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Introduction 

The World Health Organization declared the 

novel coronavirus (COVID-19) a worldwide 

pandemic on 11 March 20201. As of 10 August 2022, 

COVID-19 had caused over 584 million confirmed 

cases, including 6,418,958 deaths. Since then, 

COVID-19 has been the subject of extensive 

research2-5. To control the spread of the pandemic, 

governments worldwide have deployed considerable 

efforts and resources to develop COVID-19 

vaccines6. Researchers have tested several 

approaches to COVID-19 vaccine development 

including mRNA7,8.  

Ribonucleic acid (RNA) is usually a single-stranded 

molecule. It has a backbone made of alternating 

phosphate groups and the sugar ribose, attached to 

each sugar is one of four bases: adenine (A), uracil 

(U), cytosine (C), and guanine (G). Various types of 

RNA exist in cells: mRNA, ribosomal RNA (rRNA), 
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and transfer RNA (tRNA)9, 10. While mRNA 

vaccines are relatively easier to manufacture 

compared to traditional inoculations, maintaining 

their stability remains a significant challenge. 

Researchers have found that mRNA vaccines are 

prone to degradation under various conditions such 

as changes in temperature or environment11. For 

example, a single cut can make the mRNA vaccine 

unusable12. The potential for damage to the mRNA 

vaccine is a significant concern, as it can render the 

vaccine ineffective. Currently, there is limited 

understanding of where the mRNA backbone is most 

vulnerable. Therefore, identifying stable mRNA 

COVID-19 vaccine molecules is essential for the 

widespread distribution and vaccination of large 

populations.  

Ing et al13, developed two machine learning 

algorithms to predict the deterioration rate of the 

mRNA vaccine for COVID-19. They used linear 

regression (LR) and light gradient boosting machines 

(LGBM) to build up deterioration prediction models 

using the Python language. Using a dataset 

comprising thousands of mRNA molecules with 

known deterioration rates at each position from the 

Eterna platform, the results showed that the LGBM 

performs better than linear regression (LR) when 

evaluated with the RMSE metric13. 

Muneer et al14, looked into the potential of hybrid DL 

in predicting the deterioration of COVID-19 mRNA 

from mRNA sequences. Two deep hybrid neural 

network models were developed, one that combined 

graph convolutional neural networks (GCNs) and 

(GRU), and another that combined GCNs and 

convolutional neural networks (CNNs). The findings 

revealed that the GCN_GRU hybrid model was 

superior to the GCN_CNN model. Specifically, the 

GCN_GRU model had the highest MCRMSE and 

AUC scores14.  

Krishna et al15 , clarified that the biggest challenge to 

mRNA vaccine production is structural instability. 

Using an appropriate sequence to vector 

representation, they applied three pre-trained gene 

embedding models (dna2vec, rna2vec, and lshvec) 

for predicting the amount of deterioration of the 

mRNA vaccine sequences. They compared the pre-

trained models and found that dna2vec embedding 

performed best15. 

Imran et al16, used a regularized long short-term 

memory network (LSTM) which is a type of 

recurrent neural network (RNN) to develop a 

prediction model to conclude the deterioration rates 

of the COVID-19 mRNA Vaccine. With the help of 

a Stanford dataset of the COVID-19 mRNA vaccine, 

they employed the LSTM to identify if and where 

mRNAs might be unstable under certain incubation 

measures. They found that LSTM performed better 

than tree-based algorithms using MCRMSE as a 

performance evaluation metric16. 

This study aims to use modern DL techniques, to 

design a prediction model for the deterioration of 

COVID-19 mRNA vaccine molecules to improve the 

stability of COVID-19 mRNA vaccines during the 

transportation process. The model will predict the 

probability of the deterioration rates for each position 

inside the mRNA sequence.  

 

Materials and Methods 

Dataset  

On September, 11, 2020, researchers at 

Stanford University and the Eterna community 

partnered to sponsor a Kaggle competition to solve 

deterioration problems in mRNA. Researchers 

collected the data for 6034 mRNA sequences17. The 

dataset is available in the Kaggle repository, 

(https://www.kaggle.com/competitions/stanford-

covid-vaccine/data). 

The lengths of the mRNA sequences are 107 bases. 

mRNA sequences are available with labels 

containing the deterioration rates measured at 

different locations of the mRNA sequence, namely 

reactivity values (reactivity) and deterioration rates 

at high pH (deg pH10), high temperature (deg 50 C), 

high pH with Magnesium (deg Mg pH10) and at high 

temperature with Magnesium (deg Mg 50 C). For 

each mRNA sequence, three input features and five 

outputs\targets features were provided. Table 1 

shows the input labels and their descriptions and 

examples used in this study. Output labels are listed 

in table 2. This study will develop a bidirectional 

GRU that takes the RNA sequence information as 

input and produces five predictions of deterioration 

rates at each base.  
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Tables 1. Input labels used in this study and their descriptions and examples17. 

Feature Sequence 

Length 

Sequence 

type 

Description Example 

Sequence 1x107 

(Scored for 

68 bases)  

string It represents the RNA sequence. It is a 

combination of four bases: adenine (A), 

uracil (U), cytosine (C), and guanine (G) 

for each sample. 

GGAAAAGCUCUA… 

Structure 1x107 

(Scored for 

68 bases) 

string It contains a sequence of ’.’, ’(’, and ’)’, 

indicating whether bases are paired or 

unpaired. Paired bases are denoted by 

opening and closing parentheses.  

. . ... . ..((((((.......)))).)).. 

Predicted  

loop type 

1x107 

(Scored for 

68 bases) 

string It describes the structural context of each 

character in the sequence. They used 

bpRNA tool documented in 18. It predicts 

the loop types as the following labels: 

hairpin loop (H), paired stem (S), 

multiloop (M), bulge (B), internal loop (I), 

external loop (X), and dangling end (E). 

EEESSSHSSSSBSSX… 

 

Table 2. Output (Reactivity) labels and their descriptions17. 

Feature Sequence 

Length 

Sequence 

type 

Description 

Reactivity 1x68  A vector of 

floating-point 

numbers  

"It indicates the reactivity values for the first 68 bases in the 

sequence and is used to determine the likely secondary 

structure of the RNA sample". 

Deg pH10 1x68  A vector of 

floating-point 

numbers  

"It represents reactivity values for the first 68 bases as 

denoted in sequence. It is used to determine the likelihood of 

deterioration at the base/linkage after incubating without 

magnesium at high pH (pH 10)". 

Deg Mg pH10 1x68  A vector of 

floating-point 

numbers  

"It represents reactivity values for the first 68 bases as 

denoted in sequence and is used to determine the likelihood of 

deterioration at the base/linkage after incubating with 

magnesium at high pH (pH 10)". 

Deg 50 C 1x68  A vector of 

floating-point 

numbers  

"It indicates reactivity values for the first 68 bases as denoted 

in sequence and is used to determine the likelihood of 

deterioration at the base/linkage after incubating without 

magnesium at a high temperature (50 degrees Celsius)". 

Deg Mg 50 C 1x68  A vector of 

floating-point 

numbers  

"It indicates reactivity values for the first 68 bases as denoted 

in sequence and is used to determine the likelihood of 

deterioration at the base/linkage after incubating with 

magnesium at high temperature (50 degrees Celsius)". 

 

Features engineering 

Three categorical features are extracted from 

the mRNA, namely sequence (describes the RNA 

sequence), structure (indicates whether a base is 

paired or unpaired), and predicted loop type (defines 

the structural context). Sequence features result in 

four features by converting the A, U, G, and C base 

pair sequences to integer class vectors, structure 

features are extracted for each position of the mRNA 

resulting in three features, and the predicted loop 

results in seven features. Base method process for 

encoding the categorical features is applied19. 

Model Architecture  

Sequence prediction is a dispute that requires 

using historical sequence information to predict the 

next values in the sequence. The proposed model 

relies on a bidirectional GRU which is a variation of 

traditional LSTM networks. Cho et al20, 21, proposed 

the GRU to make each recurrent unit adaptively 

capture dependencies on a varied time scale. It 

https://dx.doi.org/10.21123/bsj.2023.8504
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allows for the use of information from both 

directions (previous time steps and later time steps) 

to make predictions about the current state. In the 

bidirectional GRU model, categorical input features 

are encoded and fed into an embedding layer, which 

adds extra information to the neural network. In this 

study, the embedding layer extracted 200 features 

instead of the 14 input encoded features. The 

processed, encoded, and embedded features are then 

used as input for the bidirectional GRU sequence 

model layers. 

The model consists of three layers of bidirectional 

GRUs, with 256 hidden units in each direction for 

each layer, resulting in 512 bidirectional units per 

layer. The bidirectional layers are utilized to improve 

the performance, by processing the data in both 

forward and backward directions to capture the 

information in the sequence data. The description of 

the bidirectional GRU model is depicted in table 3. 

The dropout process acts like a regularization 

parameter to overcome the overfitting problem in the 

learning process which makes the model less 

sensitive to the particular weights so that it can 

generalize better. Finally, the dense layer (Dense) 

has five outputs (reactivity values at each base) and 

the activation function is linear as it is a regression 

problem. Adam optimizer is used because of its 

advantages concerning memory, simplicity, and 

computation. The loss function is the MCRMSE as 

described in Eq1. 

 

Table 3. Bidirectional GRU sequence model summary for layers, output shape, and number of 

parameters in each layer.

Layer (type) Output shape Number of parameters 

input_4 (InputLayer)               [(None, 107, 3)]           0 

embedding_3 (Embedding)       (None, 107, 3, 200)        2800       

tf.reshape_2 (TFOpLambda)     (None, 107, 600)                    0 

spatial_dropout1d_2         (Spatial (None, 107, 600)                    0          

bidirectional_6  (Bidirection (None, 107, 512)           1317888    

bidirectional_7    (Bidirection (None, 107, 512)        1182720    

bidirectional_8  (Bidirection (None, 107, 512)           1182720    

tf.__operators__.getitem_2  (None, 68, 512)            0          

dense_2 (Dense)                         (None, 68, 5)   2565       

Total params: 3,688,693 

Trainable params: 3,688,693 

Non-trainable params: 0 

 

Evaluation metrics 

The model's performance is evaluated using 

68 bases of mRNA sequence, and the chosen 

evaluation metric is MCRMSE, which is represented 

by the following equation: 

𝑀𝐶𝑅𝑀𝑆𝐸

=
1

𝑁𝑡
∑ √

1

𝑛
∑(𝑦𝑖𝑗 − �̂�𝑖𝑗)2

𝑛

𝑖=1

𝑁𝑡

𝑗=1

                             1 

Here, Nt is the number of scored ground truth target 

columns, y is the ground truth value, and �̂� is the 

predicted value. Five deterioration rate parameters to 

be predicted namely: reactivity, deg_pH10, 

deg_Mg_pH10, deg_50 C, and deg_Mg_50 C. 

Lower MCRMSE indicates a better prediction of the 

deterioration rates. 

Model Training 

The model is applied to the Stanford COVID-

19 mRNA vaccine dataset17, the dataset of this study 

encompassed 2400 instances. It is split into the 

training set which contains 1944 samples for the 

construction of the bidirectional GRU model, the 

validation set which contains 240 samples for the 

tuning of the model, and the test set which contains 

216 samples to measure the generalization 

performance. Table 4 and Table 5 show the most 

important configurations of the model and the 

training options respectively. 

 

 

https://dx.doi.org/10.21123/bsj.2023.8504
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Table 4. Bidirectional GRU configurations. 

Configuration Value 

Sequence length (seq_len) 107 

Prediction length 

(pred_len) 

68 

Dropout 0.5 

embed_dim 200 

hidden_dim  256 

 

Table 5. Bidirectional GRU training options. 

Property Value 

Batch size 64 

Epochs 60 

Verbose 2 

Optimizer Adam 

Learning rate 0.001 

Reduce learning rate on 

a plateau  

patience=5 

Results and Discussion 

The bidirectional GRU model predicts five 

target columns of reactivity values at each base of the 

mRNA sequence, namely: reactivity, deg Mg_pH10, 

deg_pH10, deg_Mg_50 C, and deg_50 C. The 

performance evaluation metrics are the MCRMSE as 

is given in equation 1 and the accuracy.   

As shown in Fig 1 the training and validation curves 

converged steadily with an increasing number of 

epochs. Table 6 summarizes the loss and accuracy 

values achieved by the bidirectional GRU model on 

the training, validation, and test datasets 

respectively. 

 

 

(a) (b) 
Figure 1. Bidirectional GRU performance evaluation curves. (a) Training and validation loss curves. 

(b) Training and validation accuracy curves. 

 
Table 6. Bidirectional GRU performance evaluation metrics: loss and accuracy. 

 Training data Validation data Test data 

Loss (MCRMSE) 0.32536 0.46672 0.32086 

Accuracy 0.54063 0.47751 0.49986 

 
I chose the bidirectional GRU because it is less 

complex and faster to compute when compared to 

other RNNs20,21. The mRNA molecules dataset used 

in this study is derived from a Kaggle competition 

launched by Stanford researchers. MCRMSE is used 

as a performance metric to score the competition's 

winners.  

The prize winner's performing model scores were: 

0.34198, 0.34266, and 0.34327 respectively based on 

MCRMSE17. The difference from 1st to 3rd place is 

marginal (0.00129). Results in this study 

(MCRMSE=0.32086) outperformed the winning 

models with a marginal of (0.02112). 

On the other hand, when comparing it to the 

literature, I chose related works considering the same 

benchmark dataset (Stanford dataset on Kaggle) and 

evaluation metric (MCRMSE). Imran et al16, used a 

regularized LSTM network to conclude the 

deterioration rates of COVID-19 mRNA Vaccine. 

They found that LSTM performed better than tree-

https://dx.doi.org/10.21123/bsj.2023.8504
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based algorithms with MCRMSE of 0.4904 and 

0.5165 for the training and validation sets compared 

to 0.32536 and 0.46672 in this study on the training 

and validation sets16. Ing et al13,  used two machine 

learning algorithms to predict the deterioration rate 

of mRNA vaccine for COVID-19. They utilized 

linear regression (LR) and an LGBM. The results 

show that (LGBM) outperformed linear regression 

with an RMSE value of 0.22465 compared to 

0.39574 for linear regression. 

Conclusion 

In this study, five deterioration reactivity 

values for every position at each base in the mRNA 

sequence were predicted. The bidirectional GRU 

uses the Stanford dataset to build a deterioration 

prediction for the COVID-19 mRNA vaccine model. 

Although deterioration prediction models prove to be 

helpful in finding stable mRNA vaccine candidates, 

there are several limitations that need to be 

addressed.  A significant limitation of this study is 

the length of the mRNA sequences used. The length 

of the mRNA molecule used in this study is 107 

bases and the deterioration rates were scored for the 

first 68 bases of the sequence, while an actual 

COVID-19 mRNA vaccine would likely be longer22, 

which indicates further research exploring the 

reliability of such algorithms in predicting longer 

sequences is encouraged. 

In the future, various features based on the 

characteristics of mRNA sequences could be used to 

enhance the accuracy of the models, and more DL 

models for sequence predictions could be applied. 

Other considerations to improve the results include 

but are not limited to be using pre-trained models for 

deterioration predictions, augmentation techniques 

to increase the size of the dataset, and utilizing cross-

validation on the DL algorithms. It is hoped that this 

study will be of some use to other researchers in 

creating a better understanding of prediction models 

for mRNA sequence molecules. 
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(: تحليل قاعدة بيانات ستانفورد mRNAبتلف لقاح الرنا المرسال ) نموذج تعلّم عميق تنبّؤي

 19-الرنا المرسال المضاد لكوفيدللقاح 

  نسرين سليمان2،1
 

 1قسم الهندسة الطبية، كلية الهندسة الميكانيكية والكهربائية، جامعة دمشق، دمشق، الجمهورية العربية السورية

 2قسم الذكاء الصنعي وعلوم البيانات، كلية الهندسة المعلوماتية، الجامعة السورية الخاصة، دمشق، الجمهورية العربية السورية

 

 ةالخلاص

، إلى أزمة صحية عالمية أدت إلى انتشار المرض 19-، الفيروس المسؤول عن جائحة كوفيد SARS-CoV-2أدى ظهور فيروس

انتشار أمراً بالغ الأهمية في السيطرة على 19-كوفيد يعد الحصول على لقاح لجائحة والوفاة واضطرابات واسعة النطاق في الحياة اليومية.

( من اللقاحات الأكثر حظاً mRNAيعد لقاح الرنا المرسال ) .الفيروس مما سيساعد على إنهاء الوباء واستعادة الحياة الطبيعية للمجتمع

نفورد ا، إلا أنه يواجه عدد من قيود الاستخدام المرتبطة بالتلف التلقائي. قام أكاديميون من جامعة ست19-للاستخدام كلقاح مضاد لفيروس كوفيد

لدراسة مسألة التلف التلقائي لجزيء الرنا المرسال. يهدف هذا البحث إلى بناء    Kaggleمسابقة عبر منصةبرعاية   Eterna ومجتمع

بمعدل التلف الحاصل عند كل جزيء من جزئيات لقاح الرنا المرسال. تم بناء نموذج تعلم عميق باستخدام الشبكات  نموذج تعلمّ عميق تنبّؤي

اح قبونية التكرارية ثنائية الاتجاه واستخدام هذا النموذج على قاعدة بيانات الرنا المرسال التي وفرتها جامعة ستانفورد على الانترنت كلالعص

ل. اللتنبؤ بمعدل التلف الحاصل لتسلسل الرنا المرسال. فقد تم التنبؤ بخمسة قيم فعالية عند كل جزيء في تسلسل الرنا المرس 19-مضاد للكوفيد

شملت القيم التي تم التنبؤ بها معدل التلف التلقائي عند: ارتفاع درجة الحموضة، ارتفاع درجة الحرارة، ارتفاع درجة الحموضة بوجود 

إلى ثلاث  19-. تمت تجزئة قاعدة بيانات ستانفورد للقاح الرنا المرسال المضاد لكوفيدالمغنيسيوموارتفاع درجة الحرارة بوجود  المغنيسيوم

مجموعات رئيسة تشمل: التدريب والتحقق ومجموعة الاختبار. بلغت قيمة متوسط جذر الخطأ التربيعي لقيم معدل التلف التلقائي عند كل 

 في المسابقة على النماذج الفائزةهذه القيمة تفوقت عة الاختبار. وقد في مجمو 0.32086جزيء من تتابع جزئيات لقاح الرنا المرسال 

الباحثين الآخرين على فهم أفضل لكيفية التنبؤ بخصائص جزيء تسلسل الرنا المرسال لتطوير لقاح هذه الدراسة تساعد  .0.02112بهامش

 .19-كوفيد مستقر

 الرنا المرسال، نموذج تنبؤي، الشبكات العصبونية التكرارية.، التعلم العميق، 19-لقاح كوفيد الكلمات المفتاحية:

https://dx.doi.org/10.21123/bsj.2023.8504

