat. Palermo 29:317-328.

9. Andrijevic, D., 1996. On b-open sets , Mat. Vesnik,48 : 59-64.

10. Njastsd, O., 1965. On some classes of nearly open sets, Pacific J.Math. 15: 961-970.

11. Mashhour, A.S., Abd El-Monsef M.E. and El-Deeb S.N., 1982. On precontinu--ous and weak precontinuous Proc. mappings, Math.Phys. Soc. Egypt 53: 47-53.

حول المجموعات المفتوحة-G

جلال حاتم حسين * *جامعة بغداد- كلية علوم بنات- قسم الرياضيات. الخلاصة:

في هذا البحث تم تقديم ودراسة صنف جديد من تعميمات المجمو عات المفتوحة. أن هذا الصنف يحتوي كل الاصناف من المجموعات الشبه مفتوحة و قبل المفتوحة و المفتوحة-b وشبه قبل المفتوحة وتم أثبات أن صنف المجموعات المفتوحة-G يولد توبولوجي يحوي كل التوبولوجيات المتولدة بوساطة المجموعات الشبه مفتوحة و قبل المفتوحة. و المفتوحة-b وشبه قبل المفتوحة.