Stability of Complement Degree Polynomial of Graphs

Safeera K* (D) Anil Kumar V (D)
Department of Mathematics, University of Calicut, Kerala, India.
*Corresponding author: safeerakoralatil@gmail.com
E-mail address: anil@uoc.ac.in
ICAAM= International Conference on Analysis and Applied Mathematics 2022.

Received 21/1/2023, Revised 18/2/2023, Accepted 19/2/2023, Published 1/3/2023

This work is licensed under a Creative Commons Attribution 4.0 International License.

Abstract

: A graph is a structure amounting to a set of objects in which some pairs of the objects are in some sense related. The objects correspond to mathematical abstractions called vertices (also called nodes or points) and each of the related pairs of vertices is called an edge (also called link or line). A directed graph is a graph in which edges have orientation. A simple graph is a graph that does not have more than one edge between any two vertices and no edge starts and ends at the same vertex. For a simple undirected graph G with order n , and let \bar{G} denotes its complement. Let $\delta(\mathrm{G}), \Delta(\mathrm{G})$ denotes the minimum degree and maximum degree of G respectively. The complement degree polynomial of G is the polynomial $\mathrm{CD}[\mathrm{G}, \mathrm{x}]=\sum_{\delta(\bar{G})}^{\Delta(\bar{G})} C d_{i}(\mathrm{G}) \mathrm{xi}$, where $\mathrm{Cd}_{\mathrm{i}}(\mathrm{G})$ is the cardinality of the set of vertices of degree i in \bar{G}. A multivariable polynomial $\mathrm{f}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$ with real coefficients is called stable if all of its roots lie in the open left half plane. In this paper, investigate the stability of complement degree polynomial of some graphs.

2020 Mathematics Subject Classification: 05C31, 05C50
Keywords: Complement degree polynomial, Complement of a graph, Degree of a vertex, Graph polynomial, Root of polynomial, Stability of polynomial.

Introduction:

For a simple undirected graph G of order n , $\mathrm{CD}(\mathrm{G}, \mathrm{i})$ be the set of vertices of degree i in its complement graph \bar{G} and $\mathrm{Cd}_{\mathrm{i}}(\mathrm{G})=|\mathrm{CD}(\mathrm{G}, \mathrm{i})|^{1}$. Then complement degree polynomial of G is defined as $\mathrm{CD}[\mathrm{G}, \mathrm{x}]=\sum_{\delta(\bar{G})}^{\Delta(\bar{G})} C d_{i}(\mathrm{G}) \mathrm{xi}, \quad$ where $\delta(\mathrm{G}), \Delta(\mathrm{G})$ denotes respectively the minimum degree and maximum degree of G^{2}. The complement degree polynomial of some graphs and some graph operations are investigated. A multivariable polynomial $f\left(x_{1}, \ldots, x_{n}\right)$ with real coefficients is called stable if all of its roots lie in the open left half plane ${ }^{3}$. The Hurwitz polynomial is the one variable variant of our concept. Schur polynomials are different sort of multivariable polynomials that have all of their roots in the open unit disc ${ }^{4}$. In this paper, study the stability of complement degree polynomial of some graphs. Let $f(x)=x^{n}+b_{1} x^{n-1}+\ldots+b_{n-1} x+b_{0}$ be a polynomial with real coefficients ${ }^{5}$. For $\mathrm{i}=1,2, \ldots, \mathrm{n}$ define the n Hurwitz matrices as follows:

$$
\begin{aligned}
\mathrm{H}_{1} & =\left[\begin{array}{ll}
\left.\mathrm{b}_{1}\right]
\end{array}\right. \\
\mathrm{H}_{2} & =\left[\begin{array}{cc}
b 1 & 1 \\
b 3 & b 2
\end{array}\right] \\
\mathrm{H}_{3} & =\left[\begin{array}{ccc}
b 1 & 1 & 0 \\
b 3 & b 2 & b 1 \\
b 5 & b 4 & b 3
\end{array}\right] \\
& \vdots \\
\mathrm{H}_{\mathrm{n}} & =\left[\begin{array}{cccccc}
b 1 & 1 & 0 & 0 & \cdots & 0 \\
b 3 & b 2 & b 1 & 1 & \cdots & 0 \\
b 5 & b 4 & b 3 & b 2 & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \cdots & \vdots \\
0 & 0 & 0 & 0 & \cdots & b n
\end{array}\right] \\
& \vdots
\end{aligned}
$$

where $b_{j}=0$ if $j>n$. Then all the roots of the polynomial $f(x)$ are negative or have negative real part if and only if $\operatorname{det}\left(\mathrm{H}_{\mathrm{j}}\right)>0, \mathrm{j}=1,2, \mathrm{n}$.

Main Results:

Theorem 1: If G is a regular graph, then $C D[G, x]$ is stable.
Proof: Let G be a r-regular graph, then $\mathrm{CD}[\mathrm{G}, \mathrm{x}]=\mathrm{nx} \mathrm{x}^{\mathrm{n}-1-\mathrm{r}}$. Note that $\mathrm{x}=0$ is the only root of this polynomial and hence $\operatorname{CD}[G, x]$ is stable.

Corollary 1:

(1) If $\mathrm{n} \geq 3$, then $\mathrm{CD}\left[\mathrm{C}_{\mathrm{n}}, \mathrm{x}\right]$ is stable,
(2) $\mathrm{CD}[\mathrm{P}, \mathrm{x}]$ is stable, where P is the Peterson graph,
(3) $C D\left[K_{n, n}, x\right]$ is stable,
(4) $\mathrm{CD}\left[\mathrm{Cr}_{n}, \mathrm{x}\right]$ is stable, where Cr_{n} is the crown graph,
(5) $C D\left[B_{n}, x\right]$ is stable, where B_{n} is the bipartite cocktail graph,
(6) $\mathrm{CD}\left[\mathrm{CL}_{\mathrm{n}}, \mathrm{x}\right]$ is stable, where CL_{n} is the circular ladder graph,
(7) $\mathrm{CD}\left[\mathrm{ML}_{\mathrm{n}}, \mathrm{x}\right]$ is stable, where ML_{n} is the Mobius ladder graph.

Corollary 2: If $S(G)$ is the splitting graph of a regular graph G, then $C D[S(G), x]$ is stable

Theorem 2: If $\operatorname{CS}(\mathrm{G})$ is a cosplitting graph of r-regular graph G, then $\operatorname{CD}[\operatorname{CS}(\mathrm{G}), \mathrm{x}]$ is stable if and only if $\mathrm{r}=1$.
Proof: Let G be a r-regular graph. Note that $\operatorname{CD}[C S(G), x]=n x^{n-1}\left(1+x^{r}\right)$. Observe that $\mathrm{CD}[\mathrm{CS}(\mathrm{G}), \mathrm{x}]$ is stable if $\mathrm{r}=1$. Also note that when $r=2, \mathrm{CD}[\mathrm{CS}(\mathrm{G}), \mathrm{x}]$ is not stable. For $\mathrm{r} \geq$ 2, this polynomial has real roots and complex roots with positive and negative real parts. Hence $\operatorname{CD}[\mathrm{CS}(\mathrm{G}), \mathrm{x}]$ is not stable. A plot of roots of $x^{50}+1$ in the complex plane is shown in Fig. 1.

Figure 1. Plot of roots of $x^{50}+1$ in the complex plane

Theorem. 3: Let G be a graph of order n, then $\mathrm{CD}[\mathrm{G}, \mathrm{x}]$ is stable if and only if $\mathrm{CD}[\mathrm{mG}, \mathrm{x}]$ is stable.
Proof: Note that $C D[m G, x]=m C D[G, x]$. This implies that $C D[G, x]$ is stable if and only if $\mathrm{CD}[\mathrm{mG}, \mathrm{x}]$ is stable. \square

Theorem. 4: Let G be a graph with order n and $\mathbf{G}=\mathrm{GUGU} \cdots \cup \mathrm{UG}$ (m times). Then $\mathrm{CD}[\mathrm{G}, \mathrm{x}]$ is stable if and only if $\mathrm{CD}[\mathbf{G}, \mathrm{x}]$ is stable.
Proof: Let G be a graph with order n and $\mathbf{G}=$ GUGU $\cdot . . \cup G$ (m times), then $C D[G, x]=m x^{(m-}$ ${ }^{1) n} \mathrm{CD}[\mathrm{G}, \mathrm{x}]$. This implies that $\mathrm{CD}[G, \mathrm{x}]$ is stable if and only if $\operatorname{CD}[\mathbf{G}, \mathrm{x}]$ is stable.

Theorem. 5: If G^{\prime} is a graph obtained by duplication of a vertex of regular graph G. Then $\mathrm{CD}\left[\mathrm{G}^{\prime}, \mathrm{x}\right]$ is stable.
Proof: Let G be the r-regular graph. Note that $\mathrm{CD}\left[\mathrm{G}^{\prime}, \mathrm{x}\right]=(\mathrm{n}+1-\mathrm{r}) \mathrm{x}^{\mathrm{n}-\mathrm{r}}+\mathrm{rx} \mathrm{x}^{\mathrm{n}-\mathrm{r}-1}$. Note that the roots of $\mathrm{CD}\left[\mathrm{G}^{\prime}, \mathrm{x}\right]$ are $\mathrm{x}=0$ and $\mathrm{x}=-r /(n+1-r)$ which lie in the open left half plane, hence the result follows.

Corollary. 3: If $K_{n, n}^{\prime}$ is a graph obtained by duplication of a vertex of complete bipartite graph $\mathrm{K}_{\mathrm{n}, \mathrm{n}}$. Then $\mathrm{K}_{\mathrm{n}, \mathrm{n}}{ }^{\prime}$ is stable.

Theorem. 6: For a path $\mathrm{P}_{\mathrm{n}}(\mathrm{n} \geq 2), \mathrm{CD}\left[\mathrm{P}_{\mathrm{n}}, \mathrm{x}\right]$ is stable unless $\mathrm{n}=2$.

Proof: The authors proved that
$\mathrm{CD}\left[\mathrm{P}_{\mathrm{n}}, \mathrm{x}\right]=\left\{\begin{array}{cc}2 x^{n-2} & n \leq 2 \\ (n-2) x^{n-3}+2 x^{n-2} & n \geq 3\end{array}\right.$
If $n \neq 2, C D\left[P_{n}, x\right]=(n-2) x^{n-3}+2 x^{n-2}=x^{n-3}(n-2+2 x)$. In this case $x=0$ and $x=-(n-2) / 2$ are the roots of $\mathrm{CD}\left[\mathrm{P}_{\mathrm{n}}, \mathrm{x}\right]$ which lie in the left half plane, it follows that $\mathrm{CD}\left[\mathrm{P}_{\mathrm{n}}, \mathrm{x}\right]$ is stable. If $\mathrm{n}=2, \mathrm{CD}\left[\mathrm{P}_{2}, \mathrm{x}\right]=2$. Hence $\mathrm{CD}\left[\mathrm{P}_{2}, \mathrm{x}\right]$ is not stable.

Theorem. 7: If L_{n} is the ladder graph with $n \geq 2$ vertices, then $C D\left[L_{n}, x\right]$ is stable.
Proof: Note that $C D\left[L_{n}, x\right]=4 x^{2 n-3}+(2 n-4) x^{2 n-4}=$ $x^{2 n-4}(4 x+2 n-4)$. Observe that the roots of $C D\left[L_{n}, x\right]$ are $x=0,(n-2) / 2$ which lie in the open left half plane. Hence the result follows.

Theorem. 8: Let $K_{n}{ }^{\prime}$ be the graph obtained by the duplication of one of the vertices of the complete graph K_{n} with $n \geq 2$, then $C D\left[K_{n}{ }^{\prime}, x\right]$ is stable.
Proof: Note that $C D\left[K_{n}{ }^{\prime}, x\right]=2 x+n-1$. Also observe that $C D\left[K_{n}{ }^{\prime}, x\right]$ has a single root $x=-$ $(n-1) / 2 \quad$ Which lie in the open left half plane and hence the result follows.

Theorem. 9: If $T_{m, n}$ is a tadpole graph with $m \geq 3$ and $\mathrm{n} \geq 1$ vertices, then $\mathrm{CD}\left[\mathrm{T}_{\mathrm{m}, \mathrm{n}}, \mathrm{x}\right]$ is stable.

Proof: Note that $C D\left[T_{m_{12},}, x\right]=x^{m+n-4}\left(x^{2}+(m+n-2)\right.$ $\mathrm{x}+1)$. The roots of $\mathrm{x}^{2}+(\mathrm{m}+\mathrm{n}-2) \mathrm{x}+1$ are $\left(-(m+n-2) \pm \sqrt{(m+n-2)^{2}-4}\right) / 2$. For $\mathrm{m} \geq 3$ and $\mathrm{n}>1$, observe that $(\mathrm{m}+\mathrm{n}-2)>0,(\mathrm{~m}+\mathrm{n}-$ 2) $-4>0$ and and $\sqrt{(m+n-2)^{2}-4}-$ ($m+n-2$) <0, the result follows.

Theorem. 10: If $A\left(Q_{n}\right)$ is an alternating quadrilateral snake graph with $n \geq 3$ vertices, then $\mathrm{CD}\left[\mathrm{A}\left(\mathrm{Q}_{\mathrm{n}}\right), \mathrm{x}\right]$ is stable.
Proof: The authors proved that,
$\mathrm{CD}\left[\mathrm{A}\left(\mathrm{Q}_{\mathrm{n}}\right), \mathrm{x}\right]=$
$\left\{\begin{array}{cc}(n-2) x^{2 n-5}+n x^{2 n-4}+x^{2 n-3} & \text { if } n \text { is odd } \\ (n-2) x^{2 n-4}+(n+2) x^{2 n-3} & \text { if } n \text { is even }\end{array}\right.$
Case (i) (If \mathbf{n} is odd): In this case $\operatorname{CD}\left[A\left(\mathrm{Q}_{\mathrm{n}}\right), \mathbf{x}\right]=$ $\mathrm{x}^{2 \mathrm{n}-5}\left(\mathrm{x}^{2}+\mathrm{nx}+\mathrm{n}-2\right)$. The roots of $\mathrm{x}^{2}+\mathrm{nx}+\mathrm{n}-2$ are $\left(-n \pm \cdot \sqrt{n^{2}-4(n-2)}\right) / 2$ Since $\sqrt{n^{2}-4(n-2)}<n$, it follows that $\operatorname{CD}\left[\mathrm{A}\left(\mathrm{Q}_{\mathrm{n}}\right)\right.$ is stable.
Case(ii) (If \mathbf{n} is even): In this case, $\operatorname{CD}\left[\mathrm{A}\left(\mathrm{Q}_{\mathrm{n}}\right), \mathrm{x}\right]=$ $\mathrm{x}^{2 \mathrm{n}-4}(\mathrm{n}-2+(\mathrm{n}+2) \mathrm{x})$. Observe that the roots of $\operatorname{CD}\left[A\left(\mathrm{Q}_{\mathrm{n}}\right) \mathrm{x}\right]$ are $\mathrm{x}=0$ and $\mathrm{x}=-(n-2) /(n+2)$ which lie in the open left half plane. Hence for n is even, $\operatorname{CD}\left[A\left(\mathrm{Q}_{\mathrm{n}}\right), \mathrm{x}\right]$ is stable.
This completes the proof. \square
Theorem. 11: If CP_{n} is a cocktail party graph with $\mathrm{n} \geq 2$, then $\mathrm{CD}^{2}\left[\mathrm{CP}_{\mathrm{n}}, \mathrm{x}\right]$ is stable.
Proof: Note that $C D\left[C P_{n}, x\right]=4 x^{2}+2(n-2) x^{3}=$ $2 x^{2}(2+(n-2) x)$. Then the roots of $\operatorname{CD}\left[\mathrm{CP}_{\mathrm{n}}, \mathrm{x}\right]$ are $x=0$ and $x=-2 /(n-2)$ which lie in the open left half plane. Hence the proof. \square

Theorem. 12: If $n \geq 3, G_{n}$ is the gear graph of order $2 \mathrm{n}+1$, then $\mathrm{CD}^{2}\left[\mathrm{G}_{\mathrm{n}}, \mathrm{x}\right]$ is stable if and only if $\mathrm{n}=3,4$.
Proof: Note that $\mathrm{CD}_{\mathrm{G}}\left[\mathrm{G}_{\mathrm{n}} \mathrm{x}\right]=n x^{2 \mathrm{n}-2}+\mathrm{nx}^{2 \mathrm{n}-3}+\mathrm{x}^{\mathrm{n}}=\mathrm{x}^{\mathrm{n}}$ $\left(\mathrm{nx}^{\mathrm{n}-2}+\mathrm{nx}^{\mathrm{n}-3}+1\right.$). When $\mathrm{n}=3$, the roots of $\mathrm{CD}\left[\mathrm{G}_{3}, \mathrm{x}\right]$ are $x=0$ and $x=-4 / 3$. When $n=4$, the roots of $\operatorname{CD}\left[G_{4}, x\right]$ are $x=0$ and $x=1 / 2$. Hence $\operatorname{CD}^{2}\left[G_{n}, x\right]$ is stable for $n=3,4$. When $n>4$, the result follows from the fact that the determinant of second Hurwitz matrix of $\mathrm{CD}\left[\mathrm{G}_{\mathrm{n}}, \mathrm{x}\right]$ is zero or negative.

Theorem. 13: If Sh_{n} denotes the shell graph then $\mathrm{CD}\left[\mathrm{Sh}_{\mathrm{n}}, \mathrm{x}\right]$ is stable if and only if $\mathrm{n}=4,5$.
Proof: Note that when $n \geq 4, C D\left[\mathrm{Sh}_{\mathrm{n}}, \mathrm{x}\right]=2 \mathrm{x}^{\mathrm{n}-3}+$ $(\mathrm{n}-3) \mathrm{x}^{\mathrm{n}-4}+1$. For $\mathrm{n}=4,5$ the result is trivial. When $\mathrm{n}>5$, consider the polynomial $\mathrm{x}^{\mathrm{n}-3}+((n-3) / 2) \mathrm{x}^{\mathrm{n}-}$ ${ }^{4}+(1 / 2)$. Observe that second Hurwitz matrix is $\left|\mathrm{H}_{2}\right|=0$. Hence the result follows from the fact that the determinant of second Hurwitz matrix is zero.

Theorem. 14: If $L_{n, n}$ is the lollipop graph, then $\mathrm{CD}\left[\mathrm{L}_{\mathrm{m}, \mathrm{n}} \mathrm{x}\right]$ is stable if and only if $\mathrm{n}=2,3,4$.

Proof: Note that $C D\left[L_{n, n}, x\right]=x^{2 n-2}+(n-1) x^{2 n-3}+(n-$ 1) $x^{n}+x^{n-1}$. For $n=1, C D\left[L_{1,1}, x\right]=2$ is a constant polynomial and for $\mathrm{n}=2$, the roots of $\mathrm{CD}\left[\mathrm{L}_{2,2}, \mathrm{x}\right]$ are $\mathrm{x}=0,-1$, for $\mathrm{n}=3$, the roots of $\mathrm{CD}\left[\mathrm{L}_{3,3}, \mathrm{x}\right]$ are $(-4 \pm \sqrt{12}) / 2$ and for $n=4$, the roots of $\mathrm{CD}\left[\mathrm{L}_{4,4,}, \mathrm{x}\right]$ are $x=0,-1$. Thus, for $n=2,3,4, C D\left[L_{n, n}, x\right]$ is stable. When $\mathrm{n}=5, \mathrm{CD}\left[\mathrm{L}_{5,5,5} \mathrm{x}\right]=\mathrm{x}^{8}+4 \mathrm{x}^{7}+4 \mathrm{x}^{5}+\mathrm{x}^{4}$,the determinant of Hurwitz matrices are $\left|\mathrm{H}_{1}\right|=4$ and $\left|\mathrm{H}_{2}\right|=-4$. It follows that $\mathrm{CD}\left[L_{5,5}, \mathrm{x}\right]$ is not stable. When $\mathrm{n}>5$ the result follows from the fact that the determinant of second Hurwitz matrix of $C D\left[L_{n, n}, x\right]$ is zero.

Theorem. 15: If $F_{1, n}$ is the fan graph ($n \geq 3$), then $\operatorname{CD}\left[\mathrm{F}_{1, \mathrm{n}, \mathrm{x}}\right]$ is stable if and only if $\mathrm{n}=3,4$.
Proof: Note that $\mathrm{CD}\left[\mathrm{F}_{1, n \mathrm{n}} \mathrm{x}\right]=2 \mathrm{x}^{\mathrm{n}-2}+(\mathrm{n}-2) \mathrm{x}^{\mathrm{n}-3}+1$. The result is trivial for $n=3$ and $n=4$. When $n>4$, the result follows from the fact that the determinant of second Hurwitz matrix of $\operatorname{CD}\left[\mathrm{F}_{1, n}, \mathrm{x}\right]$ is zero.

Theorem. 16: If $\mathrm{F}_{2, \mathrm{n}}(\mathrm{n} \geq 3)$ is the double fan graph, then $\operatorname{CD}\left[\mathrm{F}_{2, n}, \mathrm{x}\right]$ is stable if and only if $n=3,4,5$.
Proof: Note that $C D\left[F_{2, n}, x\right]=2 x^{n-2}+(n-2) x^{n-3}+2 x$. For $\mathrm{n}=3,4$ the result follows from elementary algebra. For $\mathrm{n}=5$, the roots of $\mathrm{CD}\left[\mathrm{F}_{2,5}, \mathrm{x}\right]$ are $\mathrm{x}=0$ and $x=(-3 \pm i \sqrt{7}) / 4$ which lie in the open left half plane. It follows that $\mathrm{CD}\left[\mathrm{F}_{2,5} \mathrm{x}\right]$ is stable. When $\mathrm{n}>5$, the result follows from the fact that the determinant of second Hurwitz matrix of $\operatorname{CD}\left[\mathrm{F}_{2, n}, \mathrm{x}\right]$ is zero.

Theorem. 17: For an armed crown graph $\mathrm{C}_{\mathrm{n}} \odot \mathrm{P}_{\mathrm{m}}(\mathrm{n}$ $\geq 3, m \geq 1), C D\left[C_{n} \odot P_{m}, x\right]$ is stable unless $m=1$.
Proof: Note that $C D\left[C_{n} \odot P_{m}, x\right]=n x^{n(m+1)-4}\left(x^{2}+(m-\right.$ 1) $x+1$). Observe that Hurwitz matrices of the polynomial $x^{2}+(m-1) x+1$ are $\left|H_{1}\right|=m-1$ and $\left|H_{2}\right|=m$ 1. Since all the determinants are positive except when $\mathrm{m}=1$, the result follows.

Theorem. 18: If Bk_{n} is the book graph with $2 \mathrm{n}+2$ vertices, then $C D\left[\mathrm{Bk}_{\mathrm{n}}, \mathrm{x}\right]$ is stable if and only if n $=1,2$.
Proof: Note that $\mathrm{CD}\left[\mathrm{Bk}_{\mathrm{n}}, \mathrm{x}\right]=2 \mathrm{nx}^{2 \mathrm{n}-1}+2 \mathrm{x}^{\mathrm{n}}$. When $\mathrm{n}=1, \mathrm{Cd}\left[\mathrm{Bk}_{1}, \mathrm{x}\right]=4 \mathrm{x}$ and when $\mathrm{n}=2, \mathrm{CD}\left[\mathrm{Bk}_{2}, \mathrm{x}\right]$
Are lie in the open left half plane, It follows that for $\mathrm{n}=1,2, \mathrm{CD}\left[\mathrm{Bk}_{\mathrm{n}}, \mathrm{x}\right]$ is stable. When $\mathrm{n}>2$, the result follows from the fact that the determinant of first Hurwitz matrix of the polynomial $\mathrm{x}^{2 \mathrm{n}-1}+(1 / n) \mathrm{x}^{\mathrm{n}}$ are zero. \quad

Theorem. 19: If Bl is the bull graph, then $\mathrm{CD}[\mathrm{Bl}, \mathrm{x}]$ is stable.
Proof: Note that $\mathrm{CD}[\mathrm{Bl}, \mathrm{x}]=2 \mathrm{x}^{3}+\mathrm{x}^{2}+2 \mathrm{x}=\mathrm{x}\left(2 \mathrm{x}^{2}+\right.$ $\mathrm{x}+2)$ and its roots are $\mathrm{x}=0,(-1 \pm i \sqrt{15}) / 4$, which
lie in the open left half plane. Hence $\mathrm{CD}[\mathrm{Bl}, \mathrm{x}]$ is stable.

Theorem. 20: If Fr is the fork graph, then $\mathrm{CD}[\mathrm{Fr}, \mathrm{x}]$ is stable.
Proof: Obviously, $\mathrm{CD}[\mathrm{Fr}, \mathrm{x}]=3 \mathrm{x}^{3}+\mathrm{x}^{2}+\mathrm{x}=\mathrm{x}\left(3 \mathrm{x}^{2}\right.$ $+x+1)$. The roots of $C D[F r, x]$ are $x=0$, $(-1 \pm i \sqrt{11}) / 6$. Hence $\mathrm{CD}[\mathrm{Fr}, \mathrm{x}]$ is stable.

Theorem. 21: If TL_{n} is the triangular ladder graph, then $\mathrm{CD}\left[\mathrm{TL}_{\mathrm{n}}, \mathrm{x}\right]$ is stable for $\mathrm{n} \geq 2$.
Proof: Note that $C D\left[\mathrm{TL}_{\mathrm{n}}, \mathrm{x}\right]=2 \mathrm{x}^{2 \mathrm{n}-3}+2 \mathrm{x}^{2 \mathrm{n}-4}+(2 \mathrm{n}-$ 4) $x^{2 n-5}=2 x^{2 n-5}\left(x^{2}+x+n-2\right)$. For $n=2$, the result follows from simple elementary algebra. For $n>2$, consider the polynomial $x^{2}+x+n-2$. The determinants of Hurwitz matrices are $\left|\mathrm{H}_{1}\right|=1$ and $\left|\mathrm{H}_{2}\right|+\mathrm{n}-2$ and so on. Since all the determinants are positive when $n>2$, the result follows.

Theorem. 22: If $\mathrm{DSL}_{\mathrm{n}}$ is the double-sided step ladder graph, then $\mathrm{CD}\left[\mathrm{DSL}: \mathrm{n}_{\mathrm{n}}, \mathrm{x}\right]$ is stable.
Proof: Note that $\quad \mathrm{CD}\left[\mathrm{DSL}_{n}, \mathrm{x}\right]=(2 n+$
2) $x^{3 n-3+n^{2}}++(2 n-2) x^{3 n-4+n^{2}}+\quad+\left(n^{2}-\right.$ n) $x^{3 n-5+n^{2}}$

$$
=x^{3 n-5+n^{2}} \quad((2 \mathrm{n}+
$$

2) $\left.x^{2}+(2 n-2) x+n^{2}-n\right)$.

For $\mathrm{n}=1$, the result follows from elementary algebra. For $\mathrm{n}>1$, consider the polynomial $\mathrm{x}^{2}+((2 n-2) /(2 n+2)) \quad \mathrm{x}+\left(n^{2}-n\right) /(2 n+2)$. Observe that the determinants of Hurwitz matrices are
$\left|\mathrm{H}_{1}\right|=(2 n-2) /(2 n+2) \quad$ and $\left|\mathrm{H}_{2}\right|=\left((2 n-2)\left(n^{2}-2\right)\right) /(2 n+2)^{2}$. Since all the determinants are positive when $n>1$, it follows that $\mathrm{CD}\left[\mathrm{DSL}_{\mathrm{n}}, \mathrm{x}\right]$ is stable.

Conclusion:

In this paper, the stability of complement degree polynomial of some graphs has been discussed. The primary goal of this paper is to launch research on the stability of complement degree polynomials in graphs.

Acknowledgment:

The author is indebted to the Council of Scientific and Industrial Research (CSIR), Government of India for granting and timely disbursement of the research fellowship.

Author's Declaration:

- Conflict of interest: None
- We hereby confirm that all the Figures in the manuscript are ours. Besides, the Figures and images, which are not ours, have been given
permission for the re-publication attached with the manuscript.
- Ethical Clearance: The project was approved by the local ethical committee in University of Calicut.

Author's contribution statement:

This work was carried out in collaboration between all authors. S K evaluated the stability of complement degree polynomial of some graphs and verified the results. A K V edited the manuscript with revisions idea. All authors read and approved the final manuscript.

References:

1. Omran AA, Oda HH. Hn-Domination in Graphs. Baghdad Sci J. 2019; 16(1): 242-247. https://doi.org/10.21123/bsj.2019.16.1(Suppl.). 0 $\underline{242}$
2. Safeera K, Kumar VA. Vertex cut polynomial of graphs. Adv Appl Discrete Math. 2022; 32(1): 1-12.
https://ds.doi.org/10.17654/0974165822028
3. Juma ARS, Abdulhussain MS, Al-khafaji SN. Faber Polynomial Coefficient Estimates for Subclass of Analytic Bi-Bazilevic Functions Defined by Differential Operator. Baghdad Sci J. 2019; 16(1(Suppl.)): 248-253. $\underline{\text { https://doi.org/10.21123/bsj.2019.16.1(Suppl.). } 0}$ 248
4. Shikhi M, Kumar AV. On the stability of common neighbor polynomial of some graphs. South East Asian J Math. Math Sci. 2018; 14(1): 95-102.
5. Fuhrmann PA. A polynomial approach to linear algebra. Springer-Berlin Heidelberg. New York; 1996. 422 p.

ثبات للمتمم متعدد حدود الارجة للرسومـات البيانية

$$
\text { سفيرة ك. } \quad \text { أنيل كومـار }
$$

قسم الرياضيات، جامعة كاليكوت، كير الا، الهند.

البيان عبارة عن هيكل يصل إلى مجموعة من الكائنات ترتبط فيها بعض أزواج الكائنات بيضض المعاني. تتو افق الكائنات مع التجريدات الرياضية التي تسمى الرؤوس (وتسمى أيضنًا العقا أو النقاط) ويسمى كل زوج من الأزواج ذات الصلة بالحافة (وتسمى أيضًا الرابط أو الخط). البيان الموجه هو رسم بياني يكون للحواف فيه اتجاه. الرسم البياني البسيط هو رسم لا يحتوي على أكثر من حافة بين أي رأسين ولا تبدأ ألي

 معاملات حقيقية مستقرة إذا كانت جميع جذور ها تقع في مستوى النصف الأيسر المتنوح. في هذا البحث، تحقق من استقراريه متعددة حدود الدرجة المتمة لبعض البيانات.
(الكلمات المفتاحية: متمم متعدد حودد الارجة، متمم الرسم البياني، درجة الرأس، رسم بياني متعدد الحودد، جذر متعدد الحدود، ثبات متعدد الحود.

