Nordhaus-Gaddum Type Relations on Open Support Independence Number of Some Path Related Graphs Under Addition and Multiplication

T. MARY VITHYA * (D) K. MURUGAN (D)
Department of Mathematics, The Madurai Diraviyam Thayumanavar Hindu College, Tirunelveli, Tamil Nadu, India. *Corresponding author: maryvithya@gmail.com
E-mail address: murugan@mdthinducollege.org
ICAAM= International Conference on Analysis and Applied Mathematics 2022.

Received 20/1/2023, Revised 13/2/2023, Accepted 14/2/2023, Published 4/3/2023

This work is licensed under a Creative Commons Attribution 4.0 International License.

Abstract

: In this paper, Nordhaus-Gaddum type relations on open support independence number of some derived graphs of path related graphs under addition and multiplication are studied.

Keywords: Derived graphs, Nordhaus-Gaddum type relations, Open support independence number, Open support independence number under addition, Open support independence number under multiplication.

Introduction:

Graphs considered in this paper are finite, undirected, and without loops or multiple edges ${ }^{1}$. Let $G=(V, E)$ be a graph with p vertices and q edges. For each vertex $v \in V$, the open neighborhood ${ }^{2}$ of v is the set $N(v)$ containing all the vertices u adjacent to v. In a graph G, an independent set is a subset S of $V(G)$ such that no two vertices in S are adjacent. A maximum independent set is an independent set ${ }^{3}$ of maximum size.

Recently the concept of open support of a graph under addition was introduced by Balamurugan et al. ${ }^{4}$ and further studied in ${ }^{5}$. Open support of a graph under multiplication was introduced in ${ }^{6}$. Open support independence number of a graph under addition and multiplication was introduced in ${ }^{7}$. In this paper, Nordhaus-Gaddum type relations on open support independence number of some derived graphs of path related graphs under addition and multiplication are studied. The following definitions are necessary for the present study.

Definition. 1: Let $G=(V, E)$ be a graph. A subset S of V is called an independent set of G if no two vertices in S are adjacent in G.

Definition. 2: An independent set ' S ' is maximum in G if G has no independent set S^{\prime} with $\left|S^{\prime}\right|>|S|$.

Definition. 3: The number of vertices in a maximum independent set of G is called the independence number of G and is denoted by $\alpha(G)$. Definition. 4: Let $G=(V, E)$ be a graph. An open support of a vertex v under addition is defined by $\sum_{u \in N(v)} \operatorname{deg} u$ and is denoted by supp (v).
Definition. 5: Let $G=(V, E)$ be a graph. Open support of the graph G under addition is defined by $\sum_{v \in V(G)} \operatorname{supp}(v)$ and is denoted by supp (G).
Definition. 6: Let $G=(V, E)$ be a graph. An open support of a vertex v under multiplication is defined by $\prod_{u \in N(v)} \operatorname{deg} u$ and is denoted by mult (v).
Definition. 7: Let $G=(V, E)$ be a graph. Open support of the graph G under multiplication is defined by $\prod_{v \in V(G)}$ mult (v) and is denoted by mult (G).
Definition. 8: The line graph $^{8} L(G)$ of G is the graph whose vertex set is $E(G)$ in which two vertices are adjacent if and only if they are adjacent in G.
Definition. 9: The jump graph $J(G)$ of G is the graph whose vertex set is $E(G)$ in which two vertices are adjacent if and only if they are nonadjacent in G.
Definition. 10: The paraline graph $P L(G)$ is a line graph of the subdivision graph of G.
Definition. 11: The complement of a graph G has V as its vertex set and two vertices are adjacent in if and only if they are not adjacent in G.

Definition. 12: The subdivision graph ${ }^{9} S(G)$ of a graph G is obtained from G by inserting a new vertex into every edge of G.
Definition. 13: The semi-total point graph $T_{2}(G)$ is the graph whose vertex set is $V(G) \cup E(G)$ where two vertices are adjacent if and only if (i) they are adjacent vertices of G or (ii) one is a vertex of G and the other is an edge of G incident with it.
Definition. 14: The semi-total line graph $T_{1}(G)$ is the graph whose vertex set is $V(G) \cup E(G)$ where two vertices are adjacent if and only if (i) they are adjacent edges of G or (ii) one is a vertex of G and the other is an edge of G incident with it.
Definition. 15: The quasi-total graph $P(G)$ is the graph with vertex set $V(G) \cup E(G)$ where two vertices are adjacent if and only if (i) they are nonadjacent vertices of G or (ii) they are adjacent edges of G or (iii) one is a vertex of G and the other is an edge of G incident with it.
Definition. 16: The quasi vertex-total graph $Q(G)$ is the graph with vertex set $V(G) \cup E(G)$ where two vertices are adjacent if and only if
(i) they are adjacent vertices of G or (ii) they are non-adjacent vertices of G or (iii) they are adjacent edges of G or (iv) one is a vertex of G and the other is an edge of G incident with it.
Definition. 17: The complementary prism ${ }^{10}$ of a graph G, denoted as $G \bar{G}$, is obtained from the graph $G \cup \bar{G}$ by adding a perfect matching between the corresponding vertices of G and \bar{G}.
Definition. 18: Let $G=(V, E)$ be a graph. Let S denote the maximum independent set of G. Open support independence number of the set S under addition, denoted by $\operatorname{supp} S^{+}(G)$, is defined by $\operatorname{supp} S^{+}(G)=\sum_{v \in S} \operatorname{supp}(v)$. Open support independence number of G under addition, denoted by $\operatorname{supp} \alpha^{+}(G), \quad$ is defined by $p \alpha^{+}(G)=$ $\max \left\{\operatorname{supp} S_{i}^{+}(G) ; i \geq 1\right\}$.
Definition. 19: Let $G=(V, E)$ be a graph. Let S denote the maximum independent set of G.
G Open support independence number of the set S under multiplication, denoted by $\operatorname{supp} S^{\times}(G)$, is defined by $\operatorname{supp} S^{\times}(G)=\Pi_{v \in S}$ mult (v). Open support independence number of G under multiplication, denoted by $\operatorname{supp} \alpha^{\times}(G)$ is defined by supp $\alpha^{\times}(G)=\max \left\{\right.$ mult $\left.S_{i}{ }^{\times}(G) ; i \geq 1\right\}$.
Result. 1: Let $G=P_{n}$ where $n>2$ is a path on n vertices. Then

$$
\begin{aligned}
\text { supp } \alpha^{+}(G) & =\left\{\begin{array}{l}
2 n-2 \text { if } n \text { is odd } \\
2 n-3 \text { if } n \text { is even }
\end{array}\right. \text { and } \\
\text { supp } \alpha^{\times}(G) & =\left\{\begin{array}{l}
2^{n-1} \text { if } n \text { is odd } \\
2^{n-2} \text { if } n \text { is even }
\end{array}\right.
\end{aligned}
$$

Main results:

Theorem. 1: Let $L\left(P_{n}\right)$ be the line graph of P_{n} where $n \geq 2$. Then $\operatorname{supp} \alpha^{+}\left(P_{n}\right)+\operatorname{supp} \alpha^{+}\left[L\left(P_{n}\right)\right]=4 n-$
7 , supp $\alpha^{\times}\left(P_{2}\right)+\operatorname{supp} \alpha^{\times}\left[L\left(P_{2}\right)\right]=1$ and $\operatorname{supp} \alpha^{\times}\left(P_{n}\right)+\operatorname{supp} \alpha^{\times}\left[L\left(P_{n}\right)\right]=$
$\left\{\begin{array}{c}5 \times 2^{n-3} \text { if } n \text { is odd } \\ 2^{n-1} \text { if } n \text { is even, } n \neq 2\end{array}\right.$
Proof: Let $L\left(P_{n}\right)$ be the line graph of P_{n} where $n \geq$ 2. $L\left(P_{n}\right)=P_{n-1}$.

Case (i): Suppose n is odd.
Then $\operatorname{supp} \alpha^{+}\left[L\left(P_{n}\right)\right]=2(n-1)-3$

$$
=2 n-5
$$

Hence $\quad \operatorname{supp} \alpha^{+}\left(P_{n}\right)+\operatorname{supp} \alpha^{+}\left[L\left(P_{n}\right)\right]=$ $(2 n-2)+(2 n-5)=4 n-7$
Now supp $\alpha^{\times}\left[L\left(P_{n}\right)\right]=2^{(n-1)-2}=2^{n-3}$
Hence $\operatorname{supp} \alpha^{\times}\left(P_{n}\right)+\operatorname{supp} \alpha^{\times}\left[L\left(P_{n}\right)\right]=2^{n-1}+$ $2^{n-3}=5 \times 2^{n-3}$
Case (ii): Suppose n is even.
Then supp $\alpha^{+}\left[L\left(P_{n}\right)\right]=2(n-1)-2$

$$
=2 n-4
$$

Hence $\quad \operatorname{supp} \alpha^{+}\left(P_{n}\right)+\operatorname{supp} \alpha^{+}\left[L\left(P_{n}\right)\right]=$
$(2 n-3)+(2 n-4)=4 n-7$
Now supp $\alpha^{\times}\left[L\left(P_{n}\right)\right]=2^{(n-1)-1}$

$$
=2^{n-2}
$$

Hence $\operatorname{supp} \alpha^{\times}\left(P_{n}\right)+\operatorname{supp} \alpha^{\times}\left[L\left(P_{n}\right)\right]=2^{n-2}+$ $2^{n-2}=2^{n-1}$.
Theorem. 2: Let $\left[J\left(P_{n}\right)\right]$ be the jump graph of P_{n} where ≥ 2. Then
$\operatorname{supp} \alpha^{+}\left(P_{2}\right)+\operatorname{supp} \alpha^{+}\left[J\left(P_{2}\right)\right]=$
$1, \operatorname{supp} \alpha^{+}\left(P_{3}\right)+\operatorname{supp} \alpha^{+}\left[J\left(P_{3}\right)\right]=4$,
$\operatorname{supp} \alpha^{+}\left(P_{n}\right)+\operatorname{supp} \alpha^{+}\left[J\left(P_{n}\right)\right]=$
$\left\{\begin{array}{l}2 n^{2}-13 n+28 \text { if } n \text { is odd }, n \neq 3 \\ 2 n^{2}-13 n+27 \text { if } n \text { is even, } n \neq 2\end{array}\right.$,
$\operatorname{supp} \alpha^{\times}\left(P_{2}\right)+\operatorname{supp} \alpha^{\times}\left[J\left(P_{2}\right)\right]=$
1 , supp $\alpha^{\times}\left(P_{3}\right)+\operatorname{supp} \alpha^{\times}\left[J\left(P_{3}\right)\right]=4$ and
$\operatorname{supp} \alpha^{\times}\left(P_{n}\right)+\operatorname{supp} \alpha^{\times}\left[J\left(P_{n}\right)\right]=$
$\left\{\begin{array}{c}(n-4)^{2 n-9} \times(n-3)^{2}+2^{n-1} \text { if } n \text { is odd }, n \neq 3 \\ (n-4)^{2 n-9} \times(n-3)^{2}+2^{n-2} \text { if } n \text { is even, } n \neq 2\end{array}\right.$.
Proof: Let $J\left(P_{n}\right)$ be the jump graph of P_{n} where $n \geq 2$. Let $e_{1}, e_{2}, \ldots, e_{n-1}$ be the vertices of $J\left(P_{n}\right)$. Then $\operatorname{deg} e_{i}=n-4,2 \leq i \leq n-2$ and $\operatorname{deg} e_{1}=$ $\operatorname{deg} e_{n-1}=n-3$. Obviously the independence number of $J\left(P_{n}\right)$ is 2 . To get the maximum support, the degree of those two vertices should be maximum, but there are only two maximum-degree
vertices that are adjacent. Hence $S_{1}=\left\{e_{1}, e_{2}\right\}$ and $S_{2}=\left\{e_{n-2}, e_{n-1}\right\}$ are such maximum independent sets. Consider the set S_{1}. The proof is similar to the set S_{2}.

$$
\begin{aligned}
\operatorname{supp}\left(e_{1}\right)= & \sum_{v \in N\left(e_{1}\right)} \operatorname{deg} v \\
& =\operatorname{deg} e_{3}+\operatorname{deg} e_{4}+\ldots+\operatorname{deg} e_{n-1} \\
& =(n-4)+(n-4)+\cdots+(n-4) \\
& +(n-3) \\
& =(n-4)^{2}+(n-3) \\
& =n^{2}-7 n+13 \\
\operatorname{supp}\left(e_{2}\right) & =\sum_{v \in N\left(e_{2}\right)} \operatorname{deg} v \\
& =\operatorname{deg} e_{4}+\operatorname{deg} e_{5}+\ldots+\operatorname{deg} e_{n-1} \\
& =(n-5)(n-4)+(n-3) \\
& =n^{2}-8 n+17
\end{aligned}
$$

Therefore $\operatorname{supp} \alpha^{+}\left[J\left(P_{n}\right)\right]=2 n^{2}-15 n+30$
Hence $\quad \operatorname{supp} \alpha^{+}\left(P_{n}\right)+\operatorname{supp} \alpha^{+}\left[J\left(P_{n}\right)\right]=$
$\left\{\begin{array}{l}2 n^{2}-13 n+28 \text { if } n \text { is odd, } n \neq 3 \\ 2 n^{2}-13 n+27 \text { if } n \text { is even, } n \neq 2\end{array}\right.$.
Now $\operatorname{supp} \alpha^{+}\left(P_{2}\right)+\operatorname{supp} \alpha^{+}\left[J\left(P_{2}\right)\right]=$
1 and $\operatorname{supp} \alpha^{+}\left(P_{3}\right)+\operatorname{supp} \alpha^{+}\left[J\left(P_{3}\right)\right]=4$
Now supp $\alpha^{\times}\left[J\left(P_{n}\right)\right]=\prod_{u \in s_{1}} \operatorname{mult}(u)$

$$
=\operatorname{mult}\left(e_{1}\right) \times \operatorname{mult}\left(e_{2}\right)
$$

$=(n-4)^{(n-4)} \times(n-3) \times(n-4)^{(n-5)} \times(n$ $-3)$
$=(n-4)^{2 n-9} \times(n-3)^{2}$
Hence
$\operatorname{supp} \alpha^{\times}\left(P_{n}\right)+\operatorname{supp} \alpha^{\times}\left[J\left(P_{n}\right)\right]=$
$\left\{\begin{array}{ll}(n-4)^{2 n-9} \times(n-3)^{2}+2^{n-1} & \text { if } n \text { is odd }, n \neq 3 \\ (n-4)^{2 n-9} \times(n-3)^{2}+2^{n-2} & \text { if } n \text { is even, } n \neq 2\end{array}\right.$.
Hence $\quad \operatorname{supp} \alpha^{\times}\left(P_{n}\right)+\operatorname{supp} \alpha^{\times}\left[S\left(P_{n}\right)\right]=$ $\begin{cases}2^{n-1}+2^{2 n-2} & \text { if } n \text { is odd } \\ 2^{n-2}+2^{2 n-2} & \text { if } n \text { is } \text { even }\end{cases}$
$\left\{2^{n-2}+2^{2 n-2}\right.$ if n is even
Theorem. 4: Let $P L\left(P_{n}\right)$ be the paraline graph of P_{n} where ≥ 2. Then
$\operatorname{supp} \alpha^{+}\left(P_{n}\right)+\operatorname{supp} \alpha^{+}\left[P L\left(P_{n}\right)\right]=$
$\left\{\begin{array}{c}6 n-9 \text { if } n \text { is odd } \\ 6 n-10 \text { if } n \text { is even }\end{array}\right.$ and
$\operatorname{supp} \alpha^{\times}\left(P_{n}\right)+\operatorname{supp} \alpha^{\times}\left[P L\left(P_{n}\right)\right]$

$$
=\left\{\begin{array}{c}
2^{n-1}+2^{2 n-4} \quad \text { if } n \text { is odd } \\
5 \times 2^{n-2} \quad \text { if } n \text { is even }
\end{array}\right.
$$

Proof: Let $P L\left(P_{n}\right)$ be the paraline graph of P_{n}, where $n \geq 2$.
$P L\left(P_{n}\right)=P_{2 n-2}$ A paraline graph of a path is a path of even length. Let $e_{1}, e_{2}, \ldots, e_{2 n-2}$ be the vertices of $P L\left(P_{n}\right)$.
Hence $\operatorname{supp} \alpha^{+}\left[P L\left(P_{n}\right)\right]=4 n-7$.
Therefore $\operatorname{supp} \alpha^{+}\left(P_{n}\right)+\operatorname{supp} \alpha^{+}\left[P L\left(P_{n}\right)\right]=$ $\{6 n-9$ if n is odd
$\{6 n-10$ if n is even
Now supp $\alpha^{\times}\left[P L\left(P_{n}\right)\right]=2^{(2 n-2)-2}=2^{2 n-4}$
Therefore $\operatorname{supp} \alpha^{\times}\left(P_{n}\right)+\operatorname{supp} \alpha^{\times}\left[P L\left(P_{n}\right)\right]=$ $\left\{\begin{array}{c}2^{n-1}+2^{2 n-4} \text { if } n \text { is odd } \\ 5 \times 2^{n-2} \text { if } n \text { is even }\end{array}\right.$

Theorem. 5: Let $\overline{P_{n}}$ be the complement graph of P_{n} where $n \geq 2$. Then
$\operatorname{supp} \alpha^{+}\left(\underline{P_{2}}\right)+\operatorname{supp} \alpha^{+}\left(\overline{P_{2}}\right)=1, \operatorname{supp} \alpha^{\times}\left(P_{2}\right)+$ $\operatorname{supp} \alpha^{\times}\left(\overline{P_{2}}\right)=1$,
$\operatorname{supp} \alpha^{+}\left(P_{n}\right)+\operatorname{supp} \alpha^{+}\left(\overline{P_{n}}\right)=$
$\left\{\begin{array}{c}2 n^{2}-9 n+15 \text { if } n \text { is odd } \\ 2 n^{2}-9 n+14 \quad \text { if } n \text { is even, } n \neq 2\end{array}\right.$ and
Now $\operatorname{supp} \alpha^{\times}\left(P_{2}\right)+\operatorname{supp} \alpha^{\times}\left[J\left(P_{2}\right)\right]=$
$1, \operatorname{supp} \alpha^{\times}\left(P_{3}\right)+\operatorname{supp} \alpha^{\times}\left[J\left(P_{3}\right)\right]=4$.
Theorem. 3: Let $S\left(P_{n}\right)$ be the subdivision graph of P_{n}, where $n \geq 2$. Then
$\operatorname{supp} \alpha^{+}\left(P_{n}\right)+\operatorname{supp} \alpha^{+}\left[S\left(P_{n}\right)\right]=$
$\left\{\begin{array}{ll}6 n-6 & \text { if } n \text { is odd } \\ 6 n-7 & \text { if } n \text { is even }\end{array}\right.$ and
$\operatorname{supp} \alpha^{\times}\left(P_{n}\right)+\operatorname{supp} \alpha^{\times}\left[S\left(P_{n}\right)\right]=$
$\begin{cases}2^{n-1}+2^{2 n-2} & \text { if } n \text { is odd } \\ 2^{n-2}+2^{2 n-2} & \text { if } n \text { is even }\end{cases}$
Proof: Let $S\left(P_{n}\right)$ be the subdivision graph of P_{n} where $n \geq 2$. $\quad S\left(P_{n}\right)=P_{2 n-1}$. The subdivision graph of a path is a path of odd length. Let $v_{1}, v_{2}, \ldots, v_{n}, u_{1}, u_{2}, \ldots, u_{n-1}$ be the vertices of $S\left(P_{n}\right)$.
Hence supp $\alpha^{+}\left[S\left(P_{n}\right)\right]=4 n-4$.
Therefore $\operatorname{supp} \alpha^{+}\left(P_{n}\right)+\operatorname{supp} \alpha^{+}\left[S\left(P_{n}\right)\right]=$ $\begin{cases}6 n-6 & \text { if } n \text { is odd } \\ 6 n-7 & \text { if } n \text { is even }\end{cases}$
Now supp $\alpha^{\times}\left[S\left(P_{n}\right)\right]=2^{2 n-2}$
$\operatorname{supp} \alpha^{\times}\left(P_{n}\right)+\operatorname{supp} \alpha^{\times}\left(\overline{P_{n}}\right)=$
$\left\{\begin{array}{c}(n-3)^{2 n-7}(n-2)^{2}+2^{n-1} \text { if } n \text { is odd } \\ (n-3)^{2 n-7}(n-2)^{2}+2^{n-2} \quad \text { if } n \text { is even, } n \neq 2\end{array}\right.$.
Proof: Let $\overline{P_{n}}$ be the complement graph of P_{n} where $n \geq 2$.
$\overline{P_{n}}=J\left(P_{n+1}\right)$.
Let $v_{1}, v_{2}, \ldots, v_{n}$ be the vertices of $\overline{P_{n}}$.
Hence $\operatorname{supp} \alpha^{+}\left(\overline{P_{n}}\right)=2(n+1)^{2}-15(n+1)+$ 30
$=2 n^{2}-11 n+17$
Therefore $\quad \operatorname{supp} \alpha^{+}\left(P_{n}\right)+\operatorname{supp} \alpha^{+}\left(\overline{P_{n}}\right)=$ $\left\{\begin{array}{ll}2 n^{2}-9 n+15 & \text { if } n \text { is odd } \\ 2 n^{2}-9 n+14 & \text { if } n \text { is even }\end{array}\right.$.
Also $\operatorname{supp} \alpha^{+}\left(P_{2}\right)+\operatorname{supp} \alpha^{+}\left(\overline{P_{2}}\right)=1$
Now $\quad \operatorname{supp} \alpha^{\times}\left[\overline{P_{n}}\right]=(n+1-4)^{2(n+1)-9} \times$
$(n+1-3)^{2}$
$=(n-3)^{2 n-7}(n-2)^{2}$
Therefore $\operatorname{supp} \alpha^{\times}\left(P_{n}\right)+\operatorname{supp} \alpha^{\times}\left(\overline{P_{n}}\right)=$ $\begin{cases}(n-3)^{2 n-7}(n-2)^{2}+2^{n-1} & \text { if } n \text { is odd } \\ (n-3)^{2 n-7}(n-2)^{2}+2^{n-2} & \text { if } n \text { is even }\end{cases}$

Also $\operatorname{supp} \alpha^{\times}\left(P_{2}\right)+\operatorname{supp} \alpha^{\times}\left(\overline{P_{2}}\right)=1$.
Theorem. 6: Let $T_{2}\left(P_{n}\right)$ be the semi-total point graph of P_{n} where $n \geq 3$. Then supp $\alpha^{+}\left(P_{n}\right)+$ supp $\alpha^{+}\left[T_{2}\left(P_{n}\right)\right]= \begin{cases}10 n-14 & \text { if } n \text { is odd } \\ 10 n-15 & \text { if } n \text { is even }\end{cases}$
and
$\operatorname{supp} \alpha^{\times}\left(P_{n}\right)+\operatorname{supp} \alpha^{\times}\left[T_{2}\left(P_{n}\right)\right]=$
$\left\{64 \times 16^{n-3}+2^{n-1} \quad\right.$ if n is odd
$\left\{64 \times 16^{n-3}+2^{n-2} \quad\right.$ if n is even
Proof: Let $v_{1}, v_{2}, \ldots, v_{n}$ be the vertices and $e_{i}=v_{i} v_{i+1}, \quad 1 \leq i \leq n-1$ be the edges of the path P_{n}. In $T_{2}\left(P_{n}\right), v_{i}$ is adjacent with $v_{i-1}, v_{i+1}, e_{i-1}, e_{i}$ for $2 \leq i \leq n-3, v_{1}$ is adjacent with v_{2}, e_{1} and v_{n} is adjacent with $v_{n-1}, e_{n-1} . e_{i}$ is adjacent with $v_{i}, v_{i+1}, \quad 1 \leq i \leq n-1$. Then $\operatorname{deg} v_{i}=4,2 \leq i \leq n-1, \operatorname{deg} v_{1}=\operatorname{deg} v_{n}=2$ and $\quad \operatorname{deg} e_{i}=2,1 \leq i \leq n-1 . \quad S_{1}=$ $\left\{e_{1}, e_{2}, \ldots, e_{n-1}\right\}, S_{2}=\left\{v_{1}, e_{2}, e_{3}, \ldots, e_{n-1}\right\} \quad$ and $S_{3}=\left\{v_{1}, e_{2}, e_{3}, \ldots, e_{n-2}, v_{n}\right\}$ are the three maximum independent sets. Consider the set S_{1}. The proof is similar for the sets S_{2} and S_{3}.

$$
\begin{aligned}
\operatorname{supp}\left(e_{1}\right) & =\sum_{v \in N\left(e_{1}\right)} \operatorname{deg} v \\
& =\operatorname{deg} v_{1}+\operatorname{deg} v_{2}=2+4=6
\end{aligned}
$$

$\operatorname{Similarly} \operatorname{supp}\left(e_{n-1}\right)=\sum_{v \in N\left(e_{n-1}\right)} \operatorname{deg} v=6$

$$
\begin{aligned}
\operatorname{supp}\left(e_{2}\right) & =\sum_{v \in N\left(e_{2}\right)} \operatorname{deg} v \\
& =\operatorname{deg} v_{2}+\operatorname{deg} v_{3}=4+4=8
\end{aligned}
$$

Similarly

$$
\operatorname{supp}\left(e_{3}\right)=\operatorname{supp}\left(e_{4}\right)=\cdots=\operatorname{supp}\left(e_{n-2}\right)=8
$$

Hence supp $\alpha^{+}\left[T_{2}\left(P_{n}\right)\right]=\sum_{v \in s_{1}} \operatorname{supp}(v)$

$$
\begin{aligned}
& =6+(n-3) 8+6 \\
& =8 n-12
\end{aligned}
$$

Therefore $\quad \operatorname{supp} \alpha^{+}\left(P_{n}\right)+\operatorname{supp} \alpha^{+}\left[T_{2}\left(P_{n}\right)\right]=$
$\{10 n-14$ if n is odd
$\{10 n-15$ if n is even
Now $\quad \operatorname{supp} \alpha^{\times}\left[T_{2}\left(P_{n}\right)\right]=\prod_{u \in s_{1}} \operatorname{mult}(u)=$ $\operatorname{mult}\left(e_{1}\right) \times \operatorname{mult}\left(e_{2}\right) \times \ldots \times \operatorname{mult}\left(e_{n-1}\right)$

$$
=8 \times 16^{(n-3)} \times 8=64 \times 16^{n-3}
$$

Therefore $\quad p \alpha^{\times}\left(P_{n}\right)+\operatorname{supp} \alpha^{\times}\left[T_{2}\left(P_{n}\right)\right]=$ $\begin{cases}64 \times 16^{n-3}+2^{n-1} & \text { if } n \text { is odd }\end{cases}$
$\left\{64 \times 16^{n-3}+2^{n-2} \quad\right.$ if n is even.
Theorem. 7: Let $T_{1}\left(P_{n}\right)$ be a semi-total line graph of $\quad P_{n} \quad$ where $\quad n \geq 2$. Then $p \alpha^{+}\left(P_{n}\right)+\operatorname{supp} \alpha^{+}\left[T_{1}\left(P_{n}\right)\right]=$
$\{10 n-14$ if n is odd
$\{10 n-15$ if n is even ,
$\operatorname{supp} \alpha^{\times}\left(P_{2}\right)+\operatorname{supp} \alpha^{\times}\left[T_{1}\left(P_{2}\right)\right]=5$ and
$\operatorname{supp} \alpha^{\times}\left(P_{n}\right)+\operatorname{supp} \alpha^{\times}\left[T_{1}\left(P_{n}\right)\right]=$
$\left\{\begin{array}{c}2^{n-1}+1296 \times 16^{n-4} \text { if } n \text { is odd } \\ 2^{n-2}+1296 \times 16^{n-4} \text { if } n \text { is even and } n \neq 2\end{array}\right.$

Proof: Let $v_{1}, v_{2}, \ldots, v_{n}$ be the vertices and $e_{i}=v_{i} v_{i+1}, \quad 1 \leq i \leq n-1$ be the edges of the path P_{n}. In $T_{1}\left(P_{n}\right), v_{i}$ is adjacent with $e_{i-1,}, e_{i}$ for $2 \leq i \leq n-1, v_{1}$ is adjacent with e_{1} and v_{n} is adjacent with e_{n-1}. e_{i} is adjacent with $v_{i}, v_{i+1}, e_{i-1}, e_{i+1}, \quad 2 \leq i \leq n-2, e_{1}$ is adjacent with v_{1}, v_{2} and e_{2} and e_{n-1} is adjacent with v_{n-1}, v_{n} and e_{n-2}. Then $\operatorname{deg} v_{i}=2,2 \leq i \leq n-$ $1, \operatorname{deg} v_{1}=\operatorname{deg} v_{n}=1, \operatorname{deg} e_{1}=\operatorname{deg} e_{n-1}=3$ and $\operatorname{deg} e_{i}=4,2 \leq i \leq n-2 . S=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is the unique maximum independent set.

$$
\begin{aligned}
\operatorname{supp}\left(v_{1}\right) & =\sum_{v \in N\left(v_{1}\right)} \operatorname{deg} v \\
& =\operatorname{deg} e_{1}=3
\end{aligned}
$$

Similarly $\operatorname{supp}\left(v_{n}\right)=3$

$$
\begin{aligned}
\operatorname{supp}\left(v_{2}\right) & =\sum_{v \in N\left(v_{2}\right)} \operatorname{deg} v \\
& =\operatorname{deg} e_{1}+\operatorname{deg} e_{2}=3+4=7
\end{aligned}
$$

Similarly $\operatorname{supp}\left(v_{n-1}\right)=7$

$$
\begin{aligned}
\operatorname{supp}\left(v_{3}\right) & =\sum_{v \in N\left(v_{3}\right)} \operatorname{deg} v \\
& =\operatorname{deg} e_{2}+\operatorname{deg} e_{3}=4+4=8
\end{aligned}
$$

Similarly
$\operatorname{supp}\left(v_{4}\right)=\operatorname{supp}\left(v_{5}\right)=\cdots=\operatorname{supp}\left(v_{n-2}\right)=8$
Hence $\operatorname{supp} \alpha^{+}\left[T_{1}\left(P_{n}\right)\right]=\sum_{v \in S} \operatorname{supp}(v)$
$=3+7+(n-4) 8+7+3=8 n-12$
Therefore $\quad \operatorname{supp} \alpha^{+}\left(P_{n}\right)+\operatorname{supp} \alpha^{+}\left[T_{1}\left(P_{n}\right)\right]=$ $\begin{cases}10 n-14 & \text { if } n \text { is odd } \\ 10 n-15 & \text { if } n \text { is even }\end{cases}$
Now when $n \geq 3$,

$$
\begin{aligned}
& \operatorname{supp} \alpha^{\times}\left[T_{1}\left(P_{n}\right)\right]=\prod_{u \in S} \operatorname{mult}(u) \\
& \quad=\operatorname{mult}\left(v_{1}\right) \times \operatorname{mult}\left(v_{2}\right) \times \ldots \times \operatorname{mult}\left(v_{n}\right) \\
& \quad=3 \times 12 \times 16^{n-4} \times 12 \times 3=1296 \times 16^{n-4}
\end{aligned}
$$

Therefore $\quad \operatorname{supp} \alpha^{\times}\left(P_{n}\right)+\operatorname{supp} \alpha^{\times}\left[T_{1}\left(P_{n}\right)\right]=$ $\left\{\begin{array}{c}2^{n-1}+1296 \times 16^{n-4} \text { if } n \text { is odd } \\ 2^{n-2}+1296 \times 16^{n-4} \quad \text { if } n \text { is even }\end{array}\right.$ when $n=2$, supp $\alpha^{\times}\left[T_{1}\left(P_{n}\right)\right]=4$.
Hence $\operatorname{supp} \alpha^{\times}\left(P_{2}\right)+\operatorname{supp} \alpha^{\times}\left[T_{1}\left(P_{2}\right)\right]=5$.
Theorem. 8: Let $P\left(P_{n}\right)$ be a quasi-total graph of P_{n} where $n \geq 2$. Then
$\operatorname{supp} \alpha^{+}\left(P_{2}\right)+\operatorname{supp} \alpha^{+}\left[P\left(P_{2}\right)\right]=5$,
$\operatorname{supp} \alpha^{+}\left(P_{3}\right)+\operatorname{supp} \alpha^{+}\left[P\left(P_{3}\right)\right]=16$,
$\operatorname{supp} \alpha^{+}\left(P_{n}\right)+\operatorname{supp} \alpha^{+}\left[P\left(P_{n}\right)\right]$
$=\left\{\begin{array}{ll}3 n^{2}-5 n+3 & \text { if } n \text { is odd, } n \neq 3 \\ 3 n^{2}-4 n+2 & \text { if } n \text { is even, } n \neq 2\end{array}\right.$,
$\operatorname{supp} \alpha^{\times}\left(P_{2}\right)+\operatorname{supp} \alpha^{\times}\left[P\left(P_{2}\right)\right]=5$,
$\operatorname{supp} \alpha^{\times}\left(P_{3}\right)+\operatorname{supp} \alpha^{\times}\left[P\left(P_{3}\right)\right]=76$ and
$\operatorname{supp} \alpha^{\times}\left(P_{n}\right)+\operatorname{supp} \alpha^{\times}\left[P\left(P_{n}\right)\right]=$
$\left\{\begin{array}{c}2^{n-1}+432(n-1)^{3 n-8} 4^{n-5} \text { if } n \text { is odd }, n \neq 3 \\ 2^{n-2}+144(n-1)^{3 n-7} 4^{n-4} \text { if } n \text { is even, } n \neq 2\end{array}\right.$
Proof: Let $v_{1}, v_{2}, \ldots, v_{n}$ be the vertices and $e_{i}=v_{i} v_{i+1}, \quad 1 \leq i \leq n-1$ be the edges of the path P_{n}. In $P\left(P_{n}\right), v_{i}$ is non-adjacent with v_{i-1} and v_{i+1} for $2 \leq i \leq n-1, v_{1}$ is nonadjacent with v_{2} and v_{n} is non-adjacent with v_{n-1}. e_{i} is adjacent with v_{i}, v_{i+1}, e_{i-1} and e_{i+1} for $2 \leq i \leq n-2, e_{1}$ is adjacent with v_{1}, v_{2} and e_{2} and e_{n-1} is adjacent with v_{n-1}, v_{n} and e_{n-2}. Then $\operatorname{deg} v_{i}=n-1,1 \leq i \leq n, \operatorname{deg} e_{1}=$ $\operatorname{deg} e_{n-1}=3$ and $\operatorname{deg} e_{i}=4$ for $2 \leq i \leq n-2$.
Case (\boldsymbol{i}): Let n be odd. The independence number of $P\left(P_{n}\right)$ is $\frac{n+1}{2}$. Let $n \geq 5$. To get the maximum support consider the end vertices v_{1}, v_{2} or v_{n-1}, v_{n} with the vertices lying between e_{1} and e_{n-1}. Hence $S_{1}=\left\{v_{1}, v_{2}, e_{3}, e_{5}, \ldots, e_{n-4}, e_{n-2}\right\} \quad$ and $\quad S_{2}=$ $\left\{v_{n-1}, v_{n}, e_{2}, e_{4}, \ldots, e_{n-5}, e_{n-3}\right\}$ are the two maximum independent sets with maximum support. Consider the set S_{1}. The proof is similar to the other set.

$$
\begin{aligned}
\operatorname{supp}\left(v_{1}\right)= & \sum_{v \in N\left(v_{1}\right)} \operatorname{deg} v \\
= & \operatorname{deg} v_{3}+\operatorname{deg} v_{4}+\cdots+\operatorname{deg} v_{n} \\
& +\operatorname{deg} e_{1} \\
= & (n-2)(n-1)+3=n^{2}-3 n+5 \\
\operatorname{supp}\left(v_{2}\right)= & \sum_{v \in N\left(v_{2}\right)} \operatorname{deg} v \\
= & \operatorname{deg} v_{4}+\operatorname{deg} v_{5}+\cdots+\operatorname{deg} v_{n} \\
= & +\operatorname{deg} e_{1}+\operatorname{deg} e_{2} \\
= & n-3)(n-1)+3+4 \\
= & n^{2}-4 n+10 \\
\operatorname{supp}\left(e_{3}\right)= & \sum_{v \in N\left(e_{3}\right)} \operatorname{deg} v \\
= & \operatorname{deg} v_{3}+\operatorname{deg} v_{4}+\operatorname{deg} e_{2}+\operatorname{deg} e_{4} \\
= & (n-1)+(n-1)+4+4=2 n+6
\end{aligned}
$$

Similarly
$\operatorname{supp}\left(e_{5}\right)=\operatorname{supp}\left(e_{7}\right)=\cdots=\operatorname{supp}\left(e_{n-4}\right)$
$\operatorname{supp}\left(e_{n-2}\right)=\sum_{v \in N\left(e_{n-2}\right)}^{=2 n+6} \operatorname{deg} v$
$=\operatorname{deg} e_{n-3}+\operatorname{deg} e_{n-1}+\operatorname{deg} v_{n-2}+\operatorname{deg} v_{n-1}$
$=4+3+(n-1)+(n-1)=2 n+5$
Hence $\operatorname{supp} \alpha^{+}\left[P\left(P_{n}\right)\right]=\sum_{v \in S_{1}} \operatorname{supp}(v)$
$=3 n^{2}-7 n+5$
Therefore supp $\alpha^{+}\left(P_{n}\right)+\operatorname{supp} \alpha^{+}\left[P\left(P_{n}\right)\right]$
$=2 n-2+3 n^{2}-7 n+5$
$=3 n^{2}-5 n+3$
Now supp $\alpha^{+}\left[P\left(P_{3}\right)\right]=12$
Hence supp $\alpha^{+}\left(P_{3}\right)+\operatorname{supp} \alpha^{+}\left[P\left(P_{3}\right)\right]=16$
Similarly supp $\alpha^{\times}\left[P\left(P_{n}\right)\right]=\prod_{u \in S_{1}} \operatorname{mult}(u)$
$=\operatorname{mult}\left(v_{1}\right) \times \operatorname{mult}\left(v_{2}\right) \times \operatorname{mult}\left(e_{3}\right) \times \operatorname{mult}\left(e_{5}\right)$
$\times \ldots \times \operatorname{mult}\left(e_{n-4}\right) \times \operatorname{mult}\left(e_{n-2}\right)$
$=3(n-1)^{n-2} \times 12(n-1)^{n-3}[16(n-$

1) $\left.)^{2}\right]^{\left(\frac{n-5}{2}\right)} \times 12(n-1)^{2}$
$=432(n-1)^{3 n-8} 4^{n-5}$
Therefore $\quad \operatorname{supp} \alpha^{\times}\left(P_{n}\right)+\operatorname{supp} \alpha^{\times}\left[P\left(P_{n}\right)\right]=$ $2^{n-1}+432(n-1)^{3 n-8} 4^{n-5}$.
Now supp $\alpha^{\times}\left[P\left(P_{3}\right)\right]=72$
Hence supp $\alpha^{\times}\left(P_{3}\right)+\operatorname{supp} \alpha^{\times}\left[P\left(P_{3}\right)\right]=76$
Case (ii): Let n be even and $n \geq 4$. Let $S_{3}=$ $\left\{v_{1}, v_{2}, e_{3}, e_{5}, \ldots, e_{n-3}, e_{n-1}\right\} \quad$ and $\quad S_{4}=$ $\left\{v_{n-1}, v_{n}, e_{1}, e_{3}, \ldots, e_{n-5}, e_{n-3}\right\}$ are two maximum independent sets. Consider the set S_{3}. The proof is similar to the other set. From case (i)
$\operatorname{supp}\left(v_{1}\right)=n^{2}-3 n+5$
$\operatorname{supp}\left(v_{2}\right)=n^{2}-4 n+10$
$\operatorname{supp}\left(e_{3}\right)=2 n+6$ and $\operatorname{supp}\left(e_{5}\right)=\operatorname{supp}\left(e_{7}\right)=$ $\cdots=\operatorname{supp}\left(e_{n-3}\right)=2 n+6$

$$
\begin{aligned}
\operatorname{supp}\left(e_{n-1}\right) & =\sum_{v \in N\left(e_{n-1}\right)} \operatorname{deg} v \\
& =\operatorname{deg} e_{n-2}+\operatorname{deg} v_{n-1}+\operatorname{deg} v_{n} \\
& =4+(n-1)+(n-1)=2 n+2
\end{aligned}
$$

Hence

$$
\begin{aligned}
\operatorname{supp} \alpha^{+}\left[P\left(P_{n}\right)\right] & =\sum_{v \in S_{3}} \operatorname{supp}(v) \\
& =3 n^{2}-6 n+5
\end{aligned}
$$

Therefore $\operatorname{supp} \alpha^{+}\left(P_{n}\right)+\operatorname{supp} \alpha^{+}\left[P\left(P_{n}\right)\right]=2 n-$ $3+3 n^{2}-6 n+5$
$=3 n^{2}-4 n+2$
Now supp $\alpha^{+}\left[P\left(P_{2}\right)\right]=4$
Hence supp $\alpha^{+}\left(P_{2}\right)+\operatorname{supp} \alpha^{+}\left[P\left(P_{2}\right)\right]=5$
Now supp $\alpha^{\times}\left[P\left(P_{n}\right)\right]=\prod_{u \in S_{3}}$ mult(u)
$=\operatorname{mult}\left(v_{1}\right) \times \operatorname{mult}\left(v_{2}\right) \times \operatorname{mult}\left(e_{3}\right) \times \operatorname{mult}\left(e_{5}\right)$
$\times \ldots \times \operatorname{mult}\left(e_{n-3}\right) \times \operatorname{mult}\left(e_{n-1}\right)$
$=3(n-1)^{n-2} \times 12(n-1)^{n-3}[16(n-$

1) $\left.{ }^{2}\right]^{\left(\frac{n-4}{2}\right)} \times 4(n-1)^{2}$
$=144(n-1)^{3 n-7} 4^{n-4}$
Therefore $\quad \operatorname{supp} \alpha^{\times}\left(P_{n}\right)+\operatorname{supp} \alpha^{\times}\left[P\left(P_{n}\right)\right]=$ $2^{n-2}+144(n-1)^{3 n-7} 4^{n-4}$
Now supp $\alpha^{\times}\left[P\left(P_{2}\right)\right]=4$
Hence supp $\alpha^{\times}\left(P_{2}\right)+\operatorname{supp} \alpha^{\times}\left[P\left(P_{2}\right)\right]=5$.
Theorem. 9: Let $Q\left(P_{n}\right)$ be a quasi-vertex-total graph of P_{n} where $n \geq 2$. Then
$\operatorname{supp} \alpha^{+}\left(P_{2}\right)+\operatorname{supp} \alpha^{+}\left[Q\left(P_{2}\right)\right]=3$,
$\operatorname{supp} \alpha^{+}\left(P_{n}\right)+\operatorname{supp} \alpha^{+}\left[Q\left(P_{n}\right)\right]=$
$\left\{2 n^{2}+6 n-12\right.$ if n is odd
$\left\{2 n^{2}+5 n-14\right.$ if n is even, $n \neq 2$,
supp $\alpha^{\times}\left(P_{2}\right)+\operatorname{supp} \alpha^{\times}\left[Q\left(P_{2}\right)\right]=2$, and
$\operatorname{supp} \alpha^{\times}\left(P_{n}\right)+\operatorname{supp} \alpha^{\times}\left[Q\left(P_{n}\right)\right]=$
$\left\{\begin{array}{c}2^{n-1}+144 n^{2}(n+1)^{2 n-4} 4^{n-5} \text { if } n \text { is odd } \\ 2^{n-2}+432 n(n+1)^{2 n-4} 4^{n-6} \quad \text { if } n \text { is even } n \neq 2\end{array}\right.$
Proof: Let $v_{1}, v_{2}, \ldots, v_{n}$ be the vertices and $e_{i}=v_{i} v_{i+1}, \quad 1 \leq i \leq n-1$ be the edges of the path P_{n}. In $\mathrm{Q}\left(P_{n}\right)$, any two $v_{i}{ }^{\prime} s$ are adjacent to each other for $1 \leq i \leq n$. $\quad e_{i} \quad$ is adjacent with v_{i}, v_{i+1}, e_{i-1} and e_{i+1} for $2 \leq i \leq n-2$, e_{1} is adjacent with v_{1}, v_{2} and e_{2} and e_{n-1} is adjacent with v_{n-1}, v_{n} and e_{n-2}. Then $\operatorname{deg} v_{i}=n+1,2 \leq$ $i \leq n-1, \operatorname{deg} v_{1}=\operatorname{deg} v_{n}=n, \quad \operatorname{deg} e_{i}=$ 4 for $2 \leq i \leq n-2$ and $\operatorname{deg} e_{1}=\operatorname{deg} e_{n-1}=3$.
Case (\boldsymbol{i}): Let n be odd. The independence number of $Q\left(P_{n}\right)$ is $\frac{n+1}{2}$. There are $S_{\frac{n+1}{2}}$ maximum independent sets with maximum support. Consider the set $S_{1}=\left\{v_{1}, e_{2}, e_{4}, e_{6}, \ldots, e_{n-3}, e_{n-1}\right\}$. The proof is similar to the other sets.

$$
\begin{aligned}
\operatorname{supp}\left(v_{1}\right)= & \sum_{v \in N\left(v_{1}\right)} \operatorname{deg} v \\
= & \operatorname{deg} v_{2}+\operatorname{deg} v_{3}+\cdots+\operatorname{deg} v_{n-1} \\
& +\operatorname{deg} v_{n}+\operatorname{deg} e_{1} \\
= & (n-2)(n+1)+n+3=n^{2}+1 \\
\operatorname{supp}\left(e_{2}\right)= & \sum_{v \in N\left(e_{2}\right)} \operatorname{deg} v \\
= & \operatorname{deg} v_{2}+\operatorname{deg} v_{3}+\operatorname{deg} e_{1}+\operatorname{deg} e_{3} \\
= & (n+1)+(n+1)+3+4=2 n+9
\end{aligned}
$$

$$
\operatorname{supp}\left(e_{4}\right)=\sum_{v \in N\left(e_{4}\right)} \operatorname{deg} v
$$

$$
=\operatorname{deg} v_{4}+\operatorname{deg} v_{5}+\operatorname{deg} e_{3}+\operatorname{deg} e_{5}
$$

$$
=(n+1)+(n+1)+4+4=2 n+10
$$

Similarly

$$
\begin{aligned}
\operatorname{supp}\left(e_{6}\right)= & \operatorname{supp}\left(e_{8}\right)=\cdots=\operatorname{supp}\left(e_{n-3}\right) \\
& =2 n+10 \\
\operatorname{supp}\left(e_{n-1}\right)= & \sum_{v \in N\left(e_{n-1}\right)} \operatorname{deg} v \\
= & \operatorname{deg} e_{n-2}+\operatorname{deg} v_{n-1}+\operatorname{deg} v_{n} \\
= & 4+(n+1)+n=2 n+5
\end{aligned}
$$

Hence $\operatorname{supp} \alpha^{+}\left[Q\left(P_{n}\right)\right]=\sum_{v \in S_{1}} \operatorname{supp}(v)$
$=n^{2}+1+2 n+9+(2 n+10)\left(\frac{n-5}{2}\right)+2 n+5$ $=2 n^{2}+4 n-10$
Therefore $\quad \operatorname{supp} \alpha^{+}\left(P_{n}\right)+\operatorname{supp} \alpha^{+}\left[Q\left(P_{n}\right)\right]=$ $2 n^{2}+6 n-12$
Now supp $\alpha^{\times}\left[Q\left(P_{n}\right)\right]=\prod_{u \in S_{1}} \operatorname{mult}(u)$
$=\operatorname{mult}\left(v_{1}\right) \times \operatorname{mult}\left(e_{2}\right) \times \operatorname{mult}\left(e_{4}\right) \times \ldots$ $\times \operatorname{mult}\left(e_{n-3} \times \operatorname{mult}\left(e_{n-1}\right)\right.$
$=3 n(n+1)^{n-2} \times 12(n+1)^{2}\left[16(n+1)^{2}\right]^{\left(\frac{n-5}{2}\right)}$ $\times 4 n(n+1)$
$=144 n^{2}(n+1)^{2 n-4} 4^{n-5}$
Therefore $\quad \operatorname{supp} \alpha^{\times}\left(P_{n}\right)+\operatorname{supp} \alpha^{\times}\left[Q\left(P_{n}\right)\right]=$ $2^{n-1}+144 n^{2}(n+1)^{2 n-4} 4^{n-5}$.

Case (ii): Let n be even. The independence number of $Q\left(P_{n}\right)$ is $\frac{n}{2}$. To get the maximum support to choose the end vertices v_{1} or v_{n} with $e_{2}, e_{4}, \ldots, e_{n-2}$, otherwise, choose any $v_{i}^{\prime} s$ between v_{1} and v_{n} with $e_{i}^{\prime} s$ which are non-adjacent between e_{1} and e_{n} with e_{1} or e_{n} since $v_{i}^{\prime} s$ have maximum support than $e_{i}{ }^{\prime} s$. Consider the set $S_{2}=$ $\left\{v_{1}, e_{2}, e_{4}, \ldots, e_{n-4}, e_{n-2}\right\}$. The proof is similar to the other sets. From case (i),
$\operatorname{supp}\left(v_{1}\right)=n^{2}+1$
$\operatorname{supp}\left(e_{2}\right)=2 n+9$
$\operatorname{supp}\left(e_{4}\right)=\operatorname{supp}\left(e_{6}\right)=\cdots=\operatorname{supp}\left(e_{n-4}\right)$

$$
=2 n+10
$$

And $\operatorname{supp}\left(e_{n-2}\right)=2 n+9$
Hence supp $\alpha^{+}\left[Q\left(P_{n}\right)\right]=\sum_{v \in S_{2}} \operatorname{supp}(v)$
$=\left(n^{2}+1\right)+(2 n+9)+(2 n+10)\left(\frac{n-6}{2}\right)+$
$(2 n+9)$
$=2 n^{2}+3 n-11$
Therefore $\operatorname{supp} \alpha^{+}\left(P_{n}\right)+\operatorname{supp} \alpha^{+}\left[Q\left(P_{n}\right)\right]=2 n-$ $3+2 n^{2}+3 n-11$
$=2 n^{2}+5 n-14$
Now when $=2$, supp $\alpha^{+}\left[Q\left(P_{n}\right)\right]=2$
Hence $\operatorname{supp} \alpha^{+}\left(P_{2}\right)+\operatorname{supp} \alpha^{+}\left[Q\left(P_{2}\right)\right]=3$.
Also $\alpha^{\times}\left[Q\left(P_{n}\right)\right]=\prod_{u \in S_{2}} \operatorname{mult}(u)$
$=\operatorname{mult}\left(v_{1}\right) \times \operatorname{mult}\left(e_{2}\right) \times \operatorname{mult}\left(e_{4}\right) \times \ldots$

$$
\times \operatorname{mult}\left(e_{n-4}\right) \times \operatorname{mult}\left(e_{n-2}\right)
$$

$=3 n(n+1)^{n-2} \times 12(n+1)^{2}\left[16(n+1)^{2}\right]^{\left(\frac{n-6}{2}\right)}$
$\times 12(n+1)^{2}$
$=432 n(n+1)^{2 n-4} 4^{n-6}$
Therefore $\operatorname{supp} \alpha^{\times}\left(P_{n}\right)+\operatorname{supp} \alpha^{\times}\left[Q\left(P_{n}\right)\right]=$ $2^{n-2}+432 n(n+1)^{2 n-4} 4^{n-6}$.
Now when $=2$, supp $\alpha^{\times}\left[Q\left(P_{n}\right)\right]=2$
Hence $\operatorname{supp} \alpha^{\times}\left(P_{2}\right)+\operatorname{supp} \alpha^{\times}\left[Q\left(P_{2}\right)\right]=2$.
Theorem. 10: Let $P_{n} \bar{P}_{n}$ be a complementary prism of P_{n}, where $n \geq 2$. Then
$\operatorname{supp} \alpha^{+}\left(P_{2}\right)+\operatorname{supp} \alpha^{+}\left(P_{2} \bar{P}_{2}\right)=$
6, supp $\alpha^{+}\left(P_{3}\right)+\operatorname{supp} \alpha^{+}\left(P_{3} \bar{P}_{3}\right)=$
16, $\operatorname{supp} \alpha^{+}\left(P_{4}\right)+\operatorname{supp} \alpha^{+}\left(P_{4} \bar{P}_{4}\right)=29$,
$\operatorname{supp} \alpha^{+}\left(P_{n}\right)+\operatorname{supp} \alpha^{+}\left(P_{n} \bar{P}_{n}\right)=$
$\left\{\begin{array}{c}\frac{5}{2} n^{2}-\frac{11}{2} n+11 \text { if } n \text { is odd, } n \neq 3 \\ \frac{5}{2} n^{2}-6 n+14 \text { if } n \text { is even, } n \neq 2 \text { and } n \neq 4\end{array}\right.$
$\operatorname{supp} \alpha^{\times}\left(P_{2}\right)+\operatorname{supp} \alpha^{\times}\left(P_{2} \bar{P}_{2}\right)=5$,
$\operatorname{supp} \alpha^{\times}\left(P_{3}\right)+\operatorname{supp} \alpha^{\times}\left(P_{3} \bar{P}_{3}\right)=76$,
$\operatorname{supp} \alpha^{\times}\left(P_{4}\right)+\operatorname{supp} \alpha^{\times}\left(P_{4} \bar{P}_{4}\right)=6565$ and
$\operatorname{supp} \alpha^{\times}\left(P_{n}\right)+\operatorname{supp} \alpha^{\times}\left(P_{n} \bar{P}_{n}\right)=$
$\left\{\begin{array}{c}2^{n-1}+(n-2)^{\frac{5 n-17}{2}} \times 2 \times 3^{n-1} \times(n-1)^{3} \text { if } n \text { is odd, } n \neq 3 \\ 2^{n-2}+(n-2)^{\frac{5 n}{2}-11} \times 3^{n} \times(n-1)^{5} \text { if } n \text { is even, } n \neq 2 \text { and } n \neq 4\end{array}\right.$.
Proof: Let $v_{1}, v_{2}, \ldots, v_{n}$ be the vertices of the path P_{n} and $\bar{v}_{1}, \bar{v}_{2}, \ldots, \bar{v}_{n}$ be the vertices in the copy of \bar{P}_{n}. In $P_{n} \bar{P}_{n}, \bar{v}_{i}$ is non-adjacent with \bar{v}_{i-1} and \bar{v}_{i+1} for $2 \leq i \leq n-1, \bar{v}_{1}$ is non-adjacent with \bar{v}_{2} and
\bar{v}_{n} is non-adjacent with $\bar{v}_{n-1} . v_{i}$ is adjacent with v_{i-1}, v_{i+1} and \bar{v}_{i} for $2 \leq i \leq n-1, v_{1}$ is adjacent with \bar{v}_{1} and v_{2} similarly v_{n} is adjacent with \bar{v}_{n} and v_{n-1}. Then $\operatorname{deg} \bar{v}_{i}=n-2,2 \leq i \leq$ $n-1, \operatorname{deg} \bar{v}_{1}=\operatorname{deg} \bar{v}_{n}=n-1, \quad \operatorname{deg} v_{i}=3$, $2 \leq i \leq n-1$ and $\operatorname{deg} v_{1}=\operatorname{deg} v_{n}=2$.
Case (i): Suppose n is odd and $n \geq 5$. In this case the end vertices namely \bar{v}_{1} and \bar{v}_{n} have the maximum support when compared with other v_{i} 's for $2 \leq i \leq n-1$. So choose either \bar{v}_{1}, \bar{v}_{2} or $\bar{v}_{n-1}, \bar{v}_{n}$ vertices with $v_{3}, v_{5}, \ldots, v_{n}$ or $v_{1}, v_{3}, \ldots, v_{n-2}$ to get the maximum support. Hence $S_{1}=\left\{\bar{v}_{1}, \bar{v}_{2}, v_{3}, v_{5}, \ldots, v_{n}\right\} \quad$ and $\quad S_{2}=$ $\left\{\bar{v}_{n-1}, \bar{v}_{n}, v_{1}, v_{3}, \ldots, v_{n-2}\right\}$ are the only two maximum independent sets of $P_{n} \bar{P}_{n}$. Consider the set S_{1}. The proof is similar to the other set.

$$
\begin{aligned}
\operatorname{supp}\left(\bar{v}_{1}\right)= & \sum_{v \in N\left(\bar{v}_{1}\right)} \operatorname{deg} v \\
= & \operatorname{deg} \bar{v}_{3}+\operatorname{deg} \bar{v}_{4}+\cdots+\operatorname{deg} \bar{v}_{n} \\
& \quad+\operatorname{deg} v_{1} \\
= & (n-2)+(n-2)+\cdots+(n-2) \\
& +(n-1)+2 \\
= & (n-2)(n-3)+(n-1)+2 \\
= & n^{2}-4 n+7
\end{aligned}
$$

$$
\operatorname{supp}\left(\bar{v}_{2}\right)=\sum_{v \in N\left(\bar{v}_{2}\right)} \operatorname{deg} v
$$

$$
=\operatorname{deg} \bar{v}_{4}+\operatorname{deg} \bar{v}_{5}+\operatorname{deg} \bar{v}_{6}+\cdots
$$

$$
+\operatorname{deg} \bar{v}_{n-1}+\operatorname{deg} \bar{v}_{n}+\operatorname{deg} v_{2}
$$

$$
=(n-2)+(n-2)+\cdots+(n-2)
$$

$$
+(n-1)+3
$$

$$
=(n-4)(n-2)+(n-1)+3
$$

$$
=n^{2}-5 n+10
$$

$$
\operatorname{supp}\left(v_{3}\right)=\sum_{v \in N\left(v_{3}\right)} \operatorname{deg} v
$$

$$
=\operatorname{deg} v_{2}+\operatorname{deg} v_{4}+\operatorname{deg} \bar{v}_{3}
$$

Similarly

$$
=3+3+(n-2)=n+4
$$

$$
\begin{aligned}
\operatorname{supp}\left(v_{5}\right)= & \operatorname{supp}\left(v_{7}\right)=\cdots=\operatorname{supp}\left(v_{n-2}\right) \\
& =n+4 \\
\operatorname{supp}\left(v_{n}\right) & =\sum_{v \in N\left(v_{n}\right)} \operatorname{deg} v \\
& =\operatorname{deg} v_{n-1}+\operatorname{deg} \bar{v}_{n} \\
& =3+(n-1)=n+2
\end{aligned}
$$

Hence $\operatorname{supp} \alpha^{+}\left(P_{n} \bar{P}_{n}\right)=\sum_{v \in S_{1}} \operatorname{supp}(v)=\frac{5}{2} n^{2}-$ $\frac{15}{2} n+13$
Therefore $\quad \operatorname{supp} \alpha^{+}\left(P_{n}\right)+\operatorname{supp} \alpha^{+}\left(P_{n} \bar{P}_{n}\right)=$ $\frac{5}{2} n^{2}-\frac{11}{2} n+11$
Now when $n=3 \operatorname{supp} \alpha^{+}\left(P_{n} \bar{P}_{n}\right)=12$
Hence supp $\alpha^{+}\left(P_{3}\right)+\operatorname{supp} \alpha^{+}\left(P_{3} \bar{P}_{3}\right)=16$
Now supp $\alpha^{\times}\left(P_{n} \bar{P}_{n}\right)=\prod_{u \in S_{1}} \operatorname{mult}(u)$
$=\operatorname{mult}\left(\bar{v}_{1}\right) \times \operatorname{mult}\left(\bar{v}_{2}\right) \times \operatorname{mult}\left(v_{3}\right) \times \operatorname{mult}\left(v_{5}\right)$
$\times \ldots \times \operatorname{mult}\left(v_{n}\right)$

$$
=(n-2)^{n-3} \times 2(n-1)(n-2)^{n-4} \times
$$

$$
3(n-1)[9(n-2)]^{\left(\frac{n-3}{2}\right)} \times 3(n-1)
$$

$=(n-2)^{\frac{5 n-17}{2}} \times 2 \times 3^{n-1} \times(n-1)^{3}$
Therefore $\quad \operatorname{supp} \alpha^{\times}\left(P_{n}\right)+\operatorname{supp} \alpha^{\times}\left(P_{n} \bar{P}_{n}\right)=$ $2^{n-1}+(n-2)^{\frac{5 n-17}{2}} \times 2 \times 3^{n-1} \times(n-1)^{3}$
Now when $n=3 \operatorname{supp} \alpha^{\times}\left(P_{n} \bar{P}_{n}\right)=72$
Hence $\operatorname{supp} \alpha^{\times}\left(P_{3}\right)+\operatorname{supp} \alpha^{\times}\left(P_{3} \bar{P}_{3}\right)=76$.
Case (ii): Let n be even and $n \geq 6 . S_{3}=$ $\left\{\bar{v}_{2}, \bar{v}_{3}, v_{1}, v_{4}, v_{6}, \ldots, v_{n}\right\} \quad$ and $S_{4}=\left\{\bar{v}_{n-2}, \bar{v}_{n-1}, v_{n}, v_{1}, v_{3}, \ldots, v_{n-3}\right\}$ are the only two maximum independent sets of $P_{n} \bar{P}_{n}$. Consider the set S_{3}. The proof is similar to the other set.

$$
\begin{aligned}
\operatorname{supp}\left(\bar{v}_{2}\right)= & \sum_{v \in N\left(\bar{v}_{2}\right)} \operatorname{deg} v \\
= & \operatorname{deg} \bar{v}_{4}+\operatorname{deg} \bar{v}_{5}+\cdots+\operatorname{deg} \bar{v}_{n} \\
& \quad+\operatorname{deg} v_{2} \\
= & (n-2)+(n-2)+\cdots+(n-2) \\
& \quad+(n-1)+3 \\
= & (n-4)(n-2)+(n-1)+3 \\
= & n^{2}-5 n+10
\end{aligned}
$$

$$
\operatorname{supp}\left(\bar{v}_{3}\right)=\sum_{v \in N\left(\bar{v}_{3}\right)} \operatorname{deg} v
$$

$$
=\operatorname{deg} \bar{v}_{1}+\operatorname{deg} \bar{v}_{5}+\operatorname{deg} \bar{v}_{6}+\cdots
$$

$$
+\operatorname{deg} \bar{v}_{n}+\operatorname{deg} v_{3}
$$

$$
=(n-1)+(n-2)+(n-2)+\cdots
$$

$$
+(n-2)+(n-1)+3
$$

$$
=n^{2}-5 n+11
$$

$$
\operatorname{supp}\left(v_{1}\right)=\sum_{v \in N\left(v_{1}\right)} \operatorname{deg} v
$$

$$
=\operatorname{deg} v_{2}+\operatorname{deg} \bar{v}_{1}
$$

$$
=3+(n-1)=n+2
$$

$\operatorname{supp}\left(v_{4}\right)=\sum_{v \in N\left(v_{4}\right)} \operatorname{deg} v$

$$
=\operatorname{deg} v_{3}+\operatorname{deg} v_{5}+\operatorname{deg} \bar{v}_{4}
$$

$$
=3+3+n-2=n+4
$$

Similarly

$$
\operatorname{supp}\left(v_{6}\right)=\operatorname{supp}\left(v_{8}\right)=\cdots=
$$

$\operatorname{supp}\left(v_{n-2}\right)=n+4$

$$
\begin{aligned}
\operatorname{supp}\left(v_{n}\right) & =\sum_{v \in N\left(v_{n}\right)} \operatorname{deg} v \\
& =\operatorname{deg} v_{n-1}+\operatorname{deg} \bar{v}_{n} \\
& =3+(n-1)=n+2
\end{aligned}
$$

Hence $\operatorname{supp} \alpha^{+}\left(P_{n} \bar{P}_{n}\right)=\sum_{v \in S_{3}} \operatorname{supp}(v)$

$$
=\frac{5}{2} n^{2}-8 n+17
$$

Therefore $\quad \operatorname{supp} \alpha^{+}\left(P_{n}\right)+\operatorname{supp} \alpha^{+}\left(P_{n} \bar{P}_{n}\right)=$ $\frac{5}{2} n^{2}-6 n+14$
Now when $=2 \operatorname{supp} \alpha^{+}\left(P_{n} \bar{P}_{n}\right)=5$. Hence $\operatorname{supp} \alpha^{+}\left(P_{2}\right)+\operatorname{supp} \alpha^{+}\left(P_{2} \bar{P}_{2}\right)=6$
when $=4 \quad \operatorname{supp} \alpha^{+}\left(P_{n} \bar{P}_{n}\right)=24$. Hence $\operatorname{supp} \alpha^{+}\left(P_{4}\right)+\operatorname{supp} \alpha^{+}\left(P_{4} \bar{P}_{4}\right)=29$

$$
\begin{aligned}
& \text { Also supp } \alpha^{\times}\left(P_{n} \bar{P}_{n}\right)=\prod_{u \in S_{3}} \operatorname{mult}(u) \\
& =\operatorname{mult}\left(\bar{v}_{2}\right) \times \operatorname{mult}\left(\bar{v}_{3}\right) \times \operatorname{mult}\left(v_{1}\right) \times \operatorname{mult}\left(v_{4}\right) \\
& \\
& \times \operatorname{mult}\left(v_{6}\right) \times \ldots \times \operatorname{mult}\left(v_{n}\right)
\end{aligned} \quad \begin{aligned}
& =(n-2)^{n-4} \times 3(n-1)(n-2)^{n-5} \times 3(n-1)^{2} \\
& \quad \times 3(n-1)[9(n-2)]^{\left(\frac{n-4}{2}\right)} \times 3(n-1) \\
& =(n-2)^{\frac{5 n}{2}-11} \times 3^{n} \times(n-1)^{5}
\end{aligned}
$$

Therefore $\quad \operatorname{supp} \alpha^{\times}\left(P_{n}\right)+\operatorname{supp} \alpha^{\times}\left(P_{n} \bar{P}_{n}\right)=$
$2^{n-2}+(n-2)^{\frac{5 n}{2}-11} \times 3^{n} \times(n-1)^{5}$
Now when $=2 \operatorname{supp} \alpha^{\times}\left(P_{n} \bar{P}_{n}\right)=4$. Hence $\operatorname{supp} \alpha^{\times}\left(P_{2}\right)+\operatorname{supp} \alpha^{\times}\left(P_{2} \bar{P}_{2}\right)=5$
when $=4 \operatorname{supp} \alpha^{\times}\left(P_{n} \bar{P}_{n}\right)=6561$. Hence $\operatorname{supp} \alpha^{\times}\left(P_{4}\right)+\operatorname{supp} \alpha^{\times}\left(P_{4} \bar{P}_{4}\right)=6565$.

Conclusion:

In this paper, Nordhaus-Gaddum type relations on the open support independence number of some path related graphs under addition and multiplication are studied.

Authors' declaration:

- Conflicts of Interest: None.
- Ethical Clearance: The project was approved by the local ethical committee at The Madurai Diraviyam Thayumanavar Hindu College, India.

Authors' contributions:

This work was carried out in collaboration between the authors. Mary Vithya T conceived of the presented idea and developed the theory through discussions with Murugan K. All authors read and approved the final manuscript.

References:

1. Omran AA, Oda HH. Hn Domination in Graphs. Baghdad Sci J. 2019; 16(1): 242-247. http://dx.doi.org/10.21123/bsj.2019.16.1(Suppl.). 024 $\underline{2}$
2. Mitlif RJ, AL-Harere MN, Sadiq FA. Variant Domination Types for a Complete h-ary Tree. Baghdad Sci J. 2021; 18(1(Suppl.)): 0797. https://doi.org/10.21123/bsj.2021.18.1(Suppl.). 0797
3. Mortosa OS, Cappelle MR. k-Independence on Complementary Prism Graphs. Mat Contemp. 2021; 48: 211-220. http://doi.org/10.21711/231766362021/rmc4821
4. Balamurugan S, Anitha M, Aristotle P, Karnan C. A Note on Open Support of a Graph under Addition I. Int J Math Trends Technol. 2019; 65(5): 110-114. https://doi.org/10.14445/22315373/IJMTTV65I5P516
5. Balamurugan S, Anitha M, Aristotle P, Karnan C. A Note on Open Support of a Graph under Addition II. Int J Math Trends Technol. 2019; 65(5): 115-
6. https://doi.org/10.14445/22315373/IJMTTV65I5P517
7. Balamurugan S, Anitha M, Aristotle P, Karnan C. Open Support of a Graph under Multiplication. Int J Math. Trends Technol. 2019; 65(5): 134-138. https://www.ijmttjournal.org/Volume-65/Issue-5/IJMTT-V65I5P521.pdf
8. Vithya TM, Murugan K. Open Support Independence Number of Some Standard Graphs Under Addition and Multiplication. Adv Appl Math Sci. 2022 July; 21(9): 4887-4902. https://www.mililink.com/upload/article/1056470343 aams_vol_219_july_2022_a1_p4871-
4885_t._mary_vithya_and_k._murugan.pdf
9. Bagga J, Beineke L. New Results and Open Problems in Line Graphs. AKCE Int J Graphs Comb. 2022; 19(3):

182-190.
https://doi.org/10.1080/09728600.2022.2093146
9. Babikir A, Dettlaff M, Micheal A. Henning, Magdalena Lamanska. Independent Domination Subdivision in Graphs. Graphs Comb. 2021 March; 37: 691-709. https://doi.org/10.1007/s00373-020-02269-3
10. Barbosa RM, Cappelle MR, Coelho EM. Maximal Independent Sets in Complementary Prism Graphs. Ars Comb 2018; 137: 211-220. http://doi.org/10.21711/231766362021/rmc4821

علاقات من نوع نوردهاوس-جادوم في عدد استقلالية الدعم المفتوح لبعض الرسوم البيانية ذات الصلة بالمسار
تصت الجمع والضرب
تـ .ماري فيثيا* ك .مورغان

قسم الرياضيات ، كلية مادور اي دير افيام تايومانافار الهندوسية ، تيرونلفيلي ، تاميل نادو ، الهند. الخلاصة:
في هذا البحث ، تمت در اسة العلاقات من نوع نوردهاوس - جادوم في عدد استقالية الاعم المفتوح لبعض الرسوم البيانية المشتقة من الرسوم البيانية المتعلقة بالمسار تحت الجمع والضرب.
(الكلمات الرئيسية: الرسوم البيانية المشنقة، علاقات نوع نوردهاوس - جادوم، عدد استقالل الاعم المنتوح،عدد استفلال الاعم المفتوح تحت الجمع، عدد استقلال الدعم المفتوح تحت الضرب.

