Nordhaus-Gaddum Type Relations on Open Support Independence Number of Some Path Related Graphs Under Addition and Multiplication

T. MARY VITHYA * 💿 K. MURUGAN 💿

Department of Mathematics, The Madurai Diraviyam Thayumanavar Hindu College, Tirunelveli, Tamil Nadu, India. *Corresponding author: <u>maryvithya@gmail.com</u> E-mail address: <u>murugan@mdthinducollege.org</u>

ICAAM= International Conference on Analysis and Applied Mathematics 2022.

Received 20/1/2023, Revised 13/2/2023, Accepted 14/2/2023, Published 4/3/2023

This work is licensed under a <u>Creative Commons Attribution 4.0 International License</u>.

Abstract:

(cc)

In this paper, Nordhaus-Gaddum type relations on open support independence number of some derived graphs of path related graphs under addition and multiplication are studied.

Keywords: Derived graphs, Nordhaus-Gaddum type relations, Open support independence number, Open support independence number under addition, Open support independence number under multiplication.

Introduction:

Graphs considered in this paper are finite, undirected, and without loops or multiple edges¹. Let G = (V, E) be a graph with p vertices and qedges. For each vertex $v \in V$, the open neighborhood² of v is the set N(v) containing all the vertices u adjacent to v. In a graph G, an independent set is a subset S of V(G) such that no two vertices in S are adjacent. A maximum independent set is an independent set³ of maximum size.

Recently the concept of open support of a graph under addition was introduced by Balamurugan *et al.*⁴ and further studied in ⁵. Open support of a graph under multiplication was introduced in ⁶. Open support independence number of a graph under addition and multiplication was introduced in ⁷. In this paper, Nordhaus-Gaddum type relations on open support independence number of some derived graphs of path related graphs under addition and multiplication are studied. The following definitions are necessary for the present study.

Definition. 1: Let G = (V, E) be a graph. A subset *S* of *V* is called an independent set of *G* if no two vertices in *S* are adjacent in *G*.

Definition. 2: An independent set 'S' is maximum in *G* if *G* has no independent set S' with |S'| > |S|.

Definition. 3: The number of vertices in a maximum independent set of *G* is called the independence number of *G* and is denoted by $\alpha(G)$. **Definition. 4:** Let G = (V, E) be a graph. An open support of a vertex *v* under addition is defined by $\sum_{u \in N(v)} deg u$ and is denoted by *supp* (*v*).

Definition. 5: Let G = (V, E) be a graph. Open support of the graph *G* under addition is defined by $\sum_{v \in V(G)} supp(v)$ and is denoted by supp(G).

Definition. 6: Let G = (V, E) be a graph. An open support of a vertex v under multiplication is defined by $\prod_{u \in N(v)} deg u$ and is denoted by *mult* (v).

Definition. 7: Let G = (V, E) be a graph. Open support of the graph G under multiplication is defined by $\prod_{\nu \in V(G)} mult(\nu)$ and is denoted by mult (G).

Definition. 8: The line graph⁸ L(G) of *G* is the graph whose vertex set is E(G) in which two vertices are adjacent if and only if they are adjacent in *G*.

Definition. 9: The jump graph J(G) of G is the graph whose vertex set is E(G) in which two vertices are adjacent if and only if they are non-adjacent in G.

Definition. 10: The paraline graph P L(G) is a line graph of the subdivision graph of G.

Definition. 11: The complement of a graph G has V as its vertex set and two vertices are adjacent in if and only if they are not adjacent in G.

Definition. 12: The subdivision graph $^9 S(G)$ of a graph *G* is obtained from *G* by inserting a new vertex into every edge of *G*.

Definition. 13: The semi-total point graph $T_2(G)$ is the graph whose vertex set is $V(G) \cup E(G)$ where two vertices are adjacent if and only if (i) they are adjacent vertices of G or (ii) one is a vertex of G and the other is an edge of G incident with it.

Definition. 14: The semi-total line graph $T_1(G)$ is the graph whose vertex set is $V(G) \cup E(G)$ where two vertices are adjacent if and only if (i) they are adjacent edges of G or (ii) one is a vertex of G and the other is an edge of G incident with it.

Definition. 15: The quasi-total graph P(G) is the graph with vertex set $V(G) \cup E(G)$ where two vertices are adjacent if and only if (i) they are non-adjacent vertices of G or (ii) they are adjacent edges of G or (iii) one is a vertex of G and the other is an edge of G incident with it.

Definition. 16: The quasi vertex-total graph Q(G) is the graph with vertex set $V(G) \cup E(G)$ where two vertices are adjacent if and only if

(i) they are adjacent vertices of G or (ii) they are non-adjacent vertices of G or (iii) they are (iii) they are adjacent edges of G or (iv) one is a vertex of G and the other is an edge of G incident with it.

Definition. 17: The complementary prism¹⁰ of a graph *G*, denoted as $G\overline{G}$, is obtained from the graph $G \cup \overline{G}$ by adding a perfect matching between the corresponding vertices of *G* and \overline{G} .

Definition. 18: Let G = (V, E) be a graph. Let S denote the maximum independent set of G. Open support independence number of the set S under addition, denoted by $supp S^+(G)$, is defined by $supp S^+(G) = \sum_{v \in S} supp (v)$. Open support independence number of G under addition, denoted by $supp \alpha^+(G)$, is defined by $p \alpha^+(G) = max \{supp S_i^+(G); i \ge 1\}$.

Definition. 19: Let G = (V, E) be a graph. Let S denote the maximum independent set of G.

G Open support independence number of the set S under multiplication, denoted by $supp S^{\times}(G)$, is defined by $supp S^{\times}(G) = \prod_{v \in S} mult(v)$. Open support independence number of G under multiplication, denoted by $supp \alpha^{\times}(G)$ is defined by $supp \alpha^{\times}(G) = max \{mult S_i^{\times}(G); i \ge 1\}$.

Result. 1: Let $G = P_n$ where n > 2 is a path on n vertices. Then

supp
$$\alpha^{+}(G) = \begin{cases} 2n-2 \text{ if } n \text{ is odd} \\ 2n-3 \text{ if } n \text{ is even} \end{cases}$$
 and
supp $\alpha^{\times}(G) = \begin{cases} 2^{n-1} \text{ if } n \text{ is odd} \\ 2^{n-2} \text{ if } n \text{ is even} \end{cases}$

Main results:

Theorem. 1: Let $L(P_n)$ be the line graph of P_n where $n \geq 2$. Then $supp \alpha^+(P_n) + supp \alpha^+[L(P_n)] = 4n -$ 7, supp $\alpha^{\times}(P_2)$ + supp $\alpha^{\times}[L(P_2)] = 1$ and $supp \ \alpha^{\times}(P_n) + supp \ \alpha^{\times}[L(P_n)] =$ $5 \times 2^{n-3}$ if n is odd $\int 2^{n-1}$ if n is even, $n \neq 2$ **Proof**: Let $L(P_n)$ be the line graph of P_n where $n \ge n$ 2. $L(P_n) = P_{n-1}$. Case (*i*): Suppose *n* is odd. Then supp $\alpha^+[L(P_n)] = 2(n-1) - 3$ = 2n - 5 $supp \alpha^+(P_n) + supp \alpha^+[L(P_n)] =$ Hence (2n-2) + (2n-5) = 4n-7Now supp $\alpha^{\times}[L(P_n)] = 2^{(n-1)-2} = 2^{n-3}$ Hence $supp \alpha^{\times}(P_n) + supp \alpha^{\times}[L(P_n)] = 2^{n-1} +$ $2^{n-3} = 5 \times 2^{n-3}$ Case (*ii*): Suppose *n* is even. Then supp $\alpha^+[L(P_n)] = 2(n-1) - 2$ = 2n - 4 $supp \alpha^+(P_n) + supp \alpha^+[L(P_n)] =$ Hence (2n-3) + (2n-4) = 4n-7Now supp $\alpha^{\times}[L(P_n)] = 2^{(n-1)-1}$ $= 2^{n-2}$ Hence $supp \alpha^{\times}(P_n) + supp \alpha^{\times}[L(P_n)] = 2^{n-2} +$ $2^{n-2} = 2^{n-1}$

Theorem. 2: Let $[J(P_n)]$ be the jump graph of P_n where ≥ 2 . Then

 $\begin{aligned} supp \ \alpha^{+}(P_{2}) + supp \alpha^{+}[J(P_{2})] &= \\ 1, supp \ \alpha^{+}(P_{3}) + supp \alpha^{+}[J(P_{3})] &= 4, \\ supp \ \alpha^{+}(P_{n}) + supp \alpha^{+}[J(P_{n})] &= \\ \left\{ \begin{array}{l} 2n^{2} - 13n + 28 & if \ n \ is \ odd, n \neq 3 \\ 2n^{2} - 13n + 27 & if \ n \ is \ even, n \neq 2 \end{array} \right. \\ \left\{ \begin{array}{l} supp \ \alpha^{\times}(P_{2}) + supp \alpha^{\times}[J(P_{2})] &= \\ 1, supp \ \alpha^{\times}(P_{3}) + supp \alpha^{\times}[J(P_{3})] &= 4 \end{aligned} \right. \end{aligned} \end{aligned}$

 $supp \ \alpha^{\times}(P_n) + supp \alpha^{\times}[J(P_n)] = \begin{cases} (n-4)^{2n-9} \times (n-3)^2 + 2^{n-1} & \text{if } n \text{ is } odd, n \neq 3 \\ (n-4)^{2n-9} \times (n-3)^2 + 2^{n-2} & \text{if } n \text{ is } even, n \neq 2 \end{cases}$ **Proof:** Let $J(P_n)$ be the jump graph of P_n where $n \ge 2$. Let e_1, e_2, \dots, e_{n-1} be the vertices of $J(P_n)$. Then $deg \ e_i = n - 4, 2 \le i \le n - 2$ and $deg \ e_1 = deg \ e_{n-1} = n - 3$. Obviously the independence number of $J(P_n)$ is 2. To get the maximum support, the degree of those two vertices should be maximum, but there are only two maximum-degree vertices that are adjacent. Hence $S_1 = \{e_1, e_2\}$ and $S_2 = \{e_{n-2}, e_{n-1}\}$ are such maximum independent sets. Consider the set S_1 . The proof is similar to the set S_2 .

$$supp (e_{1}) = \sum_{v \in N(e_{1})} deg v$$

$$= deg e_{3} + deg e_{4} + ... + deg e_{n-1}$$

$$= (n - 4) + (n - 4) + ... + (n - 4)$$

$$+ (n - 3)$$

$$= (n - 4)^{2} + (n - 3)$$

$$= n^{2} - 7n + 13$$

$$supp (e_{2}) = \sum_{v \in N(e_{2})} deg v$$

$$= deg e_{4} + deg e_{5} + ... + deg e_{n-1}$$

$$= (n - 5)(n - 4) + (n - 3)$$

$$= n^{2} - 8n + 17$$

Therefore $suppa^{+}[J(P_{n})] = 2n^{2} - 15n + 30$
Hence $supp a^{+}(P_{n}) + suppa^{+}[J(P_{n})] =$

$$\begin{cases} 2n^{2} - 13n + 28 & if n is odd, n \neq 3$$

$$2n^{2} - 13n + 27 & if n is even, n \neq 2^{:}$$

Now $supp a^{+}(P_{2}) + suppa^{+}[J(P_{2})] =$
1 and $supp a^{+}(P_{3}) + suppa^{+}[J(P_{3})] = 4$
Now $supp a^{+}(P_{3}) + suppa^{+}[J(P_{3})] = 4$
Now $supp a^{\times}[J(P_{n})] = \prod_{u \in s_{1}} mult(u)$
 $= mult(e_{1}) \times mult(e_{2})$

$$= (n - 4)^{(n-4)} \times (n - 3) \times (n - 4)^{(n-5)} \times (n - 3)^{2}$$

Hence

$$\begin{split} & supp \ \alpha^{\times}(P_n) + supp \alpha^{\times}[J(P_n)] = & supp \ \alpha^{\times}(P_n) + supp \ \alpha^{\times}(P_n) = \\ & \left\{ \begin{array}{l} (n-4)^{2n-9} \times (n-3)^2 + 2^{n-1} & \text{if } n \ \text{is } odd, n \neq 3 \\ (n-4)^{2n-9} \times (n-3)^2 + 2^{n-2} & \text{if } n \ \text{is } even, n \neq 2 \end{array} \right\} \\ & \text{Now} & supp \ \alpha^{\times}(P_2) + supp \alpha^{\times}[J(P_2)] = \\ & 1, supp \ \alpha^{\times}(P_3) + supp \alpha^{\times}[J(P_3)] = 4. \end{split}$$

Theorem. 3: Let $S(P_n)$ be the subdivision graph of P_n , where $n \ge 2$. Then $supp \ \alpha^+(P_n) + supp \ \alpha^+[S(P_n)] = \begin{cases} 6n - 6 & if n is odd \\ 6n - 7 & if n is even \end{cases}$ and

 $supp \alpha^{\times}(P_n) + supp \alpha^{\times}[S(P_n)] = \begin{cases} 2^{n-1} + 2^{2n-2} & \text{if } n \text{ is odd} \\ 2^{n-2} + 2^{2n-2} & \text{if } n \text{ is even} \end{cases}$

Proof: Let $S(P_n)$ be the subdivision graph of P_n where $n \ge 2$. $S(P_n) = P_{2n-1}$. The subdivision graph of a path is a path of odd length. Let $v_1, v_2, \ldots, v_n, u_1, u_2, \ldots, u_{n-1}$ be the vertices of $S(P_n)$. Hence $supp \alpha^+[S(P_n)] = 4n - 4$. Therefore $supp \alpha^+(P_n) + supp \alpha^+[S(P_n)] =$ $\begin{cases} 6n - 6 & if n is odd \\ 6n - 7 & if n is even \end{cases}$ Now $supp \alpha^{\times}[S(P_n)] = 2^{2n-2}$

 $e_{n-1} \qquad supp \ \alpha^+(P_n) + supp \ \alpha^+[PL(P_n)] = \\ \begin{cases} 6n-9 & \text{if } n \text{ is odd} \\ 6n-10 & \text{if } n \text{ is even} \end{cases} \text{and}$

 P_n where ≥ 2 . Then

 $(2^{n-1}+2^{2n-2})$ if n is odd

 $\begin{cases} 2^{n-2} + 2^{2n-2} & if n is even \end{cases}$

Hence

$$supp \ \alpha^{\times}(P_n) + supp \alpha^{\times}[PL(P_n)]$$

$$=\begin{cases} 2^{n-1} + 2^{2n-4} & \text{if } n \text{ is odd} \\ 5 \times 2^{n-2} & \text{if } n \text{ is even} \end{cases}$$

 $supp \, \alpha^{\times}(P_n) + supp \alpha^{\times}[S(P_n)] =$

Proof: Let $PL(P_n)$ be the paraline graph of P_n , where $n \ge 2$.

Theorem. 4: Let $PL(P_n)$ be the paraline graph of

$$\begin{split} PL(P_n) &= P_{2n-2} \text{ A paraline graph of a path is a} \\ \text{path of even length. Let } e_1, e_2, \dots, e_{2n-2} \text{ be the} \\ \text{vertices of } PL(P_n). \\ \text{Hence } supp \, \alpha^+[PL(P_n)] &= 4n - 7. \\ \text{Therefore } supp \, \alpha^+(P_n) + supp \, \alpha^+[PL(P_n)] &= \\ \left\{ \begin{array}{l} 6n - 9 & if \ n \ is \ odd \\ 6n - 10 & if \ n \ is \ even \\ \text{Now } supp \, \alpha^\times[PL(P_n)] &= 2^{(2n-2)-2} &= 2^{2n-4} \\ \text{Therefore } supp \, \alpha^\times(P_n) + supp \, \alpha^\times[PL(P_n)] &= \\ \left\{ \begin{array}{l} 2^{n-1} + 2^{2n-4} & if \ n \ is \ odd \end{array} \right. \end{split}$$

 $\int 5 \times 2^{n-2}$ if n is even

Theorem. 5: Let $\overline{P_n}$ be the complement graph of P_n where $n \ge 2$. Then $supp \alpha^+(P_2) + supp \alpha^+(\overline{P_2}) = 1, supp \alpha^{\times}(P_2) +$ supp $\alpha^{\times}(\overline{P_2}) = 1$, $supp \alpha^+(P_n) + supp \alpha^+(\overline{P_n}) =$ $2n^2 - 9n + 15$ if *n* is odd $supp \ \alpha^{\times}(P_n) + supp \ \alpha^{\times}(\overline{P_n}) =$ $(n-3)^{2n-7}(n-2)^2 + 2^{n-1}$ if n is odd $(n-3)^{2n-7}(n-2)^2 + 2^{n-2}$ if n is even, $n \neq 2$ **Proof:** Let $\overline{P_n}$ be the complement graph of P_n where $n \geq 2$. $\overline{P_n} = J(P_{n+1}).$ Let v_1, v_2, \dots, v_n be the vertices of $\overline{P_n}$. Hence $supp \alpha^{+}(\overline{P_n}) = 2(n+1)^2 - 15(n+1) +$ 30 $=2n^2-11n+17$ $supp \alpha^+(P_n) + supp \alpha^+(\overline{P_n}) =$ Therefore $(2n^2 - 9n + 15)$ if n is odd $(2n^2 - 9n + 14)$ if n is even Also supp $\alpha^+(P_2) + supp \alpha^+(\overline{P_2}) = 1$ $supp \ \alpha^{\times}[\overline{P_n}] = (n+1-4)^{2(n+1)-9} \times$ Now $(n+1-3)^2$ $= (n-3)^{2n-7}(n-2)^2$ Therefore $supp \ \alpha^{\times}(P_n) + supp \ \alpha^{\times}(\overline{P_n}) =$ $(n-3)^{2n-7}(n-2)^2 + 2^{n-1}$ if n is odd $(n-3)^{2n-7}(n-2)^2 + 2^{n-2}$ if n is even

Also supp $\alpha^{\times}(P_2) + supp \alpha^{\times}(\overline{P_2}) = 1.$

Theorem. 6: Let $T_2(P_n)$ be the semi-total point graph of P_n where $n \ge 3$. Then $supp \alpha^+(P_n) + supp \alpha^+(T_2(P_n)) = \begin{cases} 10n - 14 & if n \text{ is odd} \\ 10n - 15 & if n \text{ is even} \end{cases}$ and

 $\sup p \, \alpha^{\times}(P_n) + \sup p \, \alpha^{\times}[T_2(P_n)] = \\ \begin{cases} 64 \times 16^{n-3} + 2^{n-1} & if \ n \ is \ odd \\ 64 \times 16^{n-3} + 2^{n-2} & if \ n \ is \ even \end{cases}$

Proof: Let $v_1, v_2, ..., v_n$ be the vertices and $e_i = v_i v_{i+1}$, $1 \le i \le n-1$ be the edges of the path P_n . In $T_2(P_n)$, v_i is adjacent with $v_{i-1}, v_{i+1}, e_{i-1}, e_i$ for $2 \le i \le n-3$, v_1 is adjacent with v_2, e_1 and v_n is adjacent with v_{n-1}, e_{n-1} . e_i is adjacent with $v_i, v_{i+1}, 1 \le i \le n-1$. Then $deg v_i = 4, \ 2 \le i \le n - 1, deg v_1 = deg v_n = 2$ $deg \ e_i = 2, \ 1 \le i \le n - 1.$ $S_1 =$ and $\{e_1, e_2, \dots, e_{n-1}\}, S_2 = \{v_1, e_2, e_3, \dots, e_{n-1}\}$ and $S_3 = \{v_1, e_2, e_3, \dots, e_{n-2}, v_n\}$ are the three maximum independent sets. Consider the set S_1 . The proof is similar for the sets S_2 and S_3 .

 $supp(e_1) = \sum_{v \in N(e_1)} deg v$ $= \deg v_1 + \deg v_2 = 2 + 4 = 6$ Similarly $supp(e_{n-1}) = \sum_{v \in N(e_{n-1})} \deg v = 6$ $supp(e_2) = \sum_{v \in N(e_2)} deg v$ $= deg v_2 + deg v_3 = 4 + 4 = 8$ Similarly $supp(e_3) = supp(e_4) = \dots = supp(e_{n-2}) = 8$ Hence supp $\alpha^+[T_2(P_n)] = \sum_{v \in s_1} supp(v)$ = 6 + (n - 3)8 + 6.= 8n - 12 $supp \alpha^+(P_n) + supp \alpha^+[T_2(P_n)] =$ Therefore $(10n-14 \quad if \ n \ is \ odd$ 10n - 15 if n is even Now supp $\alpha^{\times}[T_2(P_n)] = \prod_{u \in S_1} mult(u) =$ $mult(e_1) \times mult(e_2) \times ... \times mult(e_{n-1})$ $= 8 \times 16^{(n-3)} \times 8 = 64 \times 16^{n-3}$ Therefore $p \alpha^{\times}(P_n) + supp \alpha^{\times}[T_2(P_n)] =$ $(64 \times 16^{n-3} + 2^{n-1})$ if *n* is odd $\begin{cases} 64 \times 16^{n-3} + 2^{n-2} & if n is even \end{cases}$ **Theorem. 7:** Let $T_1(P_n)$ be a semi-total line graph Then where $n \geq 2$. P_n $p \alpha^+(P_n) + supp \alpha^+[T_1(P_n)] =$ $(10n-14 \quad if \ n \ is \ odd$ 10n - 15 if n is even ' supp $\alpha^{\times}(P_2)$ + supp $\alpha^{\times}[T_1(P_2)] = 5$ and $supp \ \alpha^{\times}(P_n) + supp \ \alpha^{\times}[T_1(P_n)] =$ $2^{n-1} + 1296 \times 16^{n-4}$ if n is odd $2^{n-2} + 1296 \times 16^{n-4}$ if *n* is even and $n \neq 2$

Proof: Let v_1, v_2, \dots, v_n be the vertices and $e_i = v_i v_{i+1}$, $1 \le i \le n-1$ be the edges of the path P_n . In $T_1(P_n)$, v_i is adjacent with e_{i-1}, e_i for $2 \le i \le n-1$, v_1 is adjacent with e_1 and v_n is adjacent with e_{n-1} . e_i is adjacent with $v_i, v_{i+1}, e_{i-1}, e_{i+1}, 2 \le i \le n-2, e_1$ is adjacent with v_1, v_2 and e_2 and e_{n-1} is adjacent with v_{n-1} , v_n and e_{n-2} . Then $deg v_i = 2$, $2 \le i \le n - 2$ 1, $\deg v_1 = \deg v_n = 1$, $\deg e_1 = \deg e_{n-1} = 3$ and deg $e_i = 4$, $2 \le i \le n - 2$. $S = \{v_1, v_2, ..., v_n\}$ is the unique maximum independent set. $supp(v_1) = \sum_{v \in N(v_1)} deg v$ $= deg e_1 = 3$ Similarly $supp(v_n) = 3$ $supp(v_2) = \sum_{v \in N(v_2)} deg v$ $= deg e_1 + deg e_2 = 3 + 4 = 7$ Similarly $supp(v_{n-1}) = 7$ $supp(v_3) = \sum_{v \in N(v_3)} deg v$ $= deg e_1 + deg e_2 = 4 + 4 - 9$ $= deg e_2 + deg e_3 = 4 + 4 = 8$ Similarly $supp(v_4) = supp(v_5) = \dots = supp(v_{n-2}) = 8$ Hence supp $\alpha^+[T_1(P_n)] = \sum_{v \in S} supp(v)$ = 3 + 7 + (n - 4)8 + 7 + 3 = 8n - 12 $supp \alpha^+(P_n) + supp \alpha^+[T_1(P_n)] =$ Therefore 10n - 14 if n is odd 10n - 15 if n is even Now when $n \ge 3$, $supp \ \alpha^{\times}[T_1(P_n)] = \prod_{u \in S} mult(u)$ $= mult(v_1) \times mult(v_2) \times ... \times mult(v_n)$ $= 3 \times 12 \times 16^{n-4} \times 12 \times 3 = 1296 \times 16^{n-4}$ $supp \ \alpha^{\times}(P_n) + supp \ \alpha^{\times}[T_1(P_n)] =$ Therefore

 $\begin{cases} 2^{n-1} + 1296 \times 16^{n-4} & \text{if } n \text{ is odd} \\ 2^{n-2} + 1296 \times 16^{n-4} & \text{if } n \text{ is even} \\ \text{when } n = 2, \text{ supp } \alpha^{\times}[T_1(P_n)] = 4. \\ \text{Hence } \text{ supp } \alpha^{\times}(P_2) + \text{ supp } \alpha^{\times}[T_1(P_2)] = 5. \end{cases}$

Theorem. 8: Let $P(P_n)$ be a quasi-total graph of P_n where $n \ge 2$. Then $supp \ \alpha^+(P_2) + supp \ \alpha^+[P(P_2)] = 5$, $supp \ \alpha^+(P_3) + supp \ \alpha^+[P(P_3)] = 16$, $supp \ \alpha^+(P_n) + supp \ \alpha^+[P(P_n)]$ $= \begin{cases} 3n^2 - 5n + 3 & if n is odd, n \ne 3\\ 3n^2 - 4n + 2 & if n is even, n \ne 2' \end{cases}$ $supp \ \alpha^{\times}(P_2) + supp \ \alpha^{\times}[P(P_2)] = 5$, $supp \ \alpha^{\times}(P_3) + supp \ \alpha^{\times}[P(P_3)] = 76$ and $supp \ \alpha^{\times}(P_n) + supp \ \alpha^{\times}[P(P_n)] = \\ \begin{cases} 2^{n-1} + 432(n-1)^{3n-8}4^{n-5} \ if \ n \ is \ odd, n \neq 3 \\ 2^{n-2} + 144(n-1)^{3n-7}4^{n-4} \ if \ n \ is \ even, n \neq 2 \end{cases}$

Proof: Let $v_1, v_2, ..., v_n$ be the vertices and $e_i = v_i v_{i+1}$, $1 \le i \le n-1$ be the edges of the path P_n . In $P(P_n)$, v_i is non-adjacent with v_{i-1} and v_{i+1} for $2 \le i \le n-1$, v_1 is non-adjacent with v_2 and v_n is non-adjacent with v_{n-1} . e_i is adjacent with v_i, v_{i+1}, e_{i-1} and e_{i+1} for $2 \le i \le n-2$, e_1 is adjacent with v_1, v_2 and e_2 and e_{n-1} is adjacent with v_{n-1}, v_n and e_{n-2} . Then $deg v_i = n-1$, $1 \le i \le n$, $deg e_1 = 1$

deg $e_{n-1} = 3$ and deg $e_i = 4$ for $2 \le i \le n-2$. **Case** (i): Let *n* be odd. The independence number of $P(P_n)$ is $\frac{n+1}{2}$. Let $n \ge 5$. To get the maximum support consider the end vertices v_1, v_2 or v_{n-1}, v_n with the vertices lying between e_1 and e_{n-1} . Hence $S_1 = \{v_1, v_2, e_3, e_5, \dots, e_{n-4}, e_{n-2}\}$ and $S_2 = \{v_{n-1}, v_n, e_2, e_4, \dots, e_{n-5}, e_{n-3}\}$ are the two maximum independent sets with maximum support. Consider the set S_1 . The proof is similar to the other set.

 $= mult(v_1) \times mult(v_2) \times mult(e_3) \times mult(e_5)$ $\times ... \times mult(e_{n-4}) \times mult(e_{n-2})$ $= 3(n-1)^{n-2} \times 12(n-1)^{n-3} [16(n-1)^{n-3}] = 10(n-1)^{n-3} [16(n-1)^{n-3}] = 10(n-1)^{n (1)^2]^{\left(\frac{n-5}{2}\right)} \times 12(n-1)^2$ $=432(n-1)^{3n-8}4^{n-5}$ Therefore $supp \, \alpha^{\times}(P_n) + supp \, \alpha^{\times}[P(P_n)] = 2^{n-1} + 432(n-1)^{3n-8}4^{n-5}.$ Now supp $\alpha^{\times}[P(P_3)] = 72$ Hence supp $\alpha^{\times}(P_3) + supp \alpha^{\times}[P(P_3)] = 76$ **Case** (*ii*): Let *n* be even and $n \ge 4$. Let $S_3 =$ $\{v_1, v_2, e_3, e_5, \dots, e_{n-3}, e_{n-1}\}$ and $S_4 =$ $\{v_{n-1}, v_n, e_1, e_3, \dots, e_{n-5}, e_{n-3}\}$ are two maximum independent sets. Consider the set S_3 . The proof is similar to the other set. From case (i) $supp(v_1) = n^2 - 3n + 5$ $supp(v_2) = n^2 - 4n + 10$ $supp(e_3) = 2n + 6$ and $supp(e_5) = supp(e_7) =$ $\dots = supp(e_{n-3}) = 2n + 6$ $supp(e_{n-1}) = \sum_{v \in N(e_{n-1})} deg v$ $= deg \ e_{n-2} + deg \ v_{n-1} + deg \ v_n$ = 4 + (n - 1) + (n - 1) = 2n + 2Hence $supp \ \alpha^+[P(P_n)] = \sum_{v \in S_3} supp \ (v)$ $=3n^2-6n+5$ Therefore supp $\alpha^+(P_n) + supp \alpha^+[P(P_n)] = 2n - 2n$ $3 + 3n^2 - 6n + 5$ $=3n^2-4n+2$ Now supp $\alpha^+[P(P_2)] = 4$ Hence supp $\alpha^+(P_2) + supp \alpha^+[P(P_2)] = 5$ Now supp $\alpha^{\times}[P(P_n)] = \prod_{u \in S_3} mult(u)$ $= mult(v_1) \times mult(v_2) \times mult(e_3) \times mult(e_5)$ × ... × $mult(e_{n-3})$ × $mult(e_{n-1})$ = $3(n-1)^{n-2}$ × $12(n-1)^{n-3}$ [16(n - $1)^{2}]^{\left(\frac{n-4}{2}\right)} \times 4(n-1)^{2}$ = 144(n-1)^{3n-7}4^{n-4} Therefore $supp \ \alpha^{\times}(P_n) + supp \ \alpha^{\times}[P(P_n)] = 2^{n-2} + 144(n-1)^{3n-7}4^{n-4}$ Now supp $\alpha^{\times}[P(P_2)] = 4$ Hence supp $\alpha^{\times}(P_2) + supp \alpha^{\times}[P(P_2)] = 5.$

Theorem. 9: Let $Q(P_n)$ be a quasi-vertex-total graph of P_n where $n \ge 2$. Then $supp \ \alpha^+(P_2) + supp \ \alpha^+[Q(P_2)] = 3$, $supp \ \alpha^+(P_n) + supp \ \alpha^+[Q(P_n)] =$ $\begin{cases} 2n^2 + 6n - 12 & \text{if } n \text{ is odd} \\ 2n^2 + 5n - 14 & \text{if } n \text{ is even}, n \ne 2 \end{cases}$, $supp \ \alpha^{\times}(P_2) + supp \ \alpha^{\times}[Q(P_2)] = 2$, and

 $supp \ \alpha^{\times}(P_n) + supp \ \alpha^{\times}[Q(P_n)] =$

 $\begin{cases} 2^{n-1} + 144n^2(n+1)^{2n-4}4^{n-5} if n is odd \\ 2^{n-2} + 432n(n+1)^{2n-4}4^{n-6} if n is even, n \neq 2 \end{cases}$

Proof: Let $v_1, v_2, ..., v_n$ be the vertices and $e_i = v_i v_{i+1}$, $1 \le i \le n-1$ be the edges of the path P_n . In $Q(P_n)$, any two v_i 's are adjacent to each other for $1 \le i \le n$. e_i is adjacent with v_i, v_{i+1}, e_{i-1} and e_{i+1} for $2 \le i \le n-2$, e_1 is adjacent with v_{n-1}, v_n and e_{n-2} . Then $deg v_i = n+1$, $2 \le i \le n-1$, $deg v_1 = deg v_n = n$, $deg e_i = 4$ for $2 \le i \le n-2$ and $deg e_1 = deg e_{n-1} = 3$. **Case** (*i*): Let *n* be odd. The independence number of $Q(P_n)$ is $\frac{n+1}{2}$. There are $S_{n+1} = mximum$ independent sets with maximum support. Consider the set $S_1 = \{v_1, e_2, e_4, e_6, ..., e_{n-3}, e_{n-1}\}$. The proof is similar to the other sets.

Case (ii): Let n be even. The independence number of $Q(P_n)$ is $\frac{n}{2}$. To get the maximum support to choose the end vertices v_1 or v_n with e_2, e_4, \dots, e_{n-2} , otherwise, choose any $v_i's$ between v_1 and v_n with e_i 's which are non-adjacent between e_1 and e_n with e_1 or e_n since v_i 's have maximum support than e_i 's. Consider the set $S_2 =$ $\{v_1, e_2, e_4, ..., e_{n-4}, e_{n-2}\}$. The proof is similar to the other sets. From case (i), $supp(v_1) = n^2 + 1$ $supp(e_2) = 2n + 9$ $supp(e_4) = supp(e_6) = \dots = supp(e_{n-4})$ = 2n + 10And $supp(e_{n-2}) = 2n + 9$ Hence supp $\alpha^+[Q(P_n)] = \sum_{v \in S_2} supp(v)$ $= (n^{2} + 1) + (2n + 9) + (2n + 10)\left(\frac{n-6}{2}\right) +$ (2n + 9) $=2n^{2}+3n-11$ Therefore supp $\alpha^+(P_n) + supp \alpha^+[Q(P_n)] = 2n - 2n$ $3 + 2n^2 + 3n - 11$ $=2n^{2}+5n-14$ Now when = 2, supp $\alpha^+[Q(P_n)] = 2$ Hence supp $\alpha^+(P_2) + supp \alpha^+[Q(P_2)] = 3$. Also $\alpha^{\times}[Q(P_n)] = \prod_{u \in S_2} mult(u)$ $= mult(v_1) \times mult(e_2) \times mult(e_4) \times ...$ \times mult(e_{n-4}) \times mult(e_{n-2}) $= 3n(n+1)^{n-2} \times 12(n+1)^2 [16(n+1)^2]^{\left(\frac{n-6}{2}\right)}$ $\times 12(n+1)^{2}$ $= 432n(n+1)^{2n-4}4^{n-6}$ Therefore $supp \ \alpha^{\times}(P_n) + supp \ \alpha^{\times}[Q(P_n)] =$ $2^{n-2} + 432n(n+1)^{2n-4}4^{n-6}$. Now when = 2, supp $\alpha^{\times}[Q(P_n)] = 2$ Hence supp $\alpha^{\times}(P_2) + supp \alpha^{\times}[Q(P_2)] = 2.$

Theorem. 10: Let $P_n \overline{P}_n$ be a complementary prism of P_n , where $n \ge 2$. Then $supp \alpha^+(P_2) + supp \alpha^+(P_2 \overline{P}_2) =$ 6, supp $\alpha^{+}(P_{3}) + supp \alpha^{+}(P_{3}\bar{P}_{3}) =$ 16, $supp \alpha^+(P_4) + supp \alpha^+(P_4 \bar{P}_4) = 29$, $supp \alpha^+(P_n) + supp \alpha^+(P_n \overline{P_n}) =$ $\frac{5}{2}n^2 - \frac{11}{2}n + 11$ if *n* is odd, $n \neq 3$ $\int \frac{5}{2}n^2 - 6n + 14 \quad if \ n \ is \ even, n \neq 2 \ and \ n \neq 4$ $supp \ \alpha^{\times}(P_2) + supp \ \alpha^{\times}(P_2 \overline{P}_2) = 5,$ $supp \ \alpha^{\times}(P_3) + supp \ \alpha^{\times}(P_3 \overline{P}_3) = 76,$ supp $\alpha^{\times}(P_4)$ + supp $\alpha^{\times}(P_4 \overline{P}_4)$ = 6565 and $supp \ \alpha^{\times}(P_n) + supp \ \alpha^{\times}(P_n \overline{P_n}) =$ $2^{n-1} + (n-2)^{\frac{5n-17}{2}} \times 2 \times 3^{n-1} \times (n-1)^3$ if n is odd, $n \neq 3$ $\begin{cases} 2^{n-2} + (n-2)^{\frac{5n}{2}-11} \times 3^n \times (n-1)^5 \text{ if } n \text{ is even, } n \neq 2 \text{ and } n \neq 4 \end{cases}$ **Proof:** Let $v_1, v_2, ..., v_n$ be the vertices of the path P_n and \bar{v}_1 , \bar{v}_2 , ..., \bar{v}_n be the vertices in the copy of P_n . In $P_n P_n$, \bar{v}_i is non-adjacent with \bar{v}_{i-1} and \bar{v}_{i+1} for $2 \le i \le n-1$, \bar{v}_1 is non-adjacent with \bar{v}_2 and

$$\begin{split} \bar{v}_n & \text{ is non-adjacent with } \bar{v}_{n-1} \cdot v_i \text{ is adjacent with } \\ \bar{v}_{i-1}, \bar{v}_{i+1} \text{ and } \bar{v}_i & \text{ for } & 2 \leq i \leq n-1, v_1 \text{ is } \\ \text{adjacent with } \bar{v}_1 \text{ and } v_2 \text{ similarly } v_n \text{ is adjacent } \\ \text{with } \bar{v}_n \text{ and } v_{n-1}. \text{ Then } \deg \bar{v}_i = n-2, \ 2 \leq i \leq n-1, \deg \bar{v}_1 = \deg \bar{v}_n = n-1, \quad \deg v_i = 3, \\ 2 \leq i \leq n-1 \text{ and } \deg v_1 = \deg v_n = 2. \end{split}$$

Case (*i*): Suppose *n* is odd and $n \ge 5$. In this case the end vertices namely \bar{v}_1 and \bar{v}_n have the maximum support when compared with other v_i 's for $2 \le i \le n-1$. So choose either \bar{v}_1, \bar{v}_2 or vertices with \bar{v}_{n-1} , \bar{v}_n v_3, v_5, \dots, v_n or v_1, v_3, \dots, v_{n-2} to get the maximum support. Hence $S_1 = \{ \bar{v}_1, \bar{v}_2, v_3, v_5, \dots, v_n \}$ $S_{2} =$ and $\{\overline{v}_{n-1}, \overline{v}_n, v_1, v_3, \dots, v_{n-2}\}$ are the only two maximum independent sets of $P_n \overline{P}_n$. Consider the set S_1 . The proof is similar to the other set.

$$\begin{split} supp(\bar{v}_{1}) &= \sum_{v \in N(\bar{v}_{1})} deg v \\ &= deg \, \bar{v}_{3} + deg \, \bar{v}_{4} + \dots + deg \, \bar{v}_{n} \\ &+ deg \, v_{1} \\ &= (n-2) + (n-2) + \dots + (n-2) \\ &+ (n-1) + 2 \\ &= (n-2)(n-3) + (n-1) + 2 \\ &= n^{2} - 4n + 7 \\ \\ supp(\bar{v}_{2}) &= \sum_{v \in N(\bar{v}_{2})} deg v \\ &= deg \, \bar{v}_{4} + deg \, \bar{v}_{5} + deg \, \bar{v}_{6} + \dots \\ &+ deg \, \bar{v}_{n-1} + deg \, \bar{v}_{n} + deg \, v_{2} \\ &= (n-2) + (n-2) + \dots + (n-2) \\ &+ (n-1) + 3 \\ &= (n-4)(n-2) + (n-1) + 3 \\ &= n^{2} - 5n + 10 \\ \\ supp(v_{3}) &= \sum_{v \in N(v_{3})} deg v \\ &= deg \, v_{2} + deg \, v_{4} + deg \, \bar{v}_{3} \\ &= 3 + 3 + (n-2) = n + 4 \\ \\ \text{Similarly} \\ supp(v_{5}) &= supp(v_{7}) = \dots = supp(v_{n-2}) \\ &= n + 4 \\ \\ supp(v_{n}) &= \sum_{v \in N(v_{n})} deg v \\ &= deg \, v_{n-1} + deg \, \bar{v}_{n} \\ &= 3 + (n-1) = n + 2 \\ \\ \text{Hence } supp \, \alpha^{+}(P_{n} \, \bar{P}_{n}) = \sum_{v \in S_{1}} supp \, (v) = \frac{5}{2}n^{2} - \frac{15}{2}n + 13 \\ \\ \text{Therefore} \qquad supp \, \alpha^{+}(P_{n} \, \bar{P}_{n}) = 12 \\ \\ \text{Hence } supp \, \alpha^{+}(P_{3} \, \bar{P}_{3}) = 16 \\ \\ \text{Now when } n = 3 \, supp \, \alpha^{+}(P_{n} \, \bar{P}_{n}) = 12 \\ \\ \text{Hence } supp \, \alpha^{+}(P_{3} \, \bar{P}_{3}) = mult(u) \\ &= mult(\bar{v}_{1}) \times mult(\bar{v}_{2}) \times mult(v_{3}) \times mult(v_{5}) \\ &\times \dots \times mult(v_{n}) \end{split}$$

 $= (n-2)^{n-3} \times 2(n-1)(n-2)^{n-4} \times 3(n-1)[9(n-2)]^{\binom{n-3}{2}} \times 3(n-1)$ $= (n-2)^{\frac{5n-17}{2}} \times 2 \times 3^{n-1} \times (n-1)^{3}$ Therefore $supp \, \alpha^{\times}(P_{n}) + supp \, \alpha^{\times}(P_{n} \bar{P}_{n}) = 2^{n-1} + (n-2)^{\frac{5n-17}{2}} \times 2 \times 3^{n-1} \times (n-1)^{3}$ Now when $n = 3 \, supp \, \alpha^{\times}(P_{n} \bar{P}_{n}) = 72$ Hence $supp \, \alpha^{\times}(P_{3}) + supp \, \alpha^{\times}(P_{3} \bar{P}_{3}) = 76.$ **Case** (*ii*): Let *n* be even and $n \ge 6.S_{3} = \{\bar{v}_{2}, \bar{v}_{3}, v_{1}, v_{4}, v_{6}, ..., v_{n}\}$ and $S_{4} = \{\bar{v}_{n-2}, \bar{v}_{n-1}, v_{n}, v_{1}, v_{3}, ..., v_{n-3}\}$ are the only two maximum independent sets of $P_{n} \bar{P}_{n}$. Consider the set S_{3} . The proof is similar to the other set.

$$\begin{split} supp(\bar{v}_{2}) &= \sum_{v \in N(\bar{v}_{2})} deg v \\ &= deg \bar{v}_{4} + deg \bar{v}_{5} + \dots + deg \bar{v}_{n} \\ &+ deg v_{2} \\ &= (n-2) + (n-2) + \dots + (n-2) \\ &+ (n-1) + 3 \\ &= (n-4)(n-2) + (n-2) + \dots + (n-1) + 3 \\ &= n^{2} - 5n + 10 \\ \\ supp(\bar{v}_{3}) &= \sum_{v \in N(\bar{v}_{3})} deg v \\ &= deg \bar{v}_{1} + deg \bar{v}_{5} + deg \bar{v}_{6} + \dots \\ &+ deg \bar{v}_{n} + deg v_{3} \\ &= (n-1) + (n-2) + (n-2) + \dots \\ &+ (n-2) + (n-2) + (n-2) + \dots \\ &+ (n-2) + (n-1) + 3 \\ &= n^{2} - 5n + 11 \\ \\ supp(v_{1}) &= \sum_{v \in N(v_{4})} deg v \\ &= deg v_{2} + deg \bar{v}_{1} \\ &= 3 + (n-1) = n + 2 \\ \\ supp(v_{4}) &= \sum_{v \in N(v_{4})} deg v \\ &= deg v_{3} + deg v_{5} + deg \bar{v}_{4} \\ &= 3 + 3 + n - 2 = n + 4 \\ \\ \\ \text{Similarly} \qquad supp(v_{6}) = supp(v_{8}) = \dots = s \\ \\ supp(v_{n-2}) &= n + 4 \\ \\ supp(v_{n}) &= \sum_{v \in N(v_{n})} deg v \\ &= deg v_{n-1} + deg \bar{v}_{n} \\ &= 3 + (n-1) = n + 2 \\ \\ \text{Hence } supp a^{+}(P_{n}\bar{P}_{n}) = \sum_{v \in S_{3}} supp (v) \\ &= \frac{5}{2}n^{2} - 8n + 17 \\ \\ \\ \text{Therefore} \qquad supp a^{+}(P_{n}) + supp a^{+}(P_{n}\bar{P}_{n}) = 5. \\ \\ \\ \frac{5}{2}n^{2} - 6n + 14 \\ \\ \text{Now when} &= 2 \quad supp a^{+}(P_{n}\bar{P}_{n}) = 24. \\ \\ \text{Hence } supp a^{+}(P_{4}) + supp a^{+}(P_{4}\bar{P}_{4}) = 29 \\ \end{aligned}$$

Also supp $\alpha^{\times}(P_n \bar{P}_n) = \prod_{u \in S_3} mult(u)$ = $mult(\bar{v}_2) \times mult(\bar{v}_3) \times mult(v_1) \times mult(v_4)$ $\times mult(v_6) \times ... \times mult(v_n)$

 $= (n-2)^{n-4} \times 3(n-1)(n-2)^{n-5} \times 3(n-1)^{2} \\ \times 3(n-1)[9(n-2)]^{\left(\frac{n-4}{2}\right)} \times 3(n-1) \\ = (n-2)^{\frac{5n}{2}-11} \times 3^{n} \times (n-1)^{5} \\ \text{Therefore} \qquad supp \ \alpha^{\times}(P_{n}) + supp \ \alpha^{\times}(P_{n}\bar{P}_{n}) = \\ 2^{n-2} + (n-2)^{\frac{5n}{2}-11} \times 3^{n} \times (n-1)^{5} \\ \text{Now when} = 2 \qquad supp \ \alpha^{\times}(P_{n}\bar{P}_{n}) = 4. \text{ Hence} \\ supp \ \alpha^{\times}(P_{2}) + supp \ \alpha^{\times}(P_{2}\bar{P}_{2}) = 5 \\ \end{array}$

when = 4 supp $\alpha^{\times}(P_n \overline{P_n}) = 6561$. Hence supp $\alpha^{\times}(P_4) + supp \alpha^{\times}(P_4 \overline{P_4}) = 6565$.

Conclusion:

In this paper, Nordhaus-Gaddum type relations on the open support independence number of some path related graphs under addition and multiplication are studied.

Authors' declaration:

- Conflicts of Interest: None.
- Ethical Clearance: The project was approved by the local ethical committee at The Madurai Diraviyam Thayumanavar Hindu College, India.

Authors' contributions:

This work was carried out in collaboration between the authors. Mary Vithya T conceived of the presented idea and developed the theory through discussions with Murugan K. All authors read and approved the final manuscript.

References:

- 1. Omran AA, Oda HH. Hn Domination in Graphs. Baghdad Sci J. 2019; 16(1): 242-247. http://dx.doi.org/10.21123/bsj.2019.16.1(Suppl.).024 2
- Mitlif RJ, AL-Harere MN, Sadiq FA. Variant Domination Types for a Complete h-ary Tree. Baghdad Sci J. 2021; 18(1(Suppl.)): 0797. <u>https://doi.org/10.21123/bsj.2021.18.1(Suppl.).0797</u>
- Mortosa OS, Cappelle MR. k-Independence on Complementary Prism Graphs. Mat Contemp. 2021; 48: 211-220. http://doi.org/10.21711/231766362021/rmc4821
- Balamurugan S, Anitha M, Aristotle P, Karnan C. A Note on Open Support of a Graph under Addition I. Int J Math Trends Technol. 2019; 65(5): 110-114. <u>https://doi.org/10.14445/22315373/IJMTT-</u> V6515P516
- Balamurugan S, Anitha M, Aristotle P, Karnan C. A Note on Open Support of a Graph under Addition II. Int J Math Trends Technol. 2019; 65(5): 115-

119. <u>https://doi.org/10.14445/22315373/IJMTT-</u> V65I5P517

- Balamurugan S, Anitha M, Aristotle P, Karnan C. Open Support of a Graph under Multiplication. Int J Math. Trends Technol. 2019; 65(5): 134-138. <u>https://www.ijmttjournal.org/Volume-65/Issue-</u> 5/IJMTT-V65I5P521.pdf
- 7. Vithya TM, Murugan K. Open Support Independence Number of Some Standard Graphs Under Addition and Multiplication. Adv Appl Math Sci. 2022 July; 21(9): 4887-4902. <u>https://www.mililink.com/upload/article/1056470343</u> <u>aams_vol_219_july_2022_a1_p4871-</u> 4885 t. mary_vithya_and k. murugan.pdf
- Bagga J, Beineke L. New Results and Open Problems in Line Graphs. AKCE Int J Graphs Comb. 2022; 19(3): 182-190. https://doi.org/10.1080/09728600.2022.2093146
- Babikir A, Dettlaff M, Micheal A. Henning, Magdalena Lamanska. Independent Domination Subdivision in Graphs. Graphs Comb. 2021 March; 37: 691-709. <u>https://doi.org/10.1007/s00373-020-02269-3</u>
- 10. Barbosa RM, Cappelle MR, Coelho EM. Maximal Independent Sets in Complementary Prism Graphs. Ars Comb 2018; 137: 211-220. http://doi.org/10.21711/231766362021/rmc4821

علاقات من نوع نور دهاوس جادوم في عدد استقلالية الدعم المفتوح لبعض الرسوم البيانية ذات الصلة بالمسار تحت الجمع والضرب

ت ماري فيثيا * ك مور غان

قسم الرياضيات ، كلية مادوراي ديرافيام تايومانافار الهندوسية ، تيرونلفيلي ، تاميل نادو ، الهند.

الخلاصة:

في هذا البحث ، تمت دراسة العلاقات من نوع نوردهاوس - جادوم في عدد استقلالية الدعم المفتوح لبعض الرسوم البيانية المشتقة من الرسوم البيانية المتعلقة بالمسار تحت الجمع والضرب.

الكلمات الرئيسية: الرسوم البيانية المشنقة، علاقات نوع نور دهاوس - جادوم، عدد استقلال الدعم المفتوح،عدد استقلال الدعم المفتوح تحت الجمع، عدد استقلال الدعم المفتوح تحت الضرب.