

On Faintly θ - Semi-Continuous and Faintly δ -Semi-Continuous Functions

Shaimaa Husham Abd-al-Wahad *¹⁰⁰, Jalal Hatem Hussein Bayati ¹⁰, Ana Maria Zarco ²

¹ Department of Math, College of Science for Women, University of Baghdad, Baghdad, Iraq. ²Department of Math, Universidad Internacional de La Rioja, Spain *Corresponding Author.

Received 11/01/2023, Revised 08/05/2023, Accepted 10/05/2023, Published Online First 20/08/2023, Published 01/03/2024

© 2022 The Author(s). Published by College of Science for Women, University of Baghdad. This is an Open Access article distributed under the terms of the <u>Creative Commons Attribution 4.0 International License</u>, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Faintly continuous (FC) functions, entitled faintly θ S-continuous and faintly δ S-continuous functions have been introduced and investigated via a θ -open and δ -open sets. Several characterizations and properties of faintly θ S-continuous and faintly δ s-Continuous functions were obtained. In addition, relationships between faintly θ s- Continuous and faintly δ S-continuous function and other forms of FC function were investigated. Also, it is shown that every faintly θ S-continuous is weakly θ S-continuous. The Convers is shown to be satisfied only if the co-domain of the function is almost regular.

Keywords: Faintly θ S-continuous, Faintly δ S-continuous, θ s-open, δ s-open, Faint continuity.

Introduction

Faint continuity is a property weaker form of Continuous functions. Throughout this paper, since the introduction of FC functions by Long and Herrington¹, various weak and strong forms of FC functions were studied. Many authors defined and introduced a generalization form of open sets and weak and strong forms of semi-open sets see in ²⁻⁶. The concept FC functions have the attention of many authors see for example ⁷. First, a point $x \in X$ is called an θ -Cluster point of E \subseteq X if E non-trivially intersects the closure of each open set containing x in X. All θ -Cluster set points of some set is defined to be the θ closure of that set and it's written as Cl θ (E). a subset that contains all its θ -Cluster points (i.e., E = Cl θ (E)), is θ -closed, and its complement is θ open. Equivalently, E is θ -open if it has a closed neighborhood of each of its points. Another equivalent definition is that if for all $x \in E$, an open set O exists with the property that $x \in O \subset Cl(O) \subset E$. The collection, $T\theta$, of θ -open subsets in X forms a topology on X. The int $\theta(E)$ is the largest θ -open

subset of E. A δ -Cluster point $\chi \in X$ of $E \subset X$ is a point s.t. for every open set $U \ni \chi$ its (int (Cl(O) $\cap E \neq \emptyset$). The δ -closure of a set E, Cl δ (E), is the set of all δ -Cluster points of that set. A δ -closed is one which equals its δ -closure. A δ -open set is one whose complement is δ -closed. Equivalently, E is δ - open if for all $\chi \in E$ there is a regular-open (r-open) subset of E containing χ . The collection of all δ -open subsets of X is a tropology on X denoted by T δ . A subset E in X is proclaimed semi-open denoted by (SO) if \exists an open set Q s.t Q $\subset E \subset Cl(Q)^8$.

Preliminaries:

The terms (X, τ) and (Y, σ) pertain to topological spaces where there are no underlying separation axioms. The closure, interior and the complement of a set E are denoted respectively by Cl (E), int(E) and A^c . A point $x \in X$ is called the θ -Cluster point (respectively δ -Cluster point) of the set E if for every open subset Q of X s.t. $x \in Q$, $E \cap Cl(Q) \neq \emptyset$ (respectively $E \cap int(Cl(Q)) \neq \emptyset$). The set of all θ -Page | 1066

Cluster points (respectively δ -Cluster points) of a set, E, is said to be the θ -closure of E denoted by Cl θ (E) (respectively δ -closure denoted by Cl δ (E)). Also θ -closed (respectively δ -closed) set is one which equals its respective closure. A θ -open set (respectively δ -open) is one whose complement is θ -closed set (respectively δ -closed)⁹. A set E in a topological space (X, τ) is θ -semi-open if $\exists a \theta$ open subset Q of X s.t $Q \subset E \subset Cl(Q)$. Equivalently, if $E \subset Cl(int\theta (E))^{10}$. A set is θ -semi closed if its complement is θ -semi open. A set E in a topological space (X, τ) is δ -semi-open if $\exists \delta$ -open set Q of X s.t Q \subset E \subset Cl(Q)¹¹. Equivalently, if E \subset Cl(int δ (E)). A δ -semi closed set is one whose complement is δ -semi open, its denote by $\delta s(X)$ for the collection consisting of all δ -semi open sets in a space X. A mapping f: $(X, \tau) \rightarrow (Y, \sigma)$ is called faintly Continuous (FC) (respectively faintly semi-Continuous (FSC)) if $\forall x \in X$ and every δ -open

Results and Discussion

Characterizationoffaintly θ -semicontinuity:

Definition 1:¹⁴ f: $(X, \tau) \rightarrow (Y, \sigma)$ is faintly θ semi-Continuous (θ - S-continuous) if for all point $\chi \in X$ and every θ -open set Q of Y, $f(\chi) \in Q$, there is an θ -semi open set O of X, $\chi \in O$ s.t f(O) is contained in Q.

Theorem 1:

Given a mapping $f: (X, \tau) \rightarrow (Y, \sigma)$, such that Y is an almost regular space, then the equivalence of the following statements can be established:

- i. The mapping f is faintly θ S-continuous.
- ii. The pre-image f⁻¹ (Q) is a θ semi open subset of X whenever Q is r-open subset of Y.
- iii. The pre-image f $^{-1}(F)$ is a θ -semi closed set of X whenever F r-closed is a set in Y.
- iv. If $E \subset X$ then, f (sCl $\theta(E)$) \subset Cl θ (f(E)).
- v. If $B \subset X$ sCl θ (f⁻¹(B)) \subset f⁻¹(Cl θ (B)).
- vi. The pre-image f $^{-1}$ (F) is a θ -semi closed for all θ -closed set F of Y.

subset Q of Y, $f(x) \in Q$, there is an open subset (respectively semi-open), O, of X, containing x s.t $f(O) \subset Q$. Equivalently, f is FC (respectively FSC) if the pre-image of each θ -open set is open (semi-open) set. A regular-open set Q, is one s.t. Q=int (Cl(Q)). A regular closed (r-closed) is one whose complement is r-open. Equivalently, F is r-closed set if Cl(int(F)) =F. The point $x \in X$ is a δ -semi-Cluster point of some set E if $E \cap O \neq \emptyset \forall \delta$ -semi open subset O of X, $x \in O$. The δ -semi closure of a subset E (which denotes $sCl\delta(E)$) is the set consisting of its δ -semi-Cluster points. The family consisting of δ -semi open sets (respectively δ -semi closed) will be denoted by $\delta SO(X, \tau)$ (respectively $\delta SC(X, \tau)$). Then, $sCl\delta(E)$ $= \cap \{F: E \subset F, F \text{ is } \delta \text{-semi closed}\}^i$. The concept of θ -semi-closure of some subset E of a space X, denoted sCl $\theta(E)$, is the set of all $x \in X$ s.t Cl(O) $\cap E$ $\neq \emptyset$ for all semi open subset O of X s.t. x \in O, sCl θ (E) $= \cap \{F: E \subset F, F \text{ is } \theta \text{ -semi closed}^{12,13}.$

> vii. For every θ -open subset Q of Y, f⁻¹ (Q) is a θ -semi open subset of X. Proof:

(i ⇒ ii) assume that Q is a r-open in Y, in addition let $x \in f^{-1}(Q)$, then Q =int(Cl(Q)) and $f(x) \in Q$, openness of Q, implies θ –the openness Q in Y [because Y is almost regular] and by application of part (i) and the definition 1, ∃ a θ -semi open set Ox of X s.t x∈Ox and $f(Ox) \subset Q$. Therefore, $x \in Ox \subset f^{-1}(f(Ox)) \subset f^{-1}(Q)$ and ∃ a θ -open set Wx s.t Wx⊂Ox⊂Cl(Wx), since Ox is a θ -semi open set. Now, suppose that W=Ox ∈f^{-1}(Q) WX. As Ux∈f^{-1}(Q) Cl(Wx) ⊂Cl(W) then O=Ux∈f^{-1}(Q) (O x) =f^{-1}(Q) and the proof is concluded.

(ii \Rightarrow iii) Suppose that F is r-closed in Y, so Y\F is r-open in Y. BY (ii), $f^{-1}(Y \setminus F)$ is θ semi open subset of X. Since $f^{-1}(Y \setminus F) = f^{-1}(Y) \setminus f^{-1}(F)$, it is then implied that $f^{-1}(F)$ is a θ -semi closed subset of X.

(iii \Rightarrow iv) Suppose that $x \in sCl\theta$ (E) and suppose that $f(x) \notin Cl\theta$ (f(E)). So, \exists an open set Q_0 s.t $f(x) \in Q_0$ and $f(E) \cap Cl(Q_0) = \emptyset$. When taking the r-open set $W_0 =$ int (Cl (Q_0)). Then $Cl(W_0) = Cl$ (Q_0). Thus, $f(E) \subset Y \setminus Cl(W_0)$. BY part (iii), it got $X \setminus f^{-1}(W_0)$ is θ -semi closed and $E \subset X \setminus f^{-1}(W_0)$. Thus, by the definition of $sCl\theta$ (E), it got $x \in X \setminus f^{-1}(W_0)$, a contradiction with $f(x) \in Q_0 \subset int (Cl (Q_0)) = W_0$.

(iv \Rightarrow v) Assume that E = f⁻¹ (B) \subset X. Then, by part (iv) it has f(sCl θ (E) \subset Cl θ (f(E)). Since Cl θ (f (E)) \subset Cl θ (B), it follows that sCl θ (E) \subset f⁻¹ (Cl θ (B)).

(v ⇒ vi) Assume that a set F is an θ -Closed of Y. S0, F⊂ Cl(F) ⊂ Cl θ (F) = F. Taking B = F in part (v), it got sCl θ (f ⁻¹(F)) ⊂f⁻¹ (F). As f ⁻¹(F) ⊂ sCl θ (f ⁻¹ (F)) and sCl θ (f ⁻¹(F) is θ semi closed, it concludes f ⁻¹ (F) is θ -semi closed subset of X.

(vi \Rightarrow vii) Let Q be θ -open subset of Y. Taking F = Q^c in part (vi) it got f⁻¹ (Q^c) = (f⁻¹(Q))^c is θ -semi closed subset of X,then f⁻¹ (Q) is θ -semi open set of X.

(vii \Rightarrow i) Suppose that $x \in X$ and Q be an θ open subset of Y, which contains f(x). BY part (vii), if the inverse f⁻¹ (Q) is θ -semi open subset in X,then taking O =f⁻¹(Q), it gives $x \in O$ and $f(O)=f(f^{-1}(Q))\subset Q$, so the map is faintly θ -S-continuous in X.

SO can make another definition of a faintly θ -S-continuous as can see in the following theorem:

Theorem 2:

f: $X \to Y$ is faintly θ -S-continuous iff $f^{-1}(B)$ is θ -semi open subset in $X \forall \theta$ -open set B in Y.

Proof: For the necessity, suppose that B θ - open in Y. (to proof) f⁻¹(B) is a θ -semi open subset of X.

If $x \in f^{-1}(B)$ with $f(x) \in B$, then B is θ -open [by the fact that f is faintly θ -S-continuous]. Then $\exists a \theta$ -semi open subset O of X, $x \in O$ s.t f (O) \subset B, Then $x \in O \subset f^{-1}(B)$. Therefore, $f^{-1}(B)$ is θ -semi open subset of X (since $f^{-1}(B)$ is a union of θ -semi open set).

For sufficiency, suppose that $x \in X$ and $Q \subset Y$, Q is θ -open subset of Y, then f⁻¹(Q) is θ semi open set in X. Suppose that $x \in f^{-1}(Q)$ and f⁻¹(Q)= O, Then f(O)= f (f⁻¹(Q)) = Q, there exists O= f⁻¹(Q) is θ -semi open in X s.t f(O) \subset Q, which implies that f is faintly θ -Scontinuous.

In definition 1, If we replace the θ -open set by the closure of θ -open set we can define the following definition

Definition 2:

f: $X \to Y$ is Called a weakly θ -S-continuous if for all $x \in X$ and all θ -open set $Q \subset Y$ s.t

Baghdad Science Journal

 $f(x) \in Q$, there be $O \in \theta$ SO(x, X) s.t $f(O) \subset Cl(Q)$.

Theorem 3:

Every faintly θ S-continuous mapping is weakly θ S-continuous.

Proof: if $x \in X$ and Q is an θ -open subset in Y with $f(x)\in Q$. By faint θ -S-continuity of f, $\exists \theta$ s-open set O, $x \in O$ which is contained in Q, then $f(O) \subset Q \subset Cl(Q)$, consequently $f(O) \subset Cl(Q)$ which implies weak θ S-continuity f.

The converse, however, can only hold if Y is assumed to be almost regular as shown below.

Definition 3:

A space X is almost regular if whenever F rclosed subset in X with $x \notin F$, \exists disjointed open subsets O and Q of X, s.t $x \in O$ and F \subset Q.

Theorem 4:

If $f:(X, \tau) \to (Y, \sigma)$ is weakly θ S-continuous, with Y being almost regular, then f is faintly θ S-continuous.

Proof: Let $x \in X$. Assume further that Q is θ open set of Y, $f(x) \in Q$. S0, there exists r-open set W in Y s.t f $(x) \in W \subset Cl \ (w) \subset Q$. [by Theorem 1 in¹]. Since Y is almost regular, then each r-open set in Y is also θ -open [by Theorem 3 in¹]. Now, by weak θ -S-continuity of f, $\exists \theta$ s-open set O, $x \in O$ s.t f (O) \subset Cl (W) $\subset Q$, \Rightarrow f (O) $\subset Q$, consequently, faint θ -Scontinuity of f is established.

Definition 4:¹⁷

Suppose that f: $X \rightarrow Y$ be a function, the function g: $X \rightarrow X \times Y$ is called a graph function of f if g is defined by g(x) = (x, f(x)) for each $x \in X$.

Theorem 5:

Given the graph map of f: $X \rightarrow Y$ to be is faintly θ S-continuous, then so is f.

Proof: Assume that $x \in X$, Q an θ -open subset of Y, $f(x) \in Q$, $\Rightarrow X \times Q$ is θ -open subset of $X \times Y$ [By Theorem 5 in¹] containing g(x)=(x,f(x)). Since the graph map g: $X \to X \times Y$ is faintly θ S-continuous, there exists $O \in \theta$ SO(X) containing X s.t g(O) $\subset X \times Q$, then $f(O) \subset Q$. Hence, faint θ -S-continuity of f is established.

Theorem 6:

Supposing f is faintly θ S-continuous with Y is almost regular. For all $x \in X$ and all θ -open set Q in Y s.t f (x) \in Q, $\exists \theta$ s-open subset O of X s.t f (O) \subset int (Cl(Q)).

Proof: If $x \in X$ with $f(x) \in Q$, where Q is a θ open subset in Y, where Y be almost regular, then there exists r-open subset G in Y s.t f(x) $\in G \subset Cl(G) \subset Q \subset int(Cl(Q)).$

[by Theorem 3 in¹] so, G is r-open, when Y is almost regular then G is θ -open [by theorem 3 in¹], faint θ S-continuity of f means that it can find a θ s-open set O in X s.t. $\chi \in O$ and $f(O) \subset$ G $\subset Cl(G) \subset int$ (Cl(Q)). Therefore, $f(O) \subset int$ (Cl(Q)).

Characterizationoffaintly δ -semicontinuitY:Definition5:

f: $(X, \tau) \to (Y, \sigma)$ is A faintly δ - S-continuous if $\forall x \in X$ and all δ -open subset Q of Y that contains f (x), $\exists a \delta$ -semi open subset O of X that contains x s.t f(O) \subseteq Q.

Theorem 7:

Given $f:(X, \tau) \to (Y, \sigma)$, then we can establish the equivalence of the following:

- i. The map f is faintly δ -S-continuous.
- ii. The pre-image f $^{-1}$ (Q) is a δ -semi open subset of X for all r-open set Q of Y.
- iii. The pre-image f $^{-1}$ (F) is a δ -semi closed subset of X for all r-closed subset F of Y.
- iv. $f(sCl\delta(E)) \subset Cl\delta(f(E)) \forall E \subset X$.
- v. $sCl\delta$ (f ⁻¹ (B)) \subset f ⁻¹ (Cl δ (B)) \forall B \subset Y.
- vi. The pre-image f $^{-1}$ (F) is a δ -semi closed subset in X $\forall \delta$ -closed subset F of Y.
- vii. The pre-image f $^{-1}$ (Q) is a δ -semi open subset in X $\forall \delta$ -open subset Q of Y.

Proof:

(i \Rightarrow ii) for an r-open subset Q of Y suppose that $\chi \in f^{-1}(Q)$, then Q = int (Cl(Q)) and $f(\chi) \in$ Q, then Q is a δ -open set of Y and by application of part (i) and the definition 5, \exists a δ -semi open subset set O_X of X s.t $\chi \in O_X$ and $f(O_X) \subset Q$. Therefore, $\chi \in O_X \subset f^{-1}(f(O_X)) \subset$ $f^{-1}(Q)$ and \exists a δ -open set W_X s.t W_X $\subset O_X \subset$ Cl(W_X), since O_X is δ -semi open. Now, suppose that W=U_{X \in f-1(Q)} W_X. As $U_{X \in f-1(v)}$ Cl(W_X) \subset Cl(W), then O=U_{X \in f-1(Q)} (O_X) = f^{-1}(Q) and δ -semi openness is established.

(ii \Rightarrow iii) Suppose that F is an r-closed subset F of Y. \Rightarrow Y\F is r-open subset of Y. By part (ii), f⁻¹ (Y\F) is a δ -semi open subset of X.

Since f $^{-1}(Y \setminus F) = f ^{-1}(Y) \setminus f ^{-1}$ (F), hence f $^{-1}$ (F) is a δ -semi closed subset of X.

(iii \Rightarrow iv) Suppose that $x \in sCl\delta(E)$ and suppose that $f(x) \notin Cl\delta(f(E))$. Then, \exists an open set Q_0 s.t $f(x) \in Q_0$ and $f(E) \cap$ int (Cl (Q 0)) = \emptyset . Then, take the r-open set $W_0 =$ int (Cl(Q_0)). Hence, $f(E) \subset Y \setminus W0$. BY part (iii), it got f⁻¹ (Y \setminus W_0) is δ -semi closed and $E \subset f^{-1}$ (Y \W_0). Thus, by the definition of $sCl\delta(E)$, it got $x \in f^{-1}(Y \setminus W_0)$ a contradiction with $f(x) \in Q_0 \subset int(Cl(Q_0)) = W_0$.

(iv \Rightarrow v) Suppose that $E = f^{-1}(B) \subset X$. Then, by part (iv) take $f(sCl\delta(E)) \subset Cl\delta(f(E))$. Since $Cl\delta(f(E)) \subset Cl\delta(B)$, it follows that $sCl\delta(E) \subset f^{-1}(Cl\delta(B))$.

(v \Rightarrow vi) Suppose F is a δ -closed subset in Y. This means F \subset Cl(F) \subset Cl δ (F) = F. Taking B = F in part (v), and it got sCl δ (f ⁻¹(F)) \subset f ⁻¹(F). As f⁻¹(F) \subset sCl δ (f⁻¹(F)) and sCl δ (f ⁻¹(F) is δ semi closed which concludes f ⁻¹(F) is a δ semiclosed subset of X.

(vi \Rightarrow vii) Let Q be an δ -open subset of Y. Taking F = Y\Q c in part (vi) it got f $^{-1}(Y \setminus Q)$ = f $^{-1}(Y \setminus Q)^c$ is δ -semi closed subset of X. Thus, f $^{-1}(Q)$ is δ -semi open subset of X.

(vii \Rightarrow i) Assume that $x \in X$ and suppose that Q is δ -open subset of Y, f (x) \in Q. By part (vii), f ⁻¹ (Q) is δ -semi open subset of X. Then, taking O = f ⁻¹ (Q), it got $x \in$ O and f(O) \subset f (f ⁻¹ (Q)) \subset Q. Therefore, faint δ -S-continuity of f is established

Theorem 8: For any function between two spaces f: $X \rightarrow Y$. If the graph function g is faintly δS -continuous, then so is f.

Proof Let $x \in X$ and assume that Q is δ -open set that contains f(x). Then $X \times Q$ is δ -open subset of $X \times Y$ [Theorem5in¹], it further contains g(x) = (x, f(x)). Therefore, $\exists O \in \delta s(X)$ containing X s.t $g(O) \subset X \times Q$, which implies $f(O) \subset Q$, and faint δ -S-continuity of f is established.

Theorem 9: If f: $X \rightarrow Y$ is faintly δS continuous with Y almost regular. Then for all $x \in X$ and δ -open subset Q of Y, s.t $f(x) \in Q$, \exists a δ -open subset O in X, $x \in O$ s.t $f(O) \subset$ int (Cl (Q)).

Proof. If $x \in X$ and Q is a δ -open subset in Y with $f(x) \in Q$, but Y is almost regular. so \exists ropen subset G in Y s.t $f(x) \in G \subset Cl(G) \subset int (Cl(Q)^{13} [Theorem 2.2]. Since f is faintly <math>\delta$ S-

2024, 21(3): 1066-1072 https://dx.doi.org/10.21123/bsj.2023.8359 P-ISSN: 2078-8665 - E-ISSN: 2411-7986

continuous, since G is r-open, then G is δ -open. It follows $\exists a \ \delta$ s-open subset O of X, with $x \in O$ s.t $f(O) \subset G \subset Cl(G) \subset int (Cl (Q))$.

Remark 1:

Clearly, any union δ s-open sets in (X, t) is δ -open. However, as can be seen in the example below, the result for intersection is generally false.

Example 1:

Suppose R^2 with the usual topology. Suppose that E be the set defined by $E = \{(X, Y) \in \mathbb{R}^2:$ $X^{2}+Y^{2} <1 U \{ (\cos(\alpha), \sin(\alpha)): 0 < \alpha < \pi/2 \},$ B= { $(X, Y) \in \mathbb{R}^2$: $X^2+Y^2>1$ } U { $(\cos(\alpha),$ $sin(\alpha)$: $0 < \alpha < \pi/2$ }. A is δ -semi open because D is in E and E is in Cl(D), being D= $\{(X, Y) \in \mathbb{R}^2: X^2 + Y^2 < 1\}, D \text{ is a } \delta \text{-open}$ set. Moreover, D is open and regular. B is δ semi open because M is in B and B is in Cl (M), being M= {(X, Y) $\in \mathbb{R}^2$: X²+Y²>1}. M is a δ -open set. Moreover, M is open and regular. However, $E \cap B = \{(\cos(\alpha), \sin(\alpha)): 0 <$ $\alpha < \pi/2$ } is not δ - semi open because if $\exists \delta$ open set O s.t O is in $E \cap B$ and $E \cap B$ is in Cl(O) ,then O is not empty, it follows there exists x in O. For that X, \exists an open and regular set W s.t x is in W and W is in O. Therefore, $E \cap B$ contains a disk that is a contradiction.

Theorem 10: If f is a mapping of X into Y, and X = X 1 \cup X2, where X1 and X2 are δ sopen, and $f|_{X1}$ and $f|_{X2}$ are faintly δ Scontinuous, then f is faintly δ S-continuous.

Proof. Let $x \in X$ and suppose that B is a δ -open subset of Y that contains f(x). If $x \in X_1$, then there exists δ s-open O1 subset of X1, s.t f(O1)= $f|X_1(O1) \subset B$. Also, if $x \in X_2$, then there exists δ s-open O2 subset of X2 s.t f (O2) = $f|X_2(O2) \subset B$. If $x \in X_1 \cup X_2$, SO can take $O=O1 \cup O2$: thus, O is δ s-open (By Remark 1) and $f(O) = f|X_1(O1) \cup f|X_2(O2) \subset B$. Therefore, f is faintly δ S-continuous.

Lemma 1:11

Suppose that G, $H \subset (X, \tau)$. And suppose further that $G \in \delta SO(X)$ and $G \in \delta O(X)$, then the intersection $G \cap H \in \delta SO(H)$.

Conclusion

In this work, several results on faintly θ Scontinuous and faintly δ -S-continuous were obtained. Several properties of these kinds of faint Continuity were considered. Also, the relations **Authors' Declaration**

- Conflicts of Interest: None.

Lemma 2:11

Suppose that $G, H \subset (X, \tau)$. And suppose further that $G \in \delta SO(H)$ and $H \in \delta O(X)$, then $G \in \delta SO(X)$.

Theorem 11:

Suppose that f: $(X, \tau) \rightarrow (Y, \sigma)$ is a mapping with {Qi: $i \in I$ } an δ s-open cover of X. If the restriction f|Qi: (Qi, τ Qi) \rightarrow (Y, σ) is faintly δ -S-continuous $\forall i \in I$, so f is faintly δ -Scontinuous.

Proof: If O is an δ -open set in (Y, σ) (By Lemma 1). Therefore, $f^{-1}(O) = X \cap f^{-1}(O) = \cup \{Qi \cap f^{-1}(O): i \in I\} = \cup \{(f | Qi)^{-1}(O): i \in I\}.$

But f |Qi is faintly δ -S-continuous $\forall i \in I$, (f |Qi) $^{-1}(O) \in \delta$ SO(Qi) $\forall i \in I$. (By Lemma 2), for all $i \in I$, (f |Qi) $^{-1}$ (O) is δ -semi open in X and as f $^{-1}$ (O) is δ -semi open in X. Therefore, f is faintly δ -S-continuous.

Definition 6:¹⁵

A mapping f: $X \to Y$ is An almost δ -semi open if $f(Q) \subset$ int $(Cl(f(Q))) \forall \delta$ -semi open subset Q of X.

Theorem 12:

Given a mapping f: $X \to Y$ that is faintly δ -Scontinuous and almost δ -semi open, then for all $x \in X$ and all δ -open set $O \subset Y$, s.t f $(x) \in Q$, \exists a δ -semi open set $Q \in \delta$ SO (X) s.t f(Q) \subset int (Cl (O)).

Proof: Let $x \in X$ and suppose that O is an δ -open subset of Y s.t $f(x) \in O$. By faint δ -S-continuity of f, then there is $Q \in \delta So(X)$ s.t $f(Q) \subset O$.

but f is almost δ -semi open, which implies that $f(Q) \subset int(Cl(f(Q)) \subset int(Cl(O)))$, then $f(Q) \subset int(Cl(O))$.

Note: Many authors defined and introduced a generalization form of semiopen sets and semi closed sets have many applications see for example ^{16.}

between the graph of faintly θ S-continuous and faintly δ -S-continuous functions were obtained. Furthermore, the relation between these types of functions was considered.

- Ethical Clearance: The project was approved by the local ethical committee in University of Baghdad.

Authors' Contribution Statement

Sh. H. A. gives some results on faintly θ S-continuous and faintly δs - continuous function. J. H. H. introduces the mapping named "faintly δ -S-

References

- 1. Long PE, Herrington LL. The T_{θ} -Topology and Faintly Continuous Functions. Kyungpook Math J. 1982; 22(1): 7–14. <u>https://doi.org/10.1016/0165-0114(93)90225-7</u>
- Hamid SK, Hussein JH. Faintly Simply Continuous Function. DJPS. January 2021; 17(1): 35-43. <u>https://dx.doi.org/10.24237/djps.17.01.536B</u>
- 3. Hussein H. ON G-OPEN SET. Baghdad Sci J. 2021 Mar. 10; 4(3): 482-4. https://doi.org/10.21123/bsj.2007.4.3.482-484
- 4. Sadek AR, Hussein JH. δ-Semi Normal and δ-Semi Compact Spaces. MSEA. 2022 August 19; 71(4): 2062-2069.
 <u>https://www.researchgate.net/publication/363453318</u> <u>d-Semi_Normal_and_d-Semi_Compact_Spaces</u>
- 5. Al Ghour S, Irshidat B. On θ_{ω} continuity. Heliyon. 2020; 6(2): 2-4. <u>https://www.researchgate.net/publication/339064737</u> On th continuity
- Majeed A-RH, AL-Bayati JHH. On Sn-Spaces. Iraqi J Sci. 2022 Apr. 28; 57(3B): 2076-8. <u>ON SN-SPACES</u> | Iraqi Journal of Science (uobaghdad.edu.iq)
- Hassan JA, Labendia MA. θs-open sets and θscontinuity of maps in the product space. Math Comput Sci. 2022; 25: 182–190. http://dx.doi.org/10.22436/jmcs.025.02.07
- 8. Mahmood JA, Naser AI. Connectedness via Generalizations of Semi-Open Sets. Ibn AL- Haitham J pure Appl Sci. 2022; 35(4): 235-240. <u>https://www.researchgate.net/publication/367582363</u> <u>Connectedness via Generalizations of Semi-Open Sets</u>
- Ali AA, Sadek AR. On regular δ-Semi. Open space. J Interdiscip Math. 2021; 24(4): 953-960. https://api.semanticscholar.org/CorpusID:234864017
- 10. Al Ghour S, Al-Zoubi S, A new class between theta open sets and theta omega open sets. Heliyon. 2021; 7: 1-12.

continuous" and give some results on it. A. M. Z. give Several properties of faintly θ S-continuous and faintly δ -S-continuous.

https://www.researchgate.net/publication/348612669 A new class between theta open sets and theta omega open sets

- 11. Lee BY, Son MJ, Park JH. δ -semiopen sets and its applications. Far East J Math Sci. 2001; 3(5):745-759. <u>https://www.researchgate.net/publication/266056832</u> <u>d-semi-open sets and its applications</u>
- Ko^{*}cinaca LDR. Generalized Open Sets and Selection Properties, Faculty of Sciences and Mathematics. University of Nis, Serbia. Filomat. 2019; 33(5): 1485– 1493. https://www.researchgate.net/publication/338472902

Generalized open sets and selection properties

- EL-Maghrabi AI, AL-Juhani MA. New weak forms of faint continuity. Int J Innov Sci Eng Technol. 2014; 1(4): 285-295. https://api.semanticscholar.org/CorpusID:124389936
- 15. Singal MK, Arya S. On almost-regular spaces. Glas Mat. 1969; 4(24): 89–99. https://doi.org/10.1016/j.jksus.2021.101713
- 16. Ressan DI. Some Results of Feebly Open and Feebly Closed Mapping. Baghdad Sci J. 2009; 6(4): 16-821. https://doi.org/10.21123/bsj.2009.6.4.816-821
- 17. Rosas E, Carpintero C, Salas M, Sanabria J, Vasquez <u>Márquez</u> L. Almost ω-continuous functions defined by ω-open sets due to Arhangel'ski. Cubo Math J. 2017; 19(1): 01-15. <u>http://dx.doi.org/10.4067/S0719-</u>

06462017000100001

δ و θ حول الدوال المستمره الضعيفه من النمط

شیماء هشام عبدالواحد¹، جلال حاتم حسین¹، انا ماریه زارکو²

¹ قسم الرياضيات، كلية العلوم للبنات، جامعة بغداد، بغداد، العراق. ²قسم الرياضيات، جامعة لاريوخا الدولية وجامعة البوليتكنيك في فالنسيا.

الخلاصة

الدوال المستمرة بشكل ضعيف (FC) و المعنونة باسم الدوال شبه المستمره بشكل ضعيف من النوع Θ و الدوال شبه المستمره بشكل ضعيف من النوع Θ و الدوال شبه المستمره بشكل ضعيف من النوع Θ و الدوال شبه المستمره بشكل ضعيف من النوع Θ و Θ العديد من الخصائص والمميزات للدوال شبه المستمرة بشكل ضعيف من النوع Θ و Θ العديد من الخصائص والمميزات للدوال شبه المستمرة بشكل ضعيف من النوع Θ و Θ من النوع Θ و العديد من النوع Θ والدوال شبه المستمرة بشكل ضعيف من النوع Θ تم العديد من الخصائص والمميزات الدوال شبه المستمرة بشكل ضعيف من النوع Θ و الدوال شبه المستمرة بشكل ضعيف من النوع Θ تم الحصول عليها. أضافة الى ذلك العلاقات بين الدوال شبه المستمرة بشكل ضعيف من النوع Θ تم الحصول عليها. أضافة الى ذلك العلاقات بين الدوال شبه المستمرة بشكل ضعيف من النوع Θ و انواع اخرى من الدوال المستمرة بشكل ضعيف من النوع Θ و النواع الحرى من الدوال المستمرة بشكل ضعيف من النوع Θ و الدوال المستمرة من الدوال المستمرة من النوع Θ و الدوال شبه المستمرة بشكل ضعيف من النوع Θ و الدواع اخرى من الدوال المستمرة معيف من النوع Θ و الدوال المستمرة بشكل ضعيف من النوع Θ و النواع اخرى من الدوال المستمرة معيف من النوع Θ و الدوال المستمرة بشكل ضعيف من النوع Θ و النواع اخرى من الدوال المستمرة معيفة والتحقيف (FC) تم در استها و التحقيق بها. أيضا أثبت انه كل دالة شبه مستمرة بشكل ضعيف من النوع Θ . النوع Θ مي دالة شبه مستمرة ضعيفة من النوع Θ . النوع Θ . النوع Θ . الموال المتفرة صعيف من النوع Θ . الموال المتفرة معيفة من النوع Θ . الموال المتفرة معيفة من النوع Θ . الموال المنوم Θ .

الكلمات المفتاحية: داله من النوع θ ضعيفة شبه مستمرة، داله من النوع δ ضعيفة شبه مستمرة، مجموعة من النوع θ شبه مفتوحة، مجموعة من النوع δ شبه مفتوحة إستمراريه ضعيفه.