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Abstract: 
Relation on a set is a simple mathematical model to which many real-life data can be connected. A 

binary relation 𝑅 on a set 𝑋 can always be represented by a digraph. Topology on a set 𝑋can be generated by 

binary relations on the set  𝑋. In this direction, the study will consider different classical categories of 

topological spaces whose topology is defined by the binary relations adjacency and reachability on the vertex 

set of a directed graph. This paper analyses some properties of these topologies and studies the properties of 

closure and interior of the vertex set of subgraphs of a digraph. Further, some applications of topology 

generated by digraphs in the study of biological systems are cited. 
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Introduction: 
Topology is concerned with the properties of 

a geometric object that are preserved under 

continuous deformations, such as stretching, 

twisting, rumpling, and bending. For a very long 

time, it was believed that abstract topological 

structures have limited applications in the 

generalization of the real line and complex plane or 

some connections to Algebra and other branches of 

Mathematics. Further, it seems that there is a large 

gap between these structures and real-life 

applications. Generating topologies by relations and 

the representation of topological concepts through 

binary relations will narrow the gap between 

Topology and its applications. Binary relations are 

used in the construction of topological structures in 

many fields such as dynamics, rough set theory and 

approximation space, digital topology, 

biochemistry, and biology. In 1969,Smithson1, 

generated topologic al structures via relations on a 

set. In 1993, Slapal2 studied the methods of 

generating topologies through binary relations.  In 

2008, Salama3 introduced different approaches for 

obtaining topologies by similarity and pre-order 

relations; and Allam, et al.4 obtained quasi-discrete 

topology from symmetric relations. Khalifa and 

Jasim.5 introduced a nano-topological space via 

graph theory which depends on the neighborhood 

between the vertices based on an undirected graph. 

The motivating insight behind topology is that some 

geometric problems depend not on the exact shape 

of the objects involved, but rather on the way, they 

are put together.  

In Mathematics, a manifold is a topological 

space that locally resembles Euclidean space near 

each point. One-dimensional manifolds include 

lines and circles. Two-dimensional manifolds are 

also called surfaces. Manifolds naturally arise as 

solution sets of systems of equations and as graphs 

of functions. The concept has applications in 

computer graphics given the need to associate 

pictures with co-ordinates. Aboodand Abass6have 

determined the components of the covariant 

derivative of the Riemannian curvature tensor 

which are mostly applicable in manifolds. 

In the very first research on Topology, 

Leonhard Euler demonstrated that it was impossible 

to find a route through the town of Konigsberg that 

would cross each of its seven bridges exactly once. 

This result did not depend on the lengths of the 

bridges or their distance from one another, but only 

on connectivity properties: which bridges connect to 
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which islands or river banks. These seven bridges of 

the Konigsberg problem led to the branch of 

Mathematics known as Graph Theory. Graphs can 

be regarded as a one-dimensional topological space.  

The metric dimension and dominating set are 

the concepts of graph theory that can be developed 

in terms of the concept and its application in graph 

operations. One of some concepts in graph theory 

that combine these two concepts is resolving 

dominating numbers. Adirasari RP, Suprajitno H, 

and Susilowati L7 studied resolvent dominating 

numbers as the dominant metric dimension and 

explored some of their properties. 

Taha and Awad8 introduced a new class of 

separation axioms via the concepts of graphs. 

Lalithambigai and Gnanachandra9 introduced the 

method of generating topologies on a vertex set of 

graphs using the relations adjacency, non-

adjacency, incidence, and non-incidence on the 

vertex set of graphs and studied the 

characterizations of closure and interior of vertex 

induced subgraphs of the graphs. They introduced 

graph grills and studied the topological structures 

induced by graph grills. Abdelmonen et 

al.10introduced the technique to construct a new 

type of topological structure by graphs called 

topological graphs. 

Iman and Hassan11 have studied the 

independent incompatible edge topology on 

digraphs. In this paper, topological structures 

induced by the relations adjacency and reachability 

of vertices on the vertex set of digraphs, various 

neighborhoods of vertices in digraphs and their 

approximations are defined and some properties of 

closure and interior of sub-digraphs with respect to 

the topologies induced are studied. 

 

Preliminaries: 
In this section, basic definitions of digraphs 

that are required for the study are presented. The 

definitions cited in this Preliminaries section are 

taken from the textbooks listed in References12. The 

notions of topology are taken from the textbook 

listed in References13. 

A directed graph or a digraph 𝐷 is a pair 

(𝑉, 𝐴) where 𝑉 is a finite nonempty set and 𝐴 is a 

subset of 𝑉 × 𝑉{(𝑥, 𝑥): 𝑥 ∈  𝑉}.The elements of 𝑉 

and 𝐴 are respectively called vertices and arcs. If 
(𝑢, 𝑣) ∈𝐴 then the arc (𝑢, 𝑣) is said to have 𝑢 as its 

initial vertex and 𝑣 as its terminal vertex. Also the 

arc (𝑢, 𝑣) is said to join 𝑢 to 𝑣. The in-degree (or in-

valence) 𝑑−(𝑣) of a vertex 𝑣 in a digraph,𝐷 is the 

number of arcs having 𝑣 as its terminal vertex.  The 

out-degree (or out-valence) 𝑑+(𝑣)  of 𝑣 is the 

number of arcs having 𝑣 as its initial vertex. 

Digraphs in which for every edge (𝑎, 𝑏) there is 

also an edge (𝑏, 𝑎) are called symmetric digraphs. 

A digraph 𝐷′ = (𝑉′, 𝐴′)  is called a subdigraph of 

𝐷 = (𝑉, 𝐴) if 𝑉′ ⊆ 𝑉and 𝐴′ ⊆ 𝐴. 𝐷′ is called an 

induced subgraph of 𝐷 if 𝐷′ is the maximal 

subgraph of  𝐷 with vertex set 𝑉′.The converse 

digraph 𝐷′of a digraph, 𝐷 is obtained from 𝐷 by 

reversing the direction of each arc. A digraph 𝐷 =
(𝑉, 𝐴) is called complete if for every pair of distinct 

points 𝑣 and 𝑤 in 𝑉, both (𝑣, 𝑤) and (𝑤, 𝑣) are in 

𝐴. A walk in a digraph is a finite alternating 

sequence of 𝑣0, 𝑥1, 𝑣1 … 𝑥𝑛𝑣𝑛 of vertices and arcs in 

which 𝑥𝑖 =  (𝑣𝑖−1 , 𝑣𝑖)for everyarc 𝑥𝑖. The vertices 

𝑣0and 𝑣𝑛arecalled origin and terminus of the walk 

respectively and 𝑣1, 𝑣2, … , 𝑣𝑛−1 are called internal 

vertices.A path is a walk in which all the vertices 

are distinct. If there is a path from 𝑢 to 𝑣then𝑣 is 

said to be reachable from 𝑢. A digraph is called 

strongly connected if every pair of points are 

mutually reachable. 

 

Topologies induced by vertex adjacency on the 

Vertex Set of a digraph 

This section aims to present the 

methodology of generating topologies on a vertex 

set of digraphs based on the notion of the valence of 

vertices in digraphs. The main properties of the 

induced topology and various approximations of 

different neighborhood sets are studied. Further, the 

basic properties of closure and interior of subgraphs 

with respect to these induced topological spaces are 

analyzed. 

 

Definition. 1: 

 Let 𝐷 = (𝑉, 𝐴) be a digraph with 𝑑+(𝑣) ≥
1 and 𝑑−(𝑣) ≥ 1 for every 𝑣 ∈ 𝑉. For every 𝑢 ∈
𝑉,define𝑢+(𝐷) = {𝑣 ∶ 𝑢𝑣 ∈ 𝐴(𝐷)}, 𝑢−(𝐷) =
 {𝑣 ∶ 𝑣𝑢 ∈ 𝐴(𝐷)}.Let 𝑆1(𝐷) = {𝑢+(𝐷) ∶ 𝑢 ∈
𝑉(𝐷)}, 𝑆2(𝐷) = {𝑢−(𝐷) ∶ 𝑢 ∈ 𝑉(𝐷)}. Then 𝑆1(𝐷) 

and 𝑆2(𝐷) form a subbase for topologies 𝑇1(𝐷) and 

𝑇2(𝐷) on 𝑉(𝐷) and the pairs 

(𝑉(𝐷), 𝑇1(𝐷)), (𝑉(𝐷), 𝑇2(𝐷)) are called out-

valence topological space and in-valence 

topological space respectively. 

 

Example.1: 

Consider the digraph in Fig.1.  
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Figure 1. Example of Valence Topological Space 

 

1+(𝐷) = {2}, 2+(𝐷) = {3}, 3+(𝐷) = {5}, 4+(𝐷) = 

{1,3}, 5+(𝐷) = {4}. 

𝑇1 = {𝜙, {2}, {3}, {5}, {1,3}, {4}, {2,3}, {2,5}, 

{1,2,3}, {2,4}, {3,5}, {3,4}, {1,3,5}, {4,5},{1,3,4}, 

{2,3,5}, {1,3,5,4}, {1,2,3,5}, {2,3,4}, {2,4,5}, 

{1,2,4,5}, {1,2,3,4,5}}. 

1−(𝐷) = {4}, 2−(𝐷) = {1}, 3−(𝐷) = {2,4}, 4−(𝐷) = 

{5}, 5−(𝐷) = {3}. 

𝑇2 = {𝜙,{4}, {1}, {2,4}, {5}, {3}, {1,4}, {4,5}, 

{3,4}, {1,2,4}, {4}, {1,5}, {1,3}, {2,4,5}, 

{2,3,4},{3,5}, {1,2,4}, {1,2,4,5}, {2,3,4,5}, 

{3,4,5}, {1,3,4,5}, {1,2,3,4,5}}. 

 

Definition.2: 

 Let 𝑇 be a topology on a set 𝑋. If 𝑇𝑐 =
{𝐺𝑐: 𝐺 ∈ 𝑇} is also a topology on X, then 𝑇𝑐  is the 

dual of 𝑇. 

 

From the definitions cited above the following 

observations are derived: 

 

Observation.1:  

1. For any digraph 𝐷, 𝑇1(𝐷) is not the dual of 

𝑇2(𝐷). 

2. In a symmetric digraph 𝐷, 𝑇1(𝐷) = 𝑇2(𝐷). 

3. If 𝐷 is a complete digraph, then 𝑇1(𝐷) = 𝑇2(𝐷). 

4. If 𝐷′is a converse digraph of a digraph 𝐷, then 

𝑢+(𝐷) = 𝑢−(𝐷)and 𝑢−(𝐷) = 𝑢+(𝐷).So 

𝑇1(𝐷) = 𝑇2(𝐷)and 𝑇2(𝐷) = 𝑇1(𝐷). 

 

Definition.3: 

 For any vertex 𝑣in 𝑉(𝐷), define 

⟨𝑣⟩+ = {∩𝑣∈𝑢+(𝐷) 𝑢+(𝐷), if there exists 𝑢 ∈ 𝑉(𝐷) 

such that 𝑣 ∈ 𝑢+(𝐷) and 𝜙 otherwise} and  

⟨𝑣⟩− = {∩𝑣∈𝑢−(𝐷) 𝑢−(𝐷), if there exists 𝑢 ∈ 𝑉(𝐷) 

such that 𝑣 ∈ 𝑢−(𝐷) and 𝜙 otherwise}.  

The families 𝐵1 = {⟨𝑣⟩+: 𝑣 ∈ 𝑉(𝐷)} and 𝐵2 =
{⟨𝑣⟩−: 𝑣 ∈ 𝑉(𝐷)} form a basis for topologies 

𝜏⟨𝑣⟩
+ (𝐷) and 𝜏⟨𝑣⟩

− (𝐷) respectively. The pair 

(𝑉(𝐷),𝜏⟨𝑣⟩
+ (𝐷)),(𝑉(𝐷),𝜏⟨𝑣⟩

− (𝐷)) are called min out-

valence topological space and min in-valence 

topological space respectively. 

Example.2: 

Consider the digraph in Fig.2. 

 

 
Figure 2. Example of min Valence Topological 

Space 

1+(𝐷) = {2}, 2+(𝐷) = {4}, 3+(𝐷) = {1}, 4+(𝐷) = 

{5,3}, 5+(𝐷) = {2}. 

1−(𝐷) = {3}, 2−(𝐷) = {1,5}, 3−(𝐷) = {4}, 4−(𝐷) = 

{2},5−(𝐷) = {4}. 

⟨1⟩+ = {1}, ⟨2⟩+ = {2}, ⟨3⟩+ = {5,3}, ⟨4⟩+ = {4}, 

⟨5⟩+ = {5,3} 

⟨1⟩− = {1,5}, ⟨2⟩− = {2}, ⟨3⟩− = {3}, ⟨4⟩− = {4}, 

⟨5⟩− = {1,5} 

S1 (𝐷) = {{2}, {4}, {1}, {5,3}, {2}}. 

Basis generated by S1(𝐷) = {{2}, {4}, {1}, {5,3}}. 

𝐵1 = {{2}, {4}, {1}, {5,3}}. 

Basis generated by S1(𝐷) = 𝐵1 and so 𝑇1(𝐷) = 

𝜏⟨𝑣⟩
+ (𝐷). 

S2 (𝐷) = {{3}, {1,5}, {4}, {2}, {4}} 

Basis generated by S2 (𝐷) = {{3}, {1,5}, {4}, {2}}. 

𝐵2 = {{3}, {1,5}, {4}, {2}}. 

Basis generated by S2(𝐷) = 𝐵2 and so 𝑇2(𝐷) = 

𝜏⟨𝑣⟩
− (𝐷). 

 

There may exist digraphs such that  𝑇1(𝐷) 

≠ 𝜏⟨𝑣⟩
+ (𝐷) and 𝑇2(𝐷)≠ 𝜏⟨𝑣⟩

− (𝐷). 

For instance: 

 

Example.3 

Consider the digraph in Fig.3 

 
Figure 3. Example for 𝑻𝟏(𝑫) ≠ 𝝉⟨𝒗⟩

+ (𝑫) and 

𝑻𝟐(𝑫)≠ 𝝉⟨𝒗⟩
− (𝑫) 
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1+(𝐷) = {6}, 2+(𝐷) = {1,4}, 3+(𝐷) = {5}, 

4+(𝐷) = {3}, 5+(𝐷) = {1,2}, 6+(𝐷) = {4,5}. 

1−(𝐷) = {2,5}, 2−(𝐷) = {5}, 3−(𝐷) = {4}, 

4−(𝐷) = {2,6}, 5−(𝐷) = {3,6}, 6−(𝐷) = {1}. 

⟨1⟩+ = {1}, ⟨2⟩+ = {1,2}, ⟨3⟩+ = {3}, ⟨4⟩+ = {4}, 

⟨5⟩+ = {5}, ⟨6⟩+ = {6}. 

⟨1⟩− = {1}, ⟨2⟩− = {2}, ⟨3⟩− = {3,6}, ⟨4⟩− = {4}, 

⟨5⟩− = {5}, ⟨6⟩− = {6}. 

S1(𝐷) = {{6}, {1,4}, {5}, {3}, {1,2}, {4,5}}. 

Basis generated by S1(𝐷) = 

{{6}, {1,4}, {5}, {3}, {1,2}, {4,5}, {1}, {4}}. 

𝐵1 = {{1}, {1,2}, {3}, {4}, {5}, {6}}. 

Basis generated by S1(𝐷) ≠ 𝐵1 and so 𝑇1(𝐷) ≠
𝜏⟨𝑣⟩

+ (𝐷). 

S2(𝐷) = {{2,5}, {5}, {4}, {2,6}, {3,6}, {1}}. 

Basis generated by S2(𝐷) = 

{{2,5}, {5}, {4}, {2,6}, {3,6}, {1}, {2}, {6}}. 

𝐵2 = {{1}, {2}, {3,6}, {4}, {5}, {6}}. 

Basis generated by S2(𝐷) ≠ 𝐵2 and so 𝑇2(𝐷) ≠
𝜏⟨𝑣⟩

− (𝐷). 

 

The following definition depicts the method 

of determining closure and interior of subgraphs of 

digraphs with respect to the valence of vertices. 

 

Definition.4: 
 Let H be a subgraph of D. In the out-

valence topological space (𝑉(𝐷),𝑇1(𝐷)), the closure 

of V(H), cl1(V(H)), is defined as cl1(V(H)) = V(H) 

∪ {v ∈ V(D) : v+(D)∩ V(H) ≠ 𝜙} and the interior 

of V(H),int1(V(H)),is defined as int1(V(H)) = 

{v ∈V(D) : v+(D) ⊆ V(H)}.In the in-valence 

topological space (𝑉(𝐷),𝑇2(𝐷)), the closure of 

V(H),cl2(V(H)), is defined as cl2(V(H)) = V(H) ∪
{v ∈ V(D) : v−(D)∩ V(H) ≠ 𝜙} and the interior of 

V(H), int2(V(H)), is defined as int2(V(H)) =      {v∈
 V(D) : v−(D) ⊆ V(H)}. 

In the min out-valence topological space (𝑉(𝐷), 

𝜏⟨𝑣⟩
+ (𝐷)), the closure of V(H), cl3(V(H)), is defined 

as cl3(V(H)) = V(H) ∪ {v ∈ V(D): ⟨𝑣⟩+ ∩ V(H) ≠
𝜙} and the interior of V(H), int3(V(H)), is defined 

asint3(V(H))= {v ∈ V(D) : ⟨𝑣⟩+ ⊆ V(H)}.In the 

min in-valence topological space (𝑉(𝐷), 𝜏⟨𝑣⟩
− (𝐷)), 

the closure of V(H), cl4(V(H)), is defined as 

cl4(V(H)) = V(H) ∪ {v∈ V(D): ⟨𝑣⟩− ∩ V(H) ≠ 𝜙} 

and the interior of V(H), int4(V(H)), is defined as 

int4(V(H)) ={v∈ V(D) : ⟨𝑣⟩− ⊆ V(H)}. 

 

The following definition defines a new 

topology generated from the old one. 

 

Definition.5: 

  For i = 1,2,3,4, 𝜏𝑖
∗ is defined as the 

topology generated by the closure cl𝑖.(ie), the 

topology consisting of complements of cl𝑖-closed 

sets. (i.e.) 𝜏𝑖
∗= {A∈ 𝜏𝑖: cl𝑖(A) = A} 

 

The following theorems relate the new 

topologies 𝜏1
∗and 𝜏2

∗. 

 

Theorem 1:𝜏1
∗ is the dual of 𝜏2

∗. 

Proof: To prove, if A ∈ 𝜏1
∗ then A𝑐 ∈ 𝜏2

∗. 

(i.e.) if cl1(A)=A then to prove cl2(A𝑐)=A𝑐. 

By definition, A𝑐 ⊆ cl2(A𝑐). 

If y ∈ cl2(A𝑐) then y ∈ A𝑐 or y ∈ {v : v−(D) ∩ A𝑐 ≠
𝜙}. 

If y ∈A𝑐 then the result follows. 

Let y ∈ {v : v−(D) ∩ A𝑐 ≠ 𝜙}. So y−(D) ∩ A𝑐 ≠ 𝜙. 

Hence there exists x ∈ A𝑐 such that x∈y−(D). 

x∈ y−(D) ⇒ xy is an arc in D. 

But x ∈ A𝑐 ⇒ x ∉ A ⇒ x ∉ cl1(A) ⇒ x+(D)∩ A = 

𝜙 ⇒ no element of A is in x+(D). 

Hence y ∉ A.So y ∈ A𝑐. 

Hence cl2(A𝑐) = A𝑐 and so 𝜏1
∗ is the dual of 𝜏2

∗.  

 

Theorem.2:𝐴 ∈ 𝜏1
∗ if and only if ∪𝑣∈𝐴 𝑣−(𝐷) ⊆ 𝐴. 

Proof: By Theorem1, A∈ 𝜏1
∗ ⇔ A𝑐 ∈ 𝜏2

∗ 

⇔A is 𝜏2
∗-closed 

⇔cl2(A) = A 

⇔ A ∪ {v : v−(D) ∩ A ≠ 𝜙} = A 

⇔∪𝑣∈𝐴 𝑣−(𝐷) ⊆ 𝐴. 

 

Theorem. 3:  A ∈ 𝜏2
∗ if and only if ⋃ 𝑣+(𝐷)𝑣∈𝐴 ⊆ 

A. 

Proof: Proof is similar to that of Theorem 2. 

 

Theorem.4:  If 𝐷 is a symmetric digraph, then 𝜏1
∗= 

𝜏2
∗. 

 

Proof: Now, 𝑐𝑙1(𝑉(𝐻) = 𝑉(𝐻) ∪ {𝑣 ∈
𝑉(𝐷): 𝑣+(𝐷) ∩ 𝑉(𝐻) ≠ 𝜙}. 

= 𝑉(𝐻) ∪ {𝑣 ∈ 𝑉(𝐷): 𝑣−(𝐷) ∩ 𝑉(𝐻) ≠ 𝜙}. 

= 𝑐𝑙2(𝑉(𝐻)). 

Also, 𝑖𝑛𝑡1(𝑉(𝐻) = {𝑣 ∈ 𝑉(𝐷): 𝑣+(𝐷) ⊆ 𝑉(𝐻)}. 

= {𝑣 ∈ 𝑉(𝐷): 𝑣−(𝐷) ⊆ 𝑉(𝐻)}. 

= 𝑖𝑛𝑡2(𝑉(𝐻)). 

Hence 𝜏1
∗= 𝜏2

∗. 

 

The basic properties of closure and interior 

with respect to the valence of vertices are presented 

in the following lemmas. 

 

Lemma.1:  If 𝐷 is a symmetric digraph, then the 

following are equivalent: 

(i) 𝑉(𝐻) = 𝑖𝑛𝑡1(𝑉(𝐻)) = 𝑖𝑛𝑡2(𝑉(𝐻)) 

(ii)𝑉(𝐻) = 𝑐𝑙1(𝑉(𝐻)) = 𝑐𝑙2(𝑉(𝐻)) 

Proof: Let 𝑉(𝐻) be 𝜏1
∗ open. Then by Theorem2, 

∪𝑣∈𝑉(𝐻) 𝑣−(𝐷) ⊆ 𝑉(𝐻). 

So ∪𝑣∈𝑉(𝐻) 𝑣+(𝐷) ⊆ 𝑉(𝐻). 
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Now,  

𝑐𝑙1(𝑉(𝐻)) = 𝑉(𝐻)

∪ {𝑣 ∈ 𝑉(𝐷): 𝑣+(𝐷) ∩ 𝑉(𝐻) ≠ 𝜙}
= 𝑉(𝐻)
∪ {𝑣 ∈ 𝑉(𝐷): 𝑣−(𝐷) ∩ 𝑉(𝐻) ≠ 𝜙} 

= 𝑉(𝐻) 

So V(H) is 𝜏1
∗ closed. 

Conversely, let 𝑉(𝐻) be 𝜏1
∗ closed. Then 

𝑐𝑙1(𝑉(𝐻)) = 𝑉(𝐻). 

So 𝑉(𝐻) ∪ {𝑣 ∈ 𝑉(𝐷): 𝑣+(𝐷) ∩ 𝑉(𝐻) ≠ 𝜙} =
𝑉(𝐻). 

Hence ∪𝑣∈𝑉(𝐻) 𝑣+(𝐷) ⊆ 𝑉(𝐻). 

So ∪𝑣∈𝑉(𝐻) 𝑣−(𝐷) ⊆ 𝑉(𝐻). 

By Theorem3, 𝑉(𝐻) is 𝜏1
∗ open. 

Lemma.2: In the min out-valence topological space 

(𝑉(𝐷),𝜏⟨𝑣⟩
+ (𝐷)), 𝑐𝑙3 (𝑐𝑙3(𝑉(𝐻))) = 𝑐𝑙3(𝑉(𝐻)). 

Proof: By definition, 𝑐𝑙3(𝑉(𝐻)) ⊆

𝑐𝑙3 (𝑐𝑙3(𝑉(𝐻))). 

Now, 𝑣 ∈ 𝑐𝑙3 (𝑐𝑙3(𝑉(𝐻))) ⇒ 𝑣 ∈ 𝑐𝑙3(𝑉(𝐻))or 

𝑣 ∈ {𝑣 ∈ 𝑉(𝐷): ⟨𝑣⟩+ ∩ 𝑐𝑙3(𝑉(𝐻)) ≠ 𝜙}. 

If  𝑣 ∈ 𝑐𝑙3(𝑉(𝐻)), then there is nothing to prove. 

Now, 𝑣 ∈ {𝑣 ∈ 𝑉(𝐷): ⟨𝑣⟩+ ∩ 𝑐𝑙3(𝑉(𝐻)) ≠ 𝜙} ⇒

⟨𝑣⟩+ ∩ 𝑐𝑙3(𝑉(𝐻)) ≠ 𝜙. 

⇒ ⟨𝑣⟩+ ∩ [𝑉(𝐻) ∪ {𝑥 ∈ 𝑉(𝐷): ⟨𝑥⟩+ ∩ 𝑉(𝐻) ≠
𝜙}] ≠ 𝜙. 

⇒ [⟨𝑣⟩+ ∩ 𝑉(𝐻)] ∪ [⟨𝑣⟩+ ∩ {𝑥 ∈ 𝑉(𝐷): ⟨𝑥⟩+ ∩
𝑉(𝐻) ≠ 𝜙}] ≠ 𝜙. 

⇒either[⟨𝑣⟩+ ∩ 𝑉(𝐻)] ≠ 𝜙 or [⟨𝑣⟩+ ∩ {𝑥 ∈
𝑉(𝐷): ⟨𝑥⟩+ ∩ 𝑉(𝐻) ≠ 𝜙}] ≠ 𝜙. 

⇒either𝑣 ∈ 𝑐𝑙3(𝑉(𝐻)) or there exists 𝑧 ∈
[⟨𝑣⟩+ ∩ {𝑥 ∈ 𝑉(𝐷): ⟨𝑥⟩+ ∩ 𝑉(𝐻) ≠ 𝜙}]. 
Now, 𝑧 ∈ ⟨𝑣⟩+ ⇒ ⟨𝑧⟩+ ⊆ ⟨𝑣⟩+. 

𝑧 ∈ {𝑥 ∈ 𝑉(𝐷): ⟨𝑥⟩+ ∩ 𝑉(𝐻) ≠ 𝜙} ⇒ ⟨𝑧⟩+ ∩
𝑉(𝐻) ≠ 𝜙. 

⇒ 𝑣 ∈ 𝑐𝑙3(𝑉(𝐻)). 

Hence 𝑐𝑙3 (𝑐𝑙3(𝑉(𝐻))) ⊆ 𝑐𝑙3(𝑉(𝐻)). 

 

The following definition defines some more 

neighborhood sets on the vertex set of a digraph. 

 

Definition.6: 

 For a vertex 𝑢 ∈ 𝑉(𝐷), the neighborhood 

sets are defined by: 

𝑂𝐴(𝑢) = {𝑣 ∈ 𝑉(𝐷): 𝑢+(𝐷) = 𝑣+(𝐷)} 

𝐼𝐴(𝑢) = {𝑣 ∈ 𝑉(𝐷): 𝑢−(𝐷) = 𝑣−(𝐷)} 

𝑚𝑖𝑛𝑂𝐴(𝑢) = {𝑣 ∈ 𝑉(𝐷):∩𝑢∈𝑦+(𝐷) 𝑦+(𝐷)

= ∩𝑣∈𝑥+(𝐷) 𝑥+(𝐷)} 

𝑚𝑖𝑛𝐼𝐴(𝑢) = {𝑣 ∈ 𝑉(𝐷):∩𝑢∈𝑦−(𝐷) 𝑦−(𝐷)

= ∩𝑣∈𝑥−(𝐷) 𝑥−(𝐷)} 

 

Fromthe above neighborhood sets, the valence set 

𝐴(𝐷) and min-valence set 𝑚𝑖𝑛𝐴(𝐷) are defined by: 

𝐴(𝐷) = {𝑣 ∈ 𝑉(𝐷): 𝑂𝐴(𝑣) = 𝐼𝐴(𝑣)} 

𝑚𝑖𝑛𝐴(𝐷) = {𝑣 ∈ 𝑉(𝐷): 𝑚𝑖𝑛𝑂𝐴(𝑣) = 𝑚𝑖𝑛𝐼𝐴(𝑣)} 

 

Also, the approximations of the neighborhood sets 

can be defined as follows: 

 

If H is a subgraph of D,then 

OA̅̅ ̅̅ (𝑉(𝐻)) = 𝑉(𝐻) ∪ {𝑢 ∈ 𝑉(𝐷): 𝑂𝐴(𝑢) ∩ 𝑉(𝐻)

≠ 𝜙} 

OA(𝑉(𝐻)) = {𝑢 ∈ 𝑉(𝐷): 𝑂𝐴(𝑢) ⊆ 𝑉(𝐻)} 

IA(𝑉(𝐻)) = 𝑉(𝐻) ∪ {𝑢 ∈ 𝑉(𝐷): 𝐼𝐴(𝑢) ∩ 𝑉(𝐻)

≠ 𝜙} 
IA(𝑉(𝐻)) = {𝑢 ∈ 𝑉(𝐷): 𝐼𝐴(𝑢) ⊆ 𝑉(𝐻)} 

minOA(𝑉(𝐻)) = 𝑉(𝐻) ∪ {𝑢

∈ 𝑉(𝐷): 𝑚𝑖𝑛𝑂𝐴(𝑢) ∩ 𝑉(𝐻) ≠ 𝜙} 

minOA(𝑉(𝐻)) = {𝑢 ∈ 𝑉(𝐷): 𝑚𝑖𝑛𝑂𝐴(𝑢) ⊆ 𝑉(𝐻)} 

minIA(𝑉(𝐻)) = 𝑉(𝐻) ∪ {𝑢

∈ 𝑉(𝐷): 𝑚𝑖𝑛𝐼𝐴(𝑢) ∩ 𝑉(𝐻) ≠ 𝜙} 

𝑚𝑖𝑛𝐼𝐴_(𝑉(𝐻)) = {𝑢 ∈ 𝑉(𝐷): 𝑚𝑖𝑛𝐼𝐴(𝑢) ⊆ 𝑉(𝐻)} 

 

Example.4: 

Consider the digraph in Fig.4 

 
Figure 4. Example of NeighborhoodSets 

 

1+(𝐷) = {6}, 2+(𝐷) = {3}, 3+(𝐷) = {4}, 4+(𝐷)
= {2,5}, 5+(𝐷) = {1}, 6+(𝐷)
= {2,5} 

1−(𝐷) = {5}, 2−(𝐷) = {4,6}, 3−(𝐷) = {2}, 4−(𝐷)
= {3}, 5−(𝐷) = {4,6}, 6−(𝐷)
= {1} 

𝑂𝐴(1) = 𝜙, 𝑂𝐴(2) = 𝜙, 𝑂𝐴(3) = 𝜙, 𝑂𝐴(4)
= {6}, 𝑂𝐴(5) = 𝜙, 𝑂𝐴(6) = {4} 

𝐼𝐴(1) = 𝜙, 𝐼𝐴(2) = {5}, 𝐼𝐴(3) = 𝜙, 𝐼𝐴(4)
= 𝜙, 𝐼𝐴(5) = {2}, 𝐼𝐴(6) = 𝜙 

𝐴(𝐷) = {1,3} 
𝑚𝑖𝑛𝑂𝐴(1) = 𝜙, 𝑚𝑖𝑛𝑂𝐴(2) = {5}, 𝑚𝑖𝑛𝑂𝐴(3)

= 𝜙, 𝑚𝑖𝑛𝑂𝐴(4) = 𝜙, 𝑚𝑖𝑛𝑂𝐴(5)
= {2}, 𝑚𝑖𝑛𝑂𝐴(6) = 𝜙 

𝑚𝑖𝑛𝐼𝐴(1) = 𝜙, 𝑚𝑖𝑛𝐼𝐴(2) = 𝜙, 𝑚𝑖𝑛𝐼𝐴(3)
= 𝜙, 𝑚𝑖𝑛𝐼𝐴(4) = {6}, 𝑚𝑖𝑛𝐼𝐴(5)
= 𝜙, 𝑚𝑖𝑛𝐼𝐴(6) = {4}. 
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𝑚𝑖𝑛𝐴(𝐷) = {1,3} 

 

For 𝑉(𝐻) = {1,4}, 

OA(𝑉(𝐻)) = {1,4,6}, OA_(𝑉(𝐻)) = {6} 

IA(𝑉(𝐻)) = {1,4}, 𝐼𝐴(𝑉(𝐻)) = 𝜙 

minOA(𝑉(𝐻)) = {1,4}, 𝑚𝑖𝑛𝑂𝐴(𝑉(𝐻)) = 𝜙 

minIA(𝑉(𝐻)) = {1,4,6}, minIA(𝑉(𝐻)) = {6}. 

So, A(D) = minA(D) 

 

Now, seeing an example in which 𝐴(𝐷) ≠
𝑚𝑖𝑛𝐴(𝐷). 

 

Example.5: 

Consider the digraph in Fig.5 

 

 
Figure 5. Example for 𝑨(𝑫) ≠ 𝒎𝒊𝒏 𝑨(𝑫) 

 

1+(𝐷) = {3,5}, 2+(𝐷) = {1,4}, 3+(𝐷)
= {2}, 4+(𝐷) = {3}, 5+(𝐷)
= {1,4} 

1−(𝐷) = {5,2}, 2−(𝐷) = {3}, 3−(𝐷) =
{1,4}, 4−(𝐷) = {2,5}, 5−(𝐷) = {1}𝑂𝐴(1) =
𝜙, 𝑂𝐴(2) = {5}, 𝑂𝐴(3) = 𝜙, 𝑂𝐴(4) = 𝜙, 𝑂𝐴(5) =
{2}𝐼𝐴(1) = {4}, 𝐼𝐴(2) = 𝜙, 𝐼𝐴(3) = 𝜙, 𝐼𝐴(4) =
{1}, 𝐼𝐴(5) = 𝜙                                                                                     

A(𝐷) = {1,3} 

𝑚𝑖𝑛𝑂𝐴(1) = {4}, 𝑚𝑖𝑛𝑂𝐴(2) = 𝜙, 𝑚𝑖𝑛𝑂𝐴(3)
= 𝜙, 𝑚𝑖𝑛𝑂𝐴(4) = {1}, 𝑚𝑖𝑛𝑂𝐴(5)
= 𝜙𝑚𝑖𝑛𝐼𝐴(1) = 𝜙, 𝑚𝑖𝑛𝐼𝐴(2)
= {5}, 𝑚𝑖𝑛𝐼𝐴(3) = 𝜙, 𝑚𝑖𝑛𝐼𝐴(4)
= 𝜙, 𝑚𝑖𝑛𝐼𝐴(5) = {2}, 𝑚𝑖𝑛𝐴(𝐷)
= {3} 

So 𝐴(𝐷) ≠ 𝑚𝑖𝑛𝐴(𝐷). 

 

Note that, for any digraph 𝐷, 𝑚𝑖𝑛𝐴(𝐷) ⊆ 𝐴(𝐷). 

The following proposition is a consequence of the 

respective definitions: 

 

Proposition.1:  (i) 𝑂𝐴(𝑉(𝐷)) = 𝑉(𝐷) and 

𝑂𝐴(𝑉(𝐷)) = 𝑉(𝐷) 

(ii) 𝑂𝐴(𝑉(𝐻)) ⊆ 𝑉(𝐻)and𝑉(𝐻) ⊆ 𝑂𝐴(𝑉(𝐻)) 

(iii) If 𝑉(𝐻) ⊆ 𝑉(𝐾), then 𝑂𝐴(𝑉(𝐻)) ⊆

𝑂𝐴(𝑉(𝐾)) and 𝑂𝐴(𝑉(𝐻)) ⊆ 𝑂𝐴(𝑉(𝐾)) 

(iv) 𝑂𝐴 (OA(𝑉(𝐻))) =

𝑂𝐴(𝑉(𝐻)) and 𝑂𝐴 (OA(𝑉(𝐻))) = 𝑂𝐴(𝑉(𝐻)) 

(v)𝑂𝐴(𝑉(𝐻) ∩ 𝑉(𝐾)) = 𝑂𝐴(𝑉(𝐻)) ∩

𝑂𝐴(𝑉(𝐾))andOA(𝑉(𝐻) ∩ 𝑉(𝐾)) ⊆ 𝑂𝐴(𝑉(𝐻)) ∩

𝑂𝐴(𝑉(𝐾)) 

(vi) 𝑂𝐴(𝑉(𝐻)) ∪ 𝑂𝐴(𝑉(𝐾)) ⊆ OA_(𝑉(𝐻) ∪

𝑉(𝐾))and𝑂𝐴(𝑉(𝐻) ∪ 𝑉(𝐾)) = 𝑂𝐴(𝑉(𝐻)) ∪

𝑂𝐴(𝑉(𝐾)) 

(vii) 𝑂𝐴(𝑉(𝐻)) = (OA(𝑉(𝐻))
𝑐
)

𝑐
and𝑂𝐴(𝑉(𝐻)) =

(OA(𝑉(𝐻))
𝑐
)

𝑐
 

 

The above result also holds for other neighborhood 

sets. 

 

Topologies induced by reachability on Vertex Set 

of a digraph: 

 Reachability in digraphs is one of the most 

common queries in a graph database. In many 

applications where graphs are used as the basic data 

structure, reachability is one of the fundamental 

operations. The efficient processing of reachability 

queries is critical in the graph database. 

This section aims to present the methodology of 

generating topologies on a vertex set of digraphs 

based on the notion of the reachability of vertices in 

digraphs. The main properties of the induced 

topology and the basic properties of closure and 

interior of subgraphs with respect to those induced 

topological spaces are analyzed. 

 

Definition.7: 

 Let 𝐷 = (𝑉, 𝐴) be a digraph with d+ (v) ≥1 

and d− (v) ≥1 for every v ∈ 𝑉. For every u ∈ 𝑉, 

define u𝑅
+(𝐷) ={v∈ V(D) : v is reachable from 

u},u𝑅
−(𝐷) ={v ∈ V(D) : u is reachable from v}. 

Since every vertex is assumed to be reachable from 

itself, u ∈u𝑅
+(𝐷) and u ∈ u𝑅

−(𝐷).Let S𝑅
+(𝐷) = 

{u𝑅
+(𝐷) : u ∈ V(𝐷},S𝑅

−(𝐷) ={u𝑅
−(𝐷) : u ∈ V(𝐷)}. 

Then S𝑅
+(𝐷) and S𝑅

−(𝐷) form a subbasefor 

topologies 𝑇𝑅
+(𝐷) and 𝑇𝑅

−(𝐷) on 𝑉(𝐷) and the 

pairs (𝑉(𝐷), 𝑇𝑅
+(𝐷)),(𝑉(𝐷),𝑇𝑅

−(𝐷))are called out-

reachable topological space and in-reachable 

topological space respectively. 

 

Example.6: 

Consider the digraph in Fig.6. 
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Figure 6. Example of Reachability Topological 

Space  

 

1𝑅
+(𝐷) = {1,2,3,4,5}, 2𝑅

+(𝐷) = {1,2,3,4,5}, 

3𝑅
+(𝐷) = {1,2,3,4,5}, 4𝑅

+(𝐷) = {1,2,3,4,5}, 

5𝑅
+(𝐷) = {1,2,3,4,5}, 6𝑅

+(𝐷) = {1,2,3,4,5,6} 

𝑇𝑅
+(𝐷) = {𝜙,{ 1,2,3,4,5},{1,2,3,4,5,6}} 

1𝑅
−(𝐷) = {1,2,3,4,5,6}, 2𝑅

−(𝐷) = {1,2,3,4,5,6}, 

3𝑅
−(𝐷) = {1,2,3,4,5,6}, 4𝑅

−(𝐷) = {1,2,3,4,5,6}, 

5𝑅
−(𝐷) = {1,2,3,4,5,6}, 6𝑅

−(𝐷) = {6} 

𝑇𝑅
−(𝐷)={𝜙,{1,2,3,4,5,6},{6}} 

 

Observation.2: 

If 𝐷 is a strongly connected digraph, then 𝑇𝑅
+(𝐷)= 

𝑇𝑅
−(𝐷). 

 

Theorem.5:i. 𝐴 ∈ 𝑇𝑅
+(𝐷) if and only if 𝐴 =

∪𝑢∈𝐴 𝑢𝑅
+(𝐷) 

ii. 𝐴 ∈ 𝑇𝑅
−(𝐷) if and only if 𝐴 = ∪𝑢∈𝐴 𝑢𝑅

−(𝐷) 

 

Proof:i. Assume that 𝐴 ∈ 𝑇𝑅
+(𝐷). 

If 𝑦 ∈ 𝐴, then by definition, 𝑦 ∈ 𝑦𝑅
+(𝐷). 

So, 𝑦 ∈ ∪𝑢∈𝐴 𝑢𝑅
+(𝐷) and 𝐴 ⊆ ∪𝑢∈𝐴 𝑢𝑅

+(𝐷) 

Assume that 𝑦 ∈  ∪𝑢∈𝐴 𝑢𝑅
+(𝐷). 

Hence 𝑦 ∈ 𝑢𝑅
+(𝐷) for some 𝑢 ∈ 𝐴 and y is 

reachable from u. 

If 𝑧 ∈ 𝑦𝑅
+(𝐷), then z is reachable from y and hence 

z is reachable from u. 

So, 𝑧 ∈ 𝑢𝑅
+(𝐷)and 𝑦𝑅

+(𝐷) ⊆ 𝑢𝑅
+(𝐷). 

Since 𝑦 ∈ 𝑦𝑅
+(𝐷)and 𝐴 ∈ 𝑇𝑅

+(𝐷), 𝑦 ∈ 𝐴. 

Therefore, ∪𝑢∈𝐴 𝑢𝑅
+(𝐷) ⊆ 𝐴. 

Hence 𝐴 =∪𝑢∈𝐴 𝑢𝑅
+(𝐷). 

Conversely, assume that 𝐴 =∪𝑢∈𝐴 𝑢𝑅
+(𝐷). 

For each 𝑢 ∈ 𝐴, 𝑢𝑅
+(𝐷) belongs to the subbasis of 

𝑇𝑅
+(𝐷) and so ∪𝑢∈𝐴 𝑢𝑅

+(𝐷) ∈ 𝑇𝑅
+(𝐷). 

So 𝐴 ∈ 𝑇𝑅
+(𝐷). 

ii. Proof is similar to that of (i). 

 

The following theorem relates 𝑇𝑅
+(𝐷)and  𝑇𝑅

−(𝐷). 

 

Theorem.6:𝑇𝑅
+(𝐷) is the dual of 𝑇𝑅

−(𝐷). 

 

Proof: It is enough to prove, 𝐴 ∈ 𝑇𝑅
+(𝐷) ⇒ 𝐴𝑐 ∈

𝑇𝑅
−(𝐷) 

By Theorem5, it is enough to prove 𝐴 =
∪𝑢∈𝐴 𝑢𝑅

+(𝐷) ⇒ 𝐴𝑐 =∪𝑢∈𝐴𝑐 𝑢𝑅
−(𝐷). 

Suppose that 𝐴 =  ∪𝑢∈𝐴 𝑢𝑅
+(𝐷)and 𝐴𝑐 ≠

 ∪𝑢∈𝐴𝑐 𝑢𝑅
−(𝐷). 

Hence there exists 𝑦 ∈  ∪𝑢∈𝐴𝑐 𝑢𝑅
−(𝐷)and 𝑦 ∉ 𝐴𝑐. 

So, there exists 𝑢 ∈ 𝐴𝑐 such that 𝑦 ∈ 𝑢𝑅
−(𝐷)and 𝑦 ∈

𝐴. 

Therefore, u is reachable from 𝑦and 𝑦 ∈ 𝐴. 

Hence 𝑢 ∈ ∪𝑦∈𝐴 𝑦𝑅
+(𝐷) 

So 𝑢 ∈ 𝐴this is a contradiction. 

Thus 𝐴𝑐 =∪𝑢∈𝐴𝑐 𝑢𝑅
−(𝐷). 

 

The following definition depicts the method of 

determining the closure and interior of subgraphs of 

digraphs with respect to topologies induced by the 

reachability of vertices. 

 

Definition.8: 

 Let H be a subgraph of D. In the out-

reachable topological space (𝑉(𝐷),𝑇𝑅
+(𝐷)), the 

closureof V(H), 𝑐𝑙1
𝑅(𝑉(𝐻)), is defined as 

𝑐𝑙1
𝑅(𝑉(𝐻)) = 𝑉(𝐻) ∪ {𝑣 ∈ 𝑉(𝐷): 𝑣𝑅

+(𝐷) ∩

𝑉(𝐻) ≠ 𝜙} and the interiorof V(H), 𝑖𝑛𝑡1
𝑅(𝑉(𝐻)), is 

defined as 𝑖𝑛𝑡1
𝑅(𝑉(𝐻)) = {𝑣 ∈ 𝑉(𝐷): 𝑣𝑅

+(𝐷) ⊆
𝑉(𝐻)}.In the in-reachable topological space 

(𝑉(𝐷),𝑇𝑅
−(𝐷)), the closure of V(H), 𝑐𝑙2

𝑅(𝑉(𝐻)), is 

defined as 𝑐𝑙2
𝑅(𝑉(𝐻)) = 𝑉(𝐻) ∪ {𝑣 ∈

𝑉(𝐷): 𝑣𝑅
−(𝐷) ∩ 𝑉(𝐻) ≠ 𝜙} and the interior of 

V(H), 𝑖𝑛𝑡2
𝑅(𝑉(𝐻)), is defined as 𝑖𝑛𝑡2

𝑅(𝑉(𝐻)) = 

{𝑣 ∈ 𝑉(𝐷): 𝑣𝑅
−(𝐷) ⊆ 𝑉(𝐻)}. 

 

The basic properties of closure and interior of 

subgraphs of digraphs with respect to topologies 

induced by the reachability of vertices are presented 

in the following proposition. 

 

Proposition.2: (i). If (𝑉(𝐷),𝑇𝑅
+(𝐷)) is an out-

reachable topological space and 𝐻 is a subgraph of 

𝐷, then 𝑐𝑙1
𝑅 (𝑐𝑙1

𝑅(𝑉(𝐻))) = 𝑐𝑙1
𝑅(𝑉(𝐻)). 

(ii). If (𝑉(𝐷),𝑇𝑅
−(𝐷)) is an in-reachable topological 

space and 𝐻 is a subgraph of 𝐷, then 

𝑙2
𝑅 (𝑐𝑙2

𝑅(𝑉(𝐻))) = 𝑐𝑙2
𝑅(𝑉(𝐻)). 

Proof: (i). By definition, 𝑐𝑙1
𝑅(𝑉(𝐻)) ⊆

𝑐𝑙1
𝑅 (𝑐𝑙1

𝑅(𝑉(𝐻))). 

To prove 𝑐𝑙1
𝑅 (𝑐𝑙1

𝑅(𝑉(𝐻))) ⊆ 𝑐𝑙1
𝑅(𝑉(𝐻)). 

Let 𝑣 ∈ 𝑐𝑙1
𝑅 (𝑐𝑙1

𝑅(𝑉(𝐻))). 

Hence 𝑣 ∈ 𝑐𝑙1
𝑅(𝑉(𝐻))or 𝑣 ∈ {𝑢 ∈ 𝑉(𝐷): 𝑢𝑅

+(𝐷) ∩

𝑐𝑙1
𝑅(𝑉(𝐻)) ≠ 𝜙}. 

If 𝑣 ∈ 𝑐𝑙1
𝑅(𝑉(𝐻)), then there is nothing to prove. 

If 𝑣 ∈ {𝑢 ∈ 𝑉(𝐷): 𝑢𝑅
+(𝐷) ∩ 𝑐𝑙1

𝑅(𝑉(𝐻)) ≠ 𝜙}, then 

𝑣𝑅
+(𝐷) ∩ 𝑐𝑙1

𝑅(𝑉(𝐻)) ≠ 𝜙. 



Open Access     Baghdad Science Journal                                 P-ISSN: 2078-8665 

2023, 20(1 Special Issue) ICAAM: 350-358                                                            E-ISSN: 2411-7986 

 

357 

 

So there is some 𝑥 ∈ 𝑐𝑙1
𝑅(𝑉(𝐻)) such that 𝑥 is 

reachable from 𝑣. 

Since 𝑥 ∈ 𝑐𝑙1
𝑅(𝑉(𝐻)),𝑥 ∈ 𝑉(𝐻) or 𝑥 ∈

{𝑦: 𝑦𝑅
+(𝐷) ∩ 𝑉(𝐻) ≠ 𝜙}. 

Now, 𝑥𝑅
+(𝐷) ∩ 𝑉(𝐻) ≠ 𝜙. 

⇒there exists 𝑧 ∈ 𝑉(𝐻) such that z is reachable 

from 𝑥. 

⇒there exists 𝑧 ∈ 𝑉(𝐻) such that z is reachable 

from 𝑣. 

⇒there exists 𝑧 ∈ 𝑉(𝐻) such that 𝑧 ∈ 𝑣𝑅
+(𝐷). 

⇒ 𝑧 ∈ 𝑉(𝐻) ∩ 𝑣𝑅
+(𝐷). 

⇒ 𝑉(𝐻) ∩ 𝑣𝑅
+(𝐷) ≠ 𝜙. 

⇒ 𝑣 ∈ 𝑐𝑙1
𝑅(𝑉(𝐻)). 

Hence 𝑐𝑙1
𝑅 (𝑐𝑙1

𝑅(𝑉(𝐻))) ⊆ 𝑐𝑙1
𝑅(𝑉(𝐻)) and so 

𝑐𝑙1
𝑅 (𝑐𝑙1

𝑅(𝑉(𝐻))) = 𝑐𝑙1
𝑅(𝑉(𝐻)). 

(ii). Proof is similar to that of (i). 

 

Applications: 
Complex network theory plays a vital role 

in the bio-chemical and bio-medical fields. Such 

networks, electrical circuits, and information 

systems can be modeled using Graph Theory notion 

by representing vertices and edges as the nature of 

the trend of study. The most important feature of the 

hydrogen bond is that it possesses direction and 

hence hydrogen bond networks along with co-

operativity and antico-opertativity can be modeled 

as directed graphs. Hydrogen bond networks can be 

represented by digraphs where vertices correspond 

to the donor and acceptor group, and arcs 

correspond to hydrogen bonds from proton-donor to 

proton-acceptor. Protein functioning can be shown 

graphically. Interactions between entities such as 

proteins, chemicals, or macro molecules can be 

represented using directed graphs and it can also be 

used to describe biological pathways. The most 

important issue in our biological system is the 

process of blood circulation and the functioning of 

the kidney. Medical tests play an important role in 

the life of rights to make sure that the retreat of 

diseases, perhaps the most prominent of those 

analyzes macro-economic analysis functions. 

Through the medical application, the system can be 

modeled graphically. By considering the parts of the 

heart/kidney as vertices and the flow of blood/liquid 

between the parts as edges, the systems can be 

modeled as directed graphs. Interior and closure of 

induced subgraphs under the topology generated 

from the resulting directed graph of the system will 

detect and predict the diseases of the heart/kidney. 

 

Conclusion: 
Based on different types of binary relation 

on a set and the topologies induced by 

them,subbasis and basis for different topologies on 

the vertex set of directed graphs are introduced. 

Using the binary relations,adjacency, and 

reachability on a vertex set of digraphs different 

topologies were generated. The different topologies 

generated were compared under different contexts. 

Some basic properties of closure and interior of 

subgraphs of a digraph are studied. The results 

discussed in this paper will be helpful in further 

study of some other topological structures and their 

properties. Also, the results and properties discussed 

in this paper can be studied further with respect to 

other binary relations on the vertex set of a digraph. 

The study of complex networks in the biological 

field can be done effectively using the mathematical 

division Graph Theory. The topologies generated 

using the digraphs can be used to solve problems on 

digraphs thatfocus on directed paths. This paper can 

be regarded as an initial stage of studying 

topological structure on digraphs which could lead 

to significant applications in real life. 
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 الانشاءات التبولوجية للرسومات الثنائية لمجموعة الرؤس
 

 2* ب. جناناشاندرا           1ك. لاليثامبيجاي

 
 المستقلة(، سيفاكاسي، تاميل نادو، الهند.قسم الرياضيات، كلية سري كاليسواري )التابعة لجامعة مادوراي كاماراج 1
يل مركز البحوث والدراسات العليا في الرياضيات، كلية أيا نادار جاناكي أمل )التابعة لجامعة مادوراي كاماراج المستقلة(، سيفاكاسي، تام2

 نادو، الهند.

 

 :الخلاصة

على  Rات الحياة الواقعية به. يمكن دائما تمثيل العلاقة الثنائية العلاقة على مجموعة هي نموذج رياضي بسيط يمكن توصيل العديد من بيان

. في هذا Xبواسطة العلاقات الثنائية على المجموعة  Xبواسطة الرسومات الثنائية. يمكن إنشاء التبولوجيا على المجموعة  Xالمجموعة 

التي يتم تعريف تبولوجيتها من خلال تجاور العلاقات الثنائية الاتجاه ، ستنظر الدراسة في فئات كلاسيكية مختلفة من المساحات التبولوجية 

وإمكانية الوصول على مجموعة الرؤس في الرسم البياني الموجه. يحلل هذا البحث بعض خصائص هذه التبولوجيا ويدرس خصائص الإغلاق 

، يتم الاستشهاد ببعض تطبيقات التبولوجيا الناتجة عن  والداخلية لمجموعة الرؤوس من الرسوم البيانية الفرعية للرسم البياني. علاوة على ذلك

 للرسومات الثنائية في دراسة النظم البيولوجية.
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