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Abstract

The idea of fixed points represents one of the most potent mathematical tools. This paper's main purpose
is to introduce a new kind of fuzzy contractive mapping in a fuzzy normed space (briefly ﬂf"rl space)

"y

namely "d&- @ —fuzzy contractive mapping". We proved some fixed point results for this mapping in the
setting of Jf}l space using the triangular property of fuzzy norm. Moreover, under specific conditions,

some other results for such type of mapping are established. Finally, an example is offered to show the
results' usefulness.

Keywords: Fixed point, jf"q space, @ — admissible mapping, @- @ —fuzzy contractive mapping, Fuzzy

Banach space.

Introduction

Functional analysis is one of the most
important areas of contemporary mathematics. It
plays an essential role in the theory of differential
equations, representation theory, and probability, as
well as in the study of many different properties of
different spaces, such as metric space, Hilbert
space, Banach space, and others see references .
Fuzzy sets were first proposed by Zadeh in 1965.
This theory is currently being developed, studied,
and used in a wide variety of contexts. Fuzzy metric
spaces were pioneered by Kramosil, 1. and
Michalek, J. in 1975. There is a significant amount
of research on fuzzy metric spaces; see 8. The
fuzzy norm was first established in a linear space by
Katsaras in 1984. Numerous articles on 7:}[ space
have been written, for instance, see references %12,
On other hand, the presence of a solution in theory

or practice is comparable to the presence of a fixed
point for a suitable map or operator in a broad
variety of problems in mathematics, computers,
economics, modeling, and engineering. As a result,
many branches of mathematics, science, and
technology greatly depend on the presence of fixed
points. Considerable studies about fixed point
theory were published, for example, see *16, In this
paper a new kind of fuzzy contractive mapping in a

fq space namely "d&-¢@ —fuzzy contractive
mapping" is presented. We introduce the idea of
triangular property of fuzzy norm and by using this
idea, fixed point theorem for self-mapping is
proved. Also under specific conditions, other results
in the framework of 73}1 space are established.

Preliminaries:
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This section includes some terminology and
outcomes which are used throughout the study.
First, we'll go through basic terminology in the
fuzzy setting.

Definition 1: '* A binary operation ®:[0,1] x
[0,1] — [0, 1] is referred to as a t-norm if it fulfills
the requirements below for all s,3,¢,¢ € [0,1],

M1 e3=3

(i3@¢ =¢®3,

(ii3@ ¢ =30%) G
(iviifz<candé <sthenz @ ¢ <¢©s.

Definition 2: ¥ A F, space is a triplet (V,,,®),
where Vis vector space, (@ is a t-norm and f}l

represents a fuzzy set on V X R (R is a field) that
fulfills the requirements for each w,p € V:

(1) ij((*)' 0) =0,

(2) F(w,3) =1, foreach3 > 0ifandonlyifw =
0,

Results and Discussion
Main Results

Definition 5: Suppose (V, %, ®) is a %, space. A
mapping ‘Q:V -V is termed as & —admissible
mapping with respect to7) where &,7:V X V X

(0,00) — (0,00) if foreach w,p € V,and t > 0,

d(w,p,7) = 1j(w,p,7) = d(Qw,Qp,7)
> 1(Qw, Qp, 7).

The collection of all continuous functions

@:[0,00) - [0, 0) is denoted & with ¢(B) < S for
all g > 0.

Definition 6: Consider (V, %, ®) be a F, space.
The fuzzy norm 7:}1 is called triangular if the
following condition holds:

(3) F(yw,3) = F (w,3/]y]), forall 0 #y€R,
3>0

4) Fy(w,3) @ Fi(p,¢) < F(w+p,3+0), forall
3620

(5) f}l(w, .)is left continuous for all w € V, and
lim Jf"n(u), 3) =1.

3—)00

Samet et al 1° established the idea of a -admissible
mapping in the manner described below.

Definition 3: ° Suppose V is a nonempty set,
WV - V,and &:V XV - [0,0). Q is termed
as ¢ -admissible mapping if for every w,p € V,

&(w,p) > 1then & (Qw, Qp) > 1.

The idea of o -admissible mappings was then
generalized by Salimi et al. 2 in the manner
described below.

Definition 4: 2° Suppose V is a nonempty set,
NV - V,and a,n:V X V — [0,0). Then ‘Q is
termed as o -admissible mapping with respect ton
if for every w,p€ V, a(w,p) = n(w,p) then
a(Qw,Qp) = n (Qw, Qp).

1 1 1
= —-1<|= - = —
Flw-p1) 1< (Tq(w—Z.T) 1) + (Tq(p—z,r) 1)
1

forall w,p,z € V,andt > 0.

Definition 7: Consider (V, %, ®) be a %, space.
N:V - V is termed as a- @ —fuzzy contractive
mapping (briefly &-@ —FCM) if there exist
functions &,7:V XV X (0,0) - [0,0) and @ €
@ such that, forall w,p € V,andt > 0

1
F(Qo—0p,1)

¢ ( 5B(oj,p,T) B 1) 2

where

d(w,p,7) = 7(w,p,7)
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%(w' P, T) = mln{j:/'n((.l) - P T); jf‘rl(p
- ,Qp’ T)’ ?\,'rl-(u') - ,Qp’ T)
@ jf'q(p - ’Qp' T)}

The following theorem is our first interesting result

Theorem 1: Suppose that (V, %, @) is a fuzzy
Banach space. Let Q:V - V be a-p —FCM
satisfies:

(i) Qis & — admissible mapping with respect to 1.
(ii) there exist w. € V such that &(w., Qw., T) =
1 (wo, Qwo, T)

(iii) ' is continuous.

Then 'Q possesses a fixed point.

Proof: Consider w. € V such that &(w., Qw., T) =
N(w-, Qw-, ) for each T > 0. Define a sequence
{wa}inV by w,=Qw,_; =Q"w, forall n € N.
If w,=wyeq then w=w, is a fixed point of Q.
Hence suppose that w, # wy,.q for all n € N.

Because Q0 is an & — admissible mapping and
ad(ws, Qw., T) = 1(w-, Qwe, T), thus conclude

d(wyg, 0y, T) = d(Qwe, V2w, T) =
H(Qwe, Q2 wo, T)=1j (w1, Wy, T)

Keeping up with this procedure, acquire

d(wp, Wpe1,T) = N(wWy, wneq,T) for all n € N.
Now by (2) with w= w,_; , p = w,, obtain,

1
~ -1
F,(Qwy_1 — Qwy, T)

1
<ol—m—— 1
- qD(SB((nn_l,oon,T) )

where

B(wy_q1, W, T) = min{ﬂt}l(wn_l — Wy, T),ﬂt"rl(oon
—Qwy, 1), an(wn_l —Qwy, 7)
© f"q(wn —Qwp, ‘L')}
= min{F, (wp—1 — 0y, 1), F 0y —
Wn+1, T): Tq(wn—l — Wn+1s T) © :Fq(wn -
Wn41, T)}
= min{F, (wp—1 — 0y, 1), F(0y —

wn+1'T)}

It follows
1
— 1<
Fr(0n=wn41,7) -
= 1
@ ( min{fq(u)n_l— mn'r)'g“:q(wn_wmrl'r)} - 1) for all
n € N.
Now, if min{f}l(wn_l - Wy, T),qu(oon -

Wnt1,7)} = F (0 — wpyq,7)fOr some n € N,
then

1

jf'r[(wn — Wn+1, T)

1
<@l = —1)
( :Frl(wn — Wn+1, T)
1

<=
:Frl(wn - (*)n+1rT)

-1

-1

which is a contradiction. Thus ,

1 1
= —1<=
Tr[((*)n - (*)n+1'T) :Fr[((*)n—l — Wp, T)

-1

Consequently, F; (wn — Wn41,T) > Fy(wn_q —
wy, T)for all n € N, thus {fq(wn_l — Wy, T)} IS
an increasing sequence of positive reals in [0, 1].

Consider u(r) = lim fq(mn_l — w,,T7); ToO
n—oco

show that u(z) = 1. Presume that there 7o > 0 such
that u(t-) < 1.

From

1

ﬁrl(wn — Wn+t1, T°)

1
s¢<v —1)
:Fq(wn—l — Wy, T°)

-1

Utilizing the continuity of @ and letting — oo |,
obtain a contradiction

-1

! —1<“< ! —1)< !
M RAVTCS) u(@)
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This indicates  that lim F(wn-1 — wp,7) = 1.
Then, forafixedi € N,

:fq(wn — Wn+is T)
= Tq(wn - wn+1:T)
® Tq(wn+1 - (")n+2»T) © ...

@ﬁq(wnﬂ—l —wp47) 2 1010.01=1
asn — oo

Hence {w,} is Cauchy sequence. Since (V, %, ®)
is complete, then

{w,} converges to some w* € V and the continuity
of Q lead to Qw, » Qw" .

Hence
lim f]t"n((onﬂ - Qw", 1)
n—oo

= lim f]t"rl('ﬂwn - NQw*1)=1

n—oo

for all T > 0, that is, the sequence {w,} converges
to Qw*. By the limit's uniqueness, conclude
that Qw* = w".

In the next theorem, the continuity hypothesis is
swapped out for a different regularity hypothesis.

Theorem 2: Suppose (V, %, @) is a fuzzy Banach
space where F is triangular. Let 0:V — V be
a- @ —FCM satisfies:

(i) Qis & — admissible mapping.

(i) there exist w, € V such that &(w,, Qw,, 1) =
M(w,, Qw,, T)

(iii) for any sequence {w,} In V with
d(wp, Wpe1,T) = MWy, Wheq,T) foralln e Nt>0
and wp, 2w as n- oo, then d(w, w,T) =
M(wy,, w, T). Then 'Q possesses a fixed point.

Proof: From the previous proof steps of Theoreml,
we see that {w,} is a Cauchy sequence in
v, F.@) such that d(wp, Wpyq,T) =
N(wp, wp4q,T) for each n € N. Then there is a
point w* in V such that w, - w* as n - c. The
theorem's hypothesis (iii) implies that

d(wy, 0", T) = (W, ", T) 3

If w*#Qw*, that is, Jf"n(co* —Qw*,t)<1 for
some T > 0, then, from (1), (2), and (3), since %, is
triangular,

1
F(0* —Qw*, 1) -

1
< <v — 1)
F(w* — wpyq,7)

1
+ (V 7, 7 * - 1)
F,(Qw, — Qw*, 1)
<

1 - 1
(ffq(w*—u)n.,.l,‘r) B 1) to ( B(wp,w*,T) N 1)

1

Letting n — oo, obtain

B(wy, w*,T)= min{.‘fq(mn — w*, 1), .‘]t",l(u)*
—0w*, 1), fq(mn —Qw*, 1)
O fq(u)* —"Nw*, T)}
= min{F, (0, — ©*,7), F (0" — Qw*, 1)}
= min{l,fq(co* — ’Qw*,r)}
= ﬂf}l(w* —Qw*, 7).

in order to prevent contradiction with ¢ () < g for
B > 0, it must be concluded that

1
ﬂt"rl(w* —Qw*, 1) B

1=0

Thus, it follows that Qw* = w”.
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From the aforementioned results, some of the
following corollaries can be drawn. For instance,
the following corollary is obtained from Theorems
4 and 5 (with N triangular) by assuming

N(w,p,7) =1.
Corollary 1: Suppose (V, ﬂf}l, @) is a fuzzy Banach
space (with ﬂf}l triangular) and’Q:V - PV bean d —

admissible mapping. Suppose that there is @ € ®
such that, for each w,p € V,and 7 > 0,

1

~ > ="
d(w,p1)=>1 = Fr(Qo—0p,1)

? (5w~ 1)

where

%(w‘ P, T) = mln{j:/'rl(w - P T); jf'rl(p
- ,Qpl T)' jf'r[(w - ,Qp' T)
© F(p — 0, 1)}

and assuming the following is hold::

i) there exist w, € Vsuch that &(w,, Qw,,T) =
1

ii) either ‘Q is continuous or for any sequence {w,}
in ¥V with d(wy, wp4q,T) =1 foreachn e N,
t>0and w, » wasn — oo, then &(w,, w, T) =
1.

Then 'Q possesses a fixed point.

Example 1: Consider V = R with the fuzzy
norm, %:V x R — [0,1] given by:

F(w,1) =—— forallw € Vandt > 0 where
T+ wl|
loll = |wl.

Define'Q: V - V by

2

w
Nw = T ,w € [0,1]
3 otherwise

and a:V x YV x [0,00) - [0,00) by:

1 if wp€e]0,1]

&(wp,7) = { 0 otherwise

and f(w, p, T) :% for all w,p € Vandt > 0. Then

applying Theorem5 with @ (B) = g forall g = 0
it is inferred that ‘Q possesses a fixed point.

Proof: At first to prove that ‘QQ is @—admissible
mapping. Let w,p € V, if &(w,p, 7) > 1(w, p, T) for
each > 0 then w,p € [0,1]. On other hand, for
each w,peV then Qw,Qp € [0,1] which
indicates a&(Qw, Qp, ) > M(Qw, Qp, 7). Moreover,
if {w,} is a sequence inV such that
d(Wy, Wps1,T) = N(wy, 0peq,7), Tor all n € N
andt > 0 such that w, - wasn — oo, then
{w,} < [0,1] and hence w € [0,1].
Consequently, d(wy,, w,7) = M(w,, ®,T) for
each n € N and each 7 > 0. Now let &(w,p,7) >
N(w,p,7) for each 7 >0, that is w,p €[0,1].
Consequently, Theorem 5's contractive requirement
is fulfilled, that is

! 1 ! lw? — p?| < ! | |
= —l=—|0?—p}<—|w—
7, (Qw —Qp,7) 47 pli=oriemy

<

1 7 Y B
= max{|w —p|, |o = Qwl, [p —Qp[}

_ %(T+max{|co—pI,I:)—’ﬂmI,lp—’Qvl} ~1)
1 1
= 5 T -1

7+ max{|w — |, [w — Qowl, [p — Qp|}

=9 ( 5B(oj,p,T) B 1)

Hence each condition of Theorem 5 holds and 'Q
possesses a fixed point. The fixed points of ‘Q in this
example are 0 and 3.

In the subsequent stage, which involves

determining whether or not the &-¢@ —FCM
possesses a unique fixed point, the following
assumptions will be taken into account:
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(v) forall w,p€ YV and t >0, 3z € V such that
d(w,z,1) =2 M (wz1) , dad®z1)=10021)
and lim % (Q" 'z - 0"z,7) =1.

n—oo

Theorem 3: By including hypothesis (v) in
Theorem 4 (Theorem 5), one arrives to the
conclusion that w* is the only fixed point of Q
under the condition that ¢ € @ is non-decreasing.

Proof: Suppose that w*and p*represent two fixed
points of Q. If &(w*,p*,t) = N(w*,p", T) then by
condition (2), conclude w* = p*. Assume if
d(w*,p*,1) < (w*,p", 1), then from assumption
(v), 3z € V such that

ad(w*,z,1) = M(w,z1) and a,z 1) =
i(»*21) 4

Because Q) is & — admissible, obtain
d(w*,0"z,1) = (w*,Q2"%z,t) . Now to prove that
F(o* —="Q"z,1) > 1las—> .
Suppose that there is 7> 0with lim % (0" —
n—oo
0"z, 1) < 1. Consequently, from (2) and (4) it is
obtained
1
~ -1
Flw*="10"z1)

1
= ~1
F(Qu* —Q(Q"12),1)

o 1
S 4 ( B(w*,On~1271) - 1)

Where
B(w*, Q" 1z,1) = min {Tq(w* -
0"1z,1), F Q"2 - (0" 12), 1), Fy(w* —
012, @  F Q" z-000"12),1)}
Conclusion

This work presents the concept of @¢- @ —FCM
in fuzzy normed space and proves the fixed point

theorem for this kind of mapping. To illustrate the
significance of the results, a specific example is
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