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Abstract

In this article, the effect of the rotation variable and other variables on the peristaltic flow of Powell-
Eyring fluid in an inclined asymmetric channel with an inclining magnetic field through a porous medium
with heat transfer is examined. Long wavelength and low Reynolds number are assumed, where the
perturbation approach is used to solve the nonlinear governing equations in the Cartesian coordinate system
to produce series solutions. distributions of velocity and pressure gradients are expressed mathematically.
Through the collection of figures, the impact of various criteria is explained and graphically represented.
These numerical results were attained using the mathematical application MATHEMATICA.

Keywords: Heat transfer, Inclined channel, Magnetic felid, Peristaltic flow, Porous medium, Powell-

Eyring fluid, Rotation.

Introduction

Peristaltic pumping is a specific sort of
pumping when a wide range of intricate rheological
fluids can be moved readily from between two
locations. This pumping principle is referred to as
peristaltic. The ducts through which the fluid passes
undergo intermittent involuntary constriction and
then expand. As a result, the pressure gradient rises,
causing the fluid to move forward. After Latham's
groundbreaking work® and due to the fact that it is
utilized in biological, engineering, and physiological
systems academics have become increasingly
interested in the different applications of peristalsis.
Due to the fact that it is utilized in biological,
engineering, and physiological systems, peristaltic
transport has received significant attention in recent
years. Generally, the peristaltic wave’s circular
contractions and the successive longitudinal
contractions that occur during peristalsis are

generated by the sinuses which propagate along the
fluid-containing duct. This technique is the basis for
several muscular tubes, including the gastrointestinal
tract, fallopian tubes, bile ducts, ureters, esophageal
tubes, and others. Moreover, non-Newtonian fluids
are better than numerous industrial and physiological
processes that use Newtonian fluids. Among the
models of non-Newtonian fluids (which can exhibit
various rheological effects), that can be accessed is
Paul-Earing fluid. Although this model is more
difficult mathematically than models of non-
Newtonian fluids, it deserves more attention because
of its distinct benefits. Numerous researchers have
been interested in the Powell-Eyring fluid's
peristaltic flow mechanism since it was studied by
Hina and Mustafa and Hayat and Alsaedi?, Hayat and
Naseema and Rafiq and Fuad®, Hayat and Ahmed *,
Hussain and Alvi and Latif and Asghar °, and Ali and
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Ligaa . The static magnetohydrodynamic flow and
heat transfer of an Eyring-Powell fluid on an
expansion plate with viscous dissipation were
studied and numerically explained’. The exchange of
thermal energy between different  system
components is referred to as heat transfer. However,
the medium's physical characteristics and the
separate compartments' temperatures affect the
speed. In recent years, research®! has been
conducted about studying the effect of heat transport
on non-Newtonian fluids. In a tapered asymmetric
channel, the issue of peristaltic transport of an
incompressible non-Newtonian fluid is examined 2.
Peristalsis is used as the basis for the creation of
devices such as peristaltic pumps, roller pumps, hose
pumps, tube pumps, finger pumps, heart-lung
machines, blood pump machines, and dialysis
machines. These applications include the
transportation of aggressive chemicals, high solid
slurries, toxic (nuclear industries), and other
materials. With regard to well-established problems
of the stir of semi-conductive physiological fluids,
such as blood and blood pump machines, magnetic
drug forcing, and pertinent methods of human
digestion, the advantage of applied magnetic field
(MHD) on peristaltic efficacy is crucial. It is also
helpful in treating gastroparesis, chronic
constipation, and morbid obesity as well as magnetic
resonance imaging (MRI), which is used to identify
brain, vascular diseases, and tumors. A substance
that has several tiny holes scattered throughout it is
referred to as a porous medium. In riverbeds, fluid
infiltration and seepage are sustained by flows over
porous media. Important examples of flows through
a porous material are those through the ground,
water, and oil. Qil is trapped in rock formations like
limestone and sandstone, which make up the
majority of an oil reservoir 3. Natural porous media
can be found in many different forms, such as sand,
rye bread, wood, filters, bread loaves, human lungs,
and the gallbladder. Food processing, oxygenation,
hemodialysis, tissue condition, heat convection for
blood flow from tissues' pores, and radiation between
the environment and its surface all depend on the
action of heat transfer in the peristaltic repositioning
of fluid **. The aforementioned processes all
benefit from mass transfer; in particular, the mass
transfer that occurs as nutrients diffuse from the
blood into nearby tissues cannot be understated.
Greater mass transfer participation is typical in the
distillation, diffusion of chemical contaminants,
membrane separation, and combustion processes. It

should be observed that when mass and heat
transmission happens at the same time, there is a
connection between driving potentials and fluxes.
However, the temperature gradient is what causes the
gradients in mass flux and composition (termed soret
action). The study of fluid peristaltic transport in the
presence of an external magnetic field and rotation is
necessary for many issues involving the flow of
conductive physiological fluids, such as blood and
saline water®®, A variety of values are used for the
rotational parameters, the porous medium, density,
amplitude wave, and taper of the channel, as well as
a variety of values for the Hartman number and
Darcy number, to study the effects of varying the
velocity and pressure gradient. This article's
objective is to look into the rotational effects of the
peristaltic transport of a Powell-Eyring fluid through
a porous media under the combined influence of
inclined MHD.

Problem Mathematical Description

Consider the peristaltic motion of an
incompressible Powell-Eyring fluid in a two-
dimensional, asymmetric conduit with a width of
(d'+d). An endless sinusoidal wave traveling along
the channel walls at a constant forward speed (c) is
what generates flow.
The geometry of the wall structure is described as:

h (X, 0) =d—alsin[27n(f—cﬂ] 1
h,(X,©) = —d’—azsin[%n(f—cﬂ+<b] 2

In which hy(x,t), h,(%,t) are the lower and upper
walls respectively, (d, d")denote the channel width,
(aq,a,) are the amplitudes of the wave, (1) is the
wavelength, (c¢) is wave the wave speed, (®) varies
in the range (0<®d <m), when @ =0 is a
symmetric channel with out-of-phase waves and
@ = m waves are in phase, the rectangular coordinate
system is chosen so that the X — axis is in the
direction of the wave's motion. and the Y — axis
perpendicular to X, where £ is the time as shown in
Error! Reference source not found..

Further a;,a,,d,d’ and & fulfill the following
condition;

a? + a3 + 2a,a,cos® < (d +d')? 3

The Cauchy stress tensor T for a fluid that obeys the
Powell- Eyring model is given as follows:-

T=-PI+S 4
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S= [u + B—lysinh‘1 (Cll)] Ay 5

Figure 1. Coordinates for Inclined Asymmetric
Channels in Cartesian Space

Y= /%tras(All)Z 6

Ay =VV + (VO)T 7

Where S is the extra stress tensor, | is the identity
tensor, V= (90X, dY, 0) is the gradient vector, (8, c;)
are the material parameters of Powell-Eyring fluid, P
is the fluid pressure, and u the dynamic viscosity.
The term sinh™? is approximately equivalent to

sinh~1 (l) S | <1 8

c1 Cc1 6c13

6C1
The flow is governed by three coupled nonlinear
partial differentials of continuity, momentum, and
energy, which are expressed in frame (X,Y) as
2u v _
ax oy
aU U  =aU = av
p(5+ U—_+V—_)—pﬂ (a0 +2%) =
dP  dSzx , 85y 2 =
-5 a;‘(X + = X" — oy cosp(Ucosp —
Vsinp)
—%U+pgsina* 10

Where p is the fluid density, V =[U,V] is the
velocity vector, P is the hydrodynamic pressure,
Sgzx,Szy,and Syy are the elements of the extra
stress tensor S, o is the electrical conductivity, S, is
the constant magnetic field, g is the inclination of
the magnetic field, Q is the rotation Cp is specific
heat, k' is the thermal conductivity, T is a
temperature, and u for viscosity.

Listed below are the parts of Powell-additional
Eying's stress tensor, as described by Eqg.5
v =V  —av - av
p(Z+TS+VE)-pa (aU +25)) =
aP afxy asYY

_—ﬁ+ ax aﬂ sinf(Ucosp —
Vsinp) _i v + pgcosa* 11
/ i
pCp (5 + T +V )T k(atz+ﬁ+

ayz)T+ﬂ[(3'é+Z—§) r2(5) v2(5)] 12

— 1 —

Swx =2 (+ 5¢) Ux — 3505 | 20%° + (Px +
Up)? + 27y | Ux 13
= 1
s,—(y=2(u+ﬁc)(vx+uy) e |20% +
(7)—( + ﬁy)z + ZVy ] (V)—( + U7) 14
S — 2 \vy.

Siy=2(n+ BC1) Vy— m ——[20x" + (Vx +
Up)? + 27" | Vy 15

Natural peristaltic motion is an erratic occurrence,
but it applying the transformation from a laboratory
frame, stability can be assumed (fixed frame)
(X,Y)to wave frame (move frame) (X, ¥). The
subsequent  transformations  determine  the
relationship between coordinates, velocities, and
pressure in the laboratory frame (X,Y) to wave
frame (x,y)

+tety=Y, u=U-co=V,pEYy) =
D 16

X =
P(X,

I

Where 4 and ¥ represent the velocity factors and p
represents the pressure in the wave frame. Now that
Eq.15 has been substituted into Egs.1, 2, and 9-14,
the resulting equation has been normalized using the
non-dimensional variables shown below:

e v=3u=luav=1ypP= dz—t
x_lxy_dx’u_cu'v_&:v’ _lucp’
c- 15— d pcd
It’hl_ hlth_EhZ 6=E,Re= PR

k 1
Ha=d By, Da=— w= A=
ﬁﬂ" d? 1B Cy
w(c\ = _ T-To _
‘() T=T-To0=722 Fr=

c? B A= d = . d

a5’ P1 = S = 505xx0 Say = 0Sxv AT =7
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L5 17

Where, (&) is the wave number, (h,) and (h;) are
non-dimensional lower and upper wall surfaces
respectively, (Re) is the Reynolds number, (Ha) is
the Hartman number, (®) is the amplitude ratio, (w)
is the non-dimensional permeability of the porous
medium parameter, (Da) is the Darcy number, (A) is
the Powell-Eyring fluid parameter,
(Ty) and (T;) are the temperatures at the upper and
lower walls, (Fr) is the Froude number, and (a*) the
inclination angle of the channel to the horizontal
axis.

Following that is

hi(x) =1 — asin(2nrx) 18
h,(x) = —d* — b sin 2mtx + ®) 19
Where a, b, d*, and satisfy Eq.3, then

a’ + b% + 2abcos ® < (1 + d*)? 20
o= 21
Re6( +ua—u+v2—;)—pfﬂ(ﬂ +27 %)=

W oy O ]
ax+8 p Sxx+6y Sxy

—Ha? cos B (ucos B — 6vsin B) —D—la u+

Re .
—sina* 22
Fr
av av d2as
Re&3 (— + ) P (
at
dc v\ _ ap 2
d at)_ ax+6 ax Sxy 66y yy

+Ha? sinB (6ucos B — 8%vsinp) —
62— v+ 6‘—cosa

23

oo (st ) < £ (5722 222
g 9)+Ec[( +526”) +252(5) +

267 (32) ] 24
S =21+ W)a—u — 24 [262 (g—:)z + (g_l; +
5222)’ +252(y)]3—: -

(g—; + 82 %)2 + 282 (g—’y’)z] (62 24 ‘;z) 26

Syy =2(1+w) (6 —)—2A5[262( ) +(g—;+
523—1) + 252 (@)] 27

In previous equations, Pr is the Prandtl number, Ec is
the Eckert number and 6 is the dimensionless
temperature.

Following are the relations between the stream

function (y) and velocity components:
u=2 =2 28
ady ax
Substituting Eqg.28 into Eqgs. 21 to 27, noting that the
mass balance displayed by Eg.21 is similarly
satisfied, produces the consequence that EQ.28 is

satisfied.

R Y R Y pd?Q [ 0¥
Re&(atay-l'axayz_axayz)_ P (Qa_y_
Sc WY _ 520 dg _
d atax) 0x+6 ax Sxx + aysxy
o v . 1 0w
Ha? cosﬁ(a cosﬂ+6§smﬁ)—aa—y+
Re . «
- sina 29
3( _9*w v 63‘P)_pd298( v
Rea( atdx  9x2dy axzay u an
sc %y ap 2 @
)= P88, y+ o Sy +
Ha? smB(é‘— cos[i+62 smB)
21 9%
RDaax
= cosa* 30
Fr
¥ a6 ¥ 00
Reo (20420 20 _ 0000 _
dy 0x dx 0y
1 -6 026 026
L (5728 4 5220 1. 2)
Pr ot2
2
2 82 lp) 2( lv)
+Ec[( +6253) +28%(55) +
2
2 azll')
& (axay ] 31
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S =2(1+ )——ZA[
(?;T‘p_‘sza qj) 262 (axay) ] 32
Sey=(1+w) (- 62‘”'+‘;7)—

ales (L) + (-2 52 4 02 2%) 4

ay
8 (20| (52 2r 4 20) 33
Syy = —2(1+ w)S% — 246 [252 (6 : )2 +
(Y220 pas (Z0)|(-22)

ay? x?2 axady
the form when

Now, EQgs.29- 34 Dbecome
(Re and § « 1) are present:
While the component of the extra stress tensor
becomes the form of

Also, if Eq.39 is entered into Eq.35 as well as the
derivative with regard to y and by (w+1) is taken,
then the following equation is obtained:

P08 (hacost g
DLa)Z_‘: + %sin a* 3%
_z_; _o 36
3272 = —Ec.Pr (3272,)2 37
S =2(1+w) :j—:; —-24 (ZZTT)Z ;;;py 38
Sy =(1+w) (ZZTT) -4 (,;2721)3 %
5,y =0 40
Where

(=Ha2coszﬂ+DLa—pd;m’ nz#

w+1

In the wave frame, the dimensionless volume flow
rate and boundary condition are as follows:

F represents the dimensionless temporal average
flow in the wave frame.

F 0¥
—E,E——l,G—O at y =
h, 42
F o¥
W——E,a—y——l,G—O at y =
h, 43

Problem's Resolution

A non-linear system of partial differential
equations is solved using the perturbation method by
increasing flow amounts in a power series of A.

Y =W, +A¥P, + 0(A?) 44
P = P, + AP, + O(A?) 45

Now, by substituting Egs.44 — 45 into Eqs.35 — 40
and boundary conditions (42), (43) and comparing
the coefficients of the same A power up to the first
order yields the two system solutions listed below:

1. Zeroth Order System
When the terms of order (A) in a zeroth-order
system are negligible, then

Woyyyy = (Woyy = 0 46

Such is the case

Fp O0¥
IP":?O’_ayO:_l at y=h, 47
and
Fp O0¥
1P0=—?0,a—y0=—1 at y=h2 48

2. First Order System

a2 3
Piyyyy = N3,z (lpOyy) —¢W1y, =0 49
9 3
Piyyyy = (P1yy =1 a2 (qJOyy) 50
| = le M_0 at y=hy 51
and
l1'1=—ﬂ,"""1—0 at y=h, 52

2

Solving associated zeroth and first-order systems
yields the final equation for the stream function.
lP = lPo + Alpl 53

e‘y‘/z(ezy‘/zc1+c2)
¢
Al(e~38 (3 1+hDVE (RO + h1 — h2)3¢3n —

e®V{(F0 + h1 —h2)3¢%n +

Y= +c3+ycd +
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6e(h1+h2+4y)ﬁ(po +h1 —h2)3(-5+
29/ + 62PNV (RO + 1 — h2)° (5 +

2930 + 8eGM+NT (2 4 1h1,/T -
h2,/7)3A1 + 24 M1+202+4C (2 4 11, /7 —

h2y/0)(2 + h1T - h2y)*Al -
88(3h2+4y)\/f(_2 — h1\/f + h2ﬁ)3A1 +
24¢@h1+h2+49) () 4 h1,/¢{ —h2,/0)(2 -

h1y/C +h2,/7)?A1 + 8e CP+20Ve(—2 4+ h1,[7 -
h27)3A2 + 24eM+202+0)T (—2 4 h1/7 -
h2,/0)(2 + h1,/T - h2,/7)%A2 -
86(3h2+2y)ﬁ(_2 — h1\/2 + h2\/2)3A2 +
24e(zh1+h2+2y)ﬁ(2 + hl\/? — hzﬁ)(Z —

h1,/7 +h2,/7)?A2))/(8(e"V¢(—2 + h1,/7 —

h2,/7) + e"2V3(2 + h1,/7 — h2,/0))30) + A3 +
yA4] 54

Results and Discussion

This section consists of two subsections. In the first,
the pressure gradient is discussed, while in the
second, the temperature distribution is illustrated
using the MATHEMATICA software.

+«» Pressure Gradient dp/dx:

Case variation of dp/dx indicates the variance in
the axial pressure gradient across the channel.
The influence of various values (Ha, , Da, Q, w,
¢, A, Fr, Re, a*) on the axial pressure gradient
dp/dx is illustrated in Figs. 2 - 11

e Figs 2 and 8 demonstrate that increases in the
values of the Hartman number (Ha) and the
material fluid parameter (A) cause the axial
pressure gradient to decrease as the curve's
vertex, but have no effect on the axial pressure
gradient near the right or left channel wall.

e In Figs 3 and 4, the increases in the values of
Darcy number (Da) and the inclination of the
magnetic field (B) lead to the axial pressure
gradient increasing as the vertex of the curve is
twisted to the right but the axial pressure gradient
close to the right or left walls of the channel is
unaffected, while in Fig.6 the increases in the
values of the porous medium parameter (w) lead
to the axial pressure gradient increases as the
vertex of the curve only but the axial pressure

Within the fixed frame, the axial velocity component
is expressed as

ulx,y, t) =%y 55

It is possible to rewrite Eq.35 as

op _
ax Woyyy — leOy + A%y —

3 3
na 3y (Woyy)™ — AQWhyy 56

Energy Equation Solution
The long wavelength and low Reynolds

approximation are used to get Eq. 37.
2

L) ee(52) =0 7

The solution of Eq.57with boundary conditions
0=0aty=h; and 6=1aty=h, 58

It is possible to prove that rl and r2 are constants
using the boundary conditions, and can be stated 0 as
in the index.

gradient close to the right or left walls of the
channel is unaffected.

e Figs 5, 9,10, and 11 demonstrate that the axial
pressure gradient does not change as the rotation
(QQ), the Froude number (Fr), the Reynolds
number (Re), and the inclination angle of the
channel to the horizontal axis (a*) values
increase.

e In Fig 7, for approximately -1.9<x<0, and -
2.8<x<-2.2, the axial velocity increases as the
amplitude ratio increases (¢), but for
approximately -4<x<-2.8, the axial pressure
gradient decreases slightly. However, for -
2.2<x<-1.9 and O<x<1, the axial pressure does not
change.

% Temperature Distribution 0:

The effect of relevant parameters on the temperature
distribution @is graphically illustrated in Figs.12 - 21
whereas depicted in the following figures, the
behavior of temperature distribution is parabolic.

e Figs. 12, 17, 18, 19, and 20 illustrate that
increases in the values of the Hartman number
(Ha), the amplitude ratio (¢), the material fluid
parameter (A), the Eckert number (Ec), and the
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Prandtl number (Pr) have no effect on the
temperature field in the channel's central region,
whereas the temperature field decreases near the
channel wall.

e Figs. 13, 14, 15, and 16 display the increases in
the values of Darcy number (Da), the inclination
of the magnetic field (B), the rotation (Q2), and
porous medium parameter (w) there is no effect
on the temperature field in the central region of
the channel, whereas the temperature field is
rising close to the channel wall's margin.

e The temperature field does not change as the
Reynolds number (Re), the Froude number (Fr),
and the inclination angle of the channel to the
horizontal axis (a*) values increase, as shown in
Figs. 21, 22, and 23.

Figure 2. Pressure gradient variation for
different (Ha) values when # = 0.1,Da =
0.2,p=0,d=0502=02,u=3, w=
0.3,=0.2,a=0.2,b=0.2,dy =0.5,F0 =
0.4F1=0,A=0.3,Fr=0.7,Re=0.2,a" =
0.5

Figure 3. Pressure gradient variation for
different (Da) valueswhen Ha = 2.5, 8 =
0.1,p=0.1,d=0502=0.2 u=3,w=
0.3,=0.2,a=0.2b=0.2,d; =0.5,F0 =
0.4F1=0,A=0.3,Fr=0.7,Re=0.2,a" =
0.5

000

S000 ¢

Figure 4. Pressure gradient variation for
different (B) values when Ha = 2.5,Da =
0.2,p=0.1,d=0.502=02,u=3,w=
0.3,¢=0.2,a=0.2,b=0.2,d; =0.5,F0 =
0.4,F1=0,A=0.3,Fr=0.7,Re=0.2,a" =
0.5

Figure 5. Pressure gradient variation for
different (2) values when Ha = 2.5, =
0.1,Da=0.2,p=0.1,d=0.5u=3,w=
0.3,¢=0.2,a=0.2,b=0.2,d; =0.5,F0 =
0.4, F1=0,A=0.3Fr=0.7,Re=0.2,a" =
0.5

Figure 6. Pressure gradient variation for
different (w) values when Ha = 2.5, =
0.1,Da=0.2,p=0.1,d=0.5,2=0.2, u =
3,$=0.2,a=0.2,b=0.2,d; =0.5,F0 =
0.4F1=0,A=0.3,Fr=0.7,Re=0.2,a" =
0.5
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[

Figure 7. Pressure gradient variation for
different (¢) values when Ha = 2.5, 8 =
0.1,Da=0.2,p=0.1,d=0.502=0.2,u=
3, w=0.3,a=0.2,b=0.2,d; =0.5,F0 =
0.4F1=0,A=0.3,Fr=0.7,Re=0.2,a" =

0.5
sy RN £
RN 7¢
10000 ) :'
: X f
S000 “ s
1500 X \ 7 ',
0000 'n ™ ( A
' P A=03
25000 ! " - - A=035
10000 ‘. §i 1 ememe A=0 4

< ‘
15000 ‘r

Figure 8. Pressure gradient variation for
different (A) values when Ha = 2.5, =
0.1,Da=0.2,p=0.1,d=0.502=0.2,u=
33w=0.3,¢=0.2,a=0.2,b=0.2,d; =
0.5 F0=0.4F1=0,A=0.3,Re=0.2,a" =
0.5

Figure 9. Pressure gradient variation for
different (Fr) values when Ha = 2.5, =
0.1,Da=0.2,p=0.1,d=0.502=0.2,u=
3w=0.3,¢=0.2a=0.2b=0.2,d, =
0.5 F0=0.4F1=0,A=0.3,Re=0.2,a" =
0.5

Re«0.2

— w= Re=04

----- Re=006

Figure 10. Pressure gradient variation for
different (Re) values when Ha = 2.5,8 =
0.1,Da=0.2,p=0.1,d=0.52=0.2,u =
33w=0.3,¢=0.2a=0.2b=0.2,d, =
0.5F0=0.4F1=0,A=0.3,Fr=0.7 ,a” =
0.5

Figure 11. Pressure gradient variation for
different (a*) values when Ha = 2.5, =
0.1,Da=0.2,p=0.1,d=0.5,2=0.2,u=
33w=0.3,¢=0.2a=0.2,b=0.2,d, =
0.5,F0=0.4,F1=0,A=0.3,Fr =
a’0.7,Re =0.2

— a0 5
i Sl )

----- Ha=0.7

Figure 12. Temperature variation for various
(Ha) valueswhen Ha = 0.5, = 0.1,Da = 10,
p=0.1,d=0502=05u=3,w=0.3,¢=
1.3,a=0.2,b=0.2, dy =0.5,F0=0.4,F1 =
0,A=0.1,Ec=0.05Pr=0.05Re=2,Fr=

1,a*=1.5

Page | 1325


https://doi.org/10.21123/bsj.2023.8360

2024, 21(4): 1318-1330
https://doi.org/10.21123/bsj.2023.8360
P-ISSN: 2078-8665 - E-ISSN: 2411-7986

Baghdad Science Journal
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Figure 13. Temperature variation for various
(Da) valueswhen Ha= 0.5, =0.1,Da =
10,p=0.1,d=0.5,2=0.5,u=3,w=
0.3,0=1.3,a=0.2,b=0.2,d; =0.5,F0 =
0.4F1=0,A=0.1,Ec = 0.05,Pr = 0.05,
Re=2Fr=1,a" =1.5

Figure 14. Temperature variation for various (f)
values when Ha = 0.5, = 0.1,Da = 10,
p=01d=0.502=05u=3,w=0.3,¢=
1.3,a=0.2,b=0.2,d, =0.5,F0 = 0.4,
F1=0,A=0.1,Ec=0.05Pr=0.05, Re =
2,Fr=1,a*=1.5

Figure 15. Temperature variation for various
(2) valueswhenHa = 0.5, =0.1,Da =
10,p=0.1,d=0.5,2=0.5,u=3,w=

0.3,0=1.3,a=0.2,b=0.2,d, =
0.5,F0=0.4F1=0,A=0.1Ec=
0.05,Pr=0.05Re=2,Fr=1,a*=1.5

Figure 16. Temperature variation for various (w)
valueswhen Ha = 0.5, =0.1,Da=10,p =
0.1,d=0.52=05u=3,w=0.3,¢ =
1.3,a=0.2,b=0.2, dy =0.5F0=0.4,
F1=0,A=0.1,Ec=0.05Pr =0.05 Re =
2,Fr=1,a*"=1.5

Figure 17. Temperature variation for various
(¢p) valueswhen Ha = 0.5,8 = 0.1,Da =
10,p=0.1,d=0.5,2=0.5,u=3,w=

0.3,0=1.3,a=0.2,b=0.2,d; =0.5,F0 =
0.4 F1=0,A=0.1,Ec=0.05Pr =
0.05Re=2,Fr=1,a*=1.5

Figure 18. Temperature variation for various
(A) values when Ha = 0.5,8 =0.1,Da = 10,
p=01d=0502=05u=3,w=0.3,¢=
1.3,a=0.2,b=0.2,d; = 0.5, F0 =
0.4,F1=0,4A=0.1,Ec =0.05,Pr =0.05,
Re=2,Fr=1,a*=1.5
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Figure 19. Temperature variation for various
(Ec) valueswhen Ha=0.5,8 =0.1,Da = 10,
p=01d=0502=05u=3,w=0.3¢=
1.3,a=0.2,b=0.2,d; =0.5,F0 =0.4,F1 =
0,A=0.1,Ec=0.05Pr=0.05Re =2,Fr=
1,a*=1.5

Pr=0.05
o= o= Pr=D:1S

----- Pr=025

Figure 20. Temperature variation for various
(Pr) valueswhen Ha = 0.5, = 0.1,Da =
10,p=0.1,d=0.52=0.5u=3,w=0.3,
$=13,a=02b=0.2 ,d; =0.5F0=0.4
1=0,4A=0.1,Ec=0.05Pr=0.05Re =

2,Fr=1,a*=1.5

\

Figure 21. Temperature variation for various
(Re) valueswhen Ha = 0.5, = 0.1,Da = 10,
p=01,d=0502=05u=3,w=0.3,¢=
1.3,a=0.2,b=0.2, dy =0.5,F0 =0.4,F1 =
0,A=0.1,Ec=0.05Pr=0.05 Re =2Fr=

1,a"=1.5

Figure 22. Temperature variation for various
(Fr) values when Ha =0.5,8 = 0.1,Da = 10,
p=01d=0502=05u=3w=0.3,¢=
1.3,a=0.2,b=0.2,d; =0.5,F0 = 0.4,F1 =
0,A=0.1,Ec=0.05Pr=0.05Re =2Fr=

1,a*=1.5

Figure 23. Temperature variation for various
(a™) valueswhen Ha= 0.5, =0.1,Da =
10,p=0.1,d=0.5,2=0.5u=3,w=

0.3,¢=1.3,a=0.2,b=0.2, d;y =0.5,F0 =
0.4F1=0,A=0.1,Ec=0.05Pr=
0.05Re=2,Fr=1,a"=1.5
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Conclusion

In this study, the rotational effects of peristaltic
transport of a Powell-Eyring fluid in an asymmetric
channel through a porous material susceptible to the
combined acts of inclined MHD are investigated.
The asymmetric channel is formed by selecting
peristaltic waves with varying amplitudes and phases
on the non-uniform walls and a low Reynolds
number. Using the perturbation approach, the
formulas for the axial velocity and pressure gradient
are produced. Multiple graphs are utilized for
parameter analysis:

I) When the values of Hartman number (Ha) and
material fluid parameter (A) increase, the axial
pressure gradient decreases as the vertex of the curve
is twisted to the right. However, the axial pressure
gradient close to the right or left walls of the channel
is unaffected. However, the opposite occurs when the
values of Darcy number (Da), and the inclination of
magnetic field (B)increase, while the increases in the
values of the porous medium parameter (w) lead to
the axial pressure gradient increases as the vertex of
the curve only while demonstrating that the axial
pressure gradient does not change as the rotation (€2),
the Froude number (Fr), the Reynolds number (Re),
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