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Abstract

The emergence of SARS-CoV-2, the virus responsible for the COVID-19 pandemic, has resulted
in a global health crisis leading to widespread illness, death, and daily life disruptions. Having a vaccine
for COVID-19 is crucial to controlling the spread of the virus which will help to end the pandemic and
restore normalcy to society. Messenger RNA (mRNA) molecules vaccine has led the way as the swift
vaccine candidate for COVID-19, but it faces key probable restrictions including spontaneous deterioration.
To address MRNA degradation issues, Stanford University academics and the Eterna community sponsored
a Kaggle competition. This study aims to build a deep learning (DL) model which will predict deterioration
rates at each base of the mRNA molecule. A sequence DL model based on a bidirectional gated recurrent
unit (GRU) is implemented. The model is applied to the Stanford COVID-19 mRNA vaccine dataset to
predict the mRNA sequences deterioration by predicting five reactivity values for every base in the
sequence, namely reactivity values, deterioration rates at high pH, at high temperature, at high pH with
Magnesium, and at high temperature with Magnesium. The Stanford COVID-19 mRNA vaccine dataset is
split into the training set, validation set, and test set. The bidirectional GRU model minimizes the mean
column wise root mean squared error (MCRMSE) of deterioration rates at each base of the mRNA sequence
molecule with a value of 0.32086 for the test set which outperformed the winning models with a margin of
(0.02112). This study would help other researchers better understand how to forecast mMRNA sequence
molecule properties to develop a stable COVID-19 vaccine.

Keywords: COVID-19 Vaccine, Deep learning, mRNA, Predictive Model, Recurrent neural networks
(RNN).

Introduction

The World Health Organization declared the  vaccines®. Researchers have tested several

novel coronavirus (COVID-19) a worldwide
pandemic on 11 March 2020%. As of 10 August 2022,
COVID-19 had caused over 584 million confirmed
cases, including 6,418,958 deaths. Since then,
COVID-19 has been the subject of extensive
research?®. To control the spread of the pandemic,
governments worldwide have deployed considerable
effortsand resources to develop COVID-19

approaches to COVID-19 vaccine development
including mRNATS,

Ribonucleic acid (RNA) is usually a single-stranded
molecule. It has a backbone made of alternating
phosphate groups and the sugar ribose, attached to
each sugar is one of four bases: adenine (A), uracil
(U), cytosine (C), and guanine (G). Various types of
RNA exist in cells: mRNA, ribosomal RNA (rRNA),
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and transfer RNA (tRNA)*> . While mRNA
vaccines are relatively easier to manufacture
compared to traditional inoculations, maintaining
their stability remains a significant challenge.
Researchers have found that mRNA vaccines are
prone to degradation under various conditions such
as changes in temperature or environment!, For
example, a single cut can make the mRNA vaccine
unusable!?, The potential for damage to the mRNA
vaccine is a significant concern, as it can render the
vaccine ineffective. Currently, there is limited
understanding of where the mMRNA backbone is most
vulnerable. Therefore, identifying stable mRNA
COVID-19 vaccine molecules is essential for the
widespread distribution and vaccination of large
populations.

Ing et al®, developed two machine learning
algorithms to predict the deterioration rate of the
MRNA vaccine for COVID-19. They used linear
regression (LR) and light gradient boosting machines
(LGBM) to build up deterioration prediction models
using the Python language. Using a dataset
comprising thousands of mRNA molecules with
known deterioration rates at each position from the
Eterna platform, the results showed that the LGBM
performs better than linear regression (LR) when
evaluated with the RMSE metric?2,

Muneer et al*#, looked into the potential of hybrid DL
in predicting the deterioration of COVID-19 mRNA
from mRNA sequences. Two deep hybrid neural
network models were developed, one that combined
graph convolutional neural networks (GCNs) and
(GRU), and another that combined GCNs and

Materials and Methods
Dataset

On September, 11, 2020, researchers at
Stanford University and the Eterna community
partnered to sponsor a Kaggle competition to solve
deterioration problems in mRNA. Researchers
collected the data for 6034 mRNA sequences'’. The
dataset is available in the Kaggle repository,
(https://www.kaggle.com/competitions/stanford-
covid-vaccine/data).

The lengths of the mRNA sequences are 107 bases.
MRNA sequences are available with labels
containing the deterioration rates measured at

convolutional neural networks (CNNSs). The findings
revealed that the GCN_GRU hybrid model was
superior to the GCN_CNN model. Specifically, the
GCN_GRU model had the highest MCRMSE and
AUC scores.

Krishna et al'®, clarified that the biggest challenge to
MRNA vaccine production is structural instability.
Using an appropriate sequence to vector
representation, they applied three pre-trained gene
embedding models (dna2vec, rna2vec, and Ishvec)
for predicting the amount of deterioration of the
MRNA vaccine sequences. They compared the pre-
trained models and found that dna2vec embedding
performed best™®.

Imran et al'®, used a regularized long short-term
memory network (LSTM) which is a type of
recurrent neural network (RNN) to develop a
prediction model to conclude the deterioration rates
of the COVID-19 mRNA Vaccine. With the help of
a Stanford dataset of the COVID-19 mRNA vaccine,
they employed the LSTM to identify if and where
MRNASs might be unstable under certain incubation
measures. They found that LSTM performed better
than tree-based algorithms using MCRMSE as a
performance evaluation metric?®.

This study aims to use modern DL techniques, to
design a prediction model for the deterioration of
COVID-19 mRNA vaccine molecules to improve the
stability of COVID-19 mRNA vaccines during the
transportation process. The model will predict the
probability of the deterioration rates for each position
inside the MRNA sequence.

different locations of the mMRNA sequence, namely
reactivity values (reactivity) and deterioration rates
at high pH (deg pH10), high temperature (deg 50 C°),
high pH with Magnesium (deg Mg pH10) and at high
temperature with Magnesium (deg Mg 50 C°). For
each mRNA sequence, three input features and five
outputs\targets features were provided. Table 1
shows the input labels and their descriptions and
examples used in this study. Output labels are listed
in table 2. This study will develop a bidirectional
GRU that takes the RNA sequence information as
input and produces five predictions of deterioration
rates at each base.
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Tables 1. Input labels used in this study and their descriptions and examples?’.

Feature Sequence  Sequence Description Example
Length type
Sequence  1x107 string It represents the RNA sequence. Itis a GGAAAAGCUCUA...
(Scored for combination of four bases: adenine (A),
68 bases) uracil (U), cytosine (C), and guanine (G)
for each sample.
Structure  1x107 string It contains a sequence of *.”, ’(’, and ’)’, N () E
(Scored for indicating whether bases are paired or
68 bases) unpaired. Paired bases are denoted by
opening and closing parentheses.
Predicted  1x107 string It describes the structural context of each EEESSSHSSSSBSSX...
loop type  (Scored for character in the sequence. They used
68 bases) bpRNA tool documented in 8, It predicts
the loop types as the following labels:
hairpin loop (H), paired stem (S),
multiloop (M), bulge (B), internal loop (1),
external loop (X), and dangling end (E).
Table 2. Output (Reactivity) labels and their descriptions?’.
Feature Sequence  Sequence Description
Length type

Reactivity 1x68 A vector of "It indicates the reactivity values for the first 68 bases in the
floating-point  sequence and is used to determine the likely secondary
numbers structure of the RNA sample".

Deg pH10 1x68 A vector of "It represents reactivity values for the first 68 bases as
floating-point  denoted in sequence. It is used to determine the likelihood of
numbers deterioration at the base/linkage after incubating without

magnesium at high pH (pH 10)".

Deg Mg pH10 1x68 A vector of "It represents reactivity values for the first 68 bases as
floating-point ~ denoted in sequence and is used to determine the likelihood of
numbers deterioration at the base/linkage after incubating with

magnesium at high pH (pH 10)".

Deg 50 C° 1x68 A vector of "It indicates reactivity values for the first 68 bases as denoted
floating-point  in sequence and is used to determine the likelihood of
numbers deterioration at the base/linkage after incubating without

magnesium at a high temperature (50 degrees Celsius)".

Deg Mg 50 C° 1x68 A vector of "It indicates reactivity values for the first 68 bases as denoted
floating-point  in sequence and is used to determine the likelihood of
numbers deterioration at the base/linkage after incubating with

magnesium at high temperature (50 degrees Celsius)".

Features engineering

Three categorical features are extracted from
the mRNA, namely sequence (describes the RNA
sequence), structure (indicates whether a base is
paired or unpaired), and predicted loop type (defines
the structural context). Sequence features result in
four features by converting the A, U, G, and C base
pair sequences to integer class vectors, structure
features are extracted for each position of the mRNA
resulting in three features, and the predicted loop

results in seven features. Base method process for
encoding the categorical features is applied®.

Model Architecture

Sequence prediction is a dispute that requires
using historical sequence information to predict the
next values in the sequence. The proposed model
relies on a bidirectional GRU which is a variation of
traditional LSTM networks. Cho et al?® 2, proposed
the GRU to make each recurrent unit adaptively
capture dependencies on a varied time scale. It
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allows for the use of information from both
directions (previous time steps and later time steps)
to make predictions about the current state. In the
bidirectional GRU model, categorical input features
are encoded and fed into an embedding layer, which
adds extra information to the neural network. In this
study, the embedding layer extracted 200 features
instead of the 14 input encoded features. The
processed, encoded, and embedded features are then
used as input for the bidirectional GRU sequence
model layers.

The model consists of three layers of bidirectional
GRUSs, with 256 hidden units in each direction for
each layer, resulting in 512 bidirectional units per
layer. The bidirectional layers are utilized to improve

the performance, by processing the data in both
forward and backward directions to capture the
information in the sequence data. The description of
the bidirectional GRU model is depicted in table 3.
The dropout process acts like a regularization
parameter to overcome the overfitting problem in the
learning process which makes the model less
sensitive to the particular weights so that it can
generalize better. Finally, the dense layer (Dense)
has five outputs (reactivity values at each base) and
the activation function is linear as it is a regression
problem. Adam optimizer is used because of its
advantages concerning memory, simplicity, and
computation. The loss function is the MCRMSE as
described in Eq1.

Table 3. Bidirectional GRU sequence model summary for layers, output shape, and number of
parameters in each layer.

Layer (type) Output shape Number of parameters
input_4 (InputLayer) [(None, 107, 3)] 0

embedding_3 (Embedding) (None, 107, 3, 200) 2800

tf.reshape_2 (TFOpLambda) (None, 107, 600) 0

spatial_dropoutld 2 (Spatial (None, 107, 600) 0

bidirectional_6 (Bidirection (None, 107, 512) 1317888
bidirectional_7 (Bidirection (None, 107, 512) 1182720
bidirectional_8 (Bidirection (None, 107, 512) 1182720
tf.__operators__.getitem_2 (None, 68, 512) 0

dense_2 (Dense) (None, 68, 5) 2565

Total params: 3,688,693
Trainable params: 3,688,693
Non-trainable params: 0

Evaluation metrics

The model's performance is evaluated using
68 bases of mRNA sequence, and the chosen
evaluation metric is MCRMSE, which is represented
by the following equation:

MCRMSE

N¢ n
1 1 .
= Ez ;Z(Yij — ¥ij) 1
Jj=1 i=1

Here, N is the number of scored ground truth target
columns, y is the ground truth value, and ¥ is the
predicted value. Five deterioration rate parameters to
be predicted namely: reactivity, deg_pH10,
deg_Mg_pH10, deg_50 C°, and deg_Mg_50 C°.

Lower MCRMSE indicates a better prediction of the
deterioration rates.

Model Training

The model is applied to the Stanford COVID-
19 mRNA vaccine dataset!’, the dataset of this study
encompassed 2400 instances. It is split into the
training set which contains 1944 samples for the
construction of the bidirectional GRU model, the
validation set which contains 240 samples for the
tuning of the model, and the test set which contains
216 samples to measure the generalization
performance. Table 4 and Table 5 show the most
important configurations of the model and the
training options respectively.
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Table 4. Bidirectional GRU configurations.

Table 5. Bidirectional GRU training options.

Configuration Value
Sequence length (seq_len) 107

Prediction length 68
(pred_len)

Dropout 0.5
embed_dim 200
hidden_dim 256

Results and Discussion

The bidirectional GRU model predicts five
target columns of reactivity values at each base of the
MRNA sequence, namely: reactivity, deg Mg_pH10,
deg_pH10, deg_Mg 50 C°, and deg 50 C°. The
performance evaluation metrics are the MCRMSE as
is given in equation 1 and the accuracy.

model loss
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As shown in Fig 1 the training and validation curves
converged steadily with an increasing number of
epochs. Table 6 summarizes the loss and accuracy
values achieved by the bidirectional GRU model on

the training, validation, and test datasets
respectively.
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Figure 1. Bidirectional GRU performance evaluation curves. (a) Training and validation loss curves.
(b) Training and validation accuracy curves.

Table 6. Bidirectional GRU performance evaluation metrics: loss and accuracy.

Training data Validation data Test data
Loss (MCRMSE) 0.32536 0.46672 0.32086
Accuracy 0.54063 0.47751 0.49986
I chose the bidirectional GRU because it is less marginal  (0.00129). Results in this study

complex and faster to compute when compared to
other RNNs??t, The mRNA molecules dataset used
in this study is derived from a Kaggle competition
launched by Stanford researchers. MCRMSE is used
as a performance metric to score the competition's
winners.

The prize winner's performing model scores were:
0.34198, 0.34266, and 0.34327 respectively based on
MCRMSEY'. The difference from 1st to 3rd place is

(MCRMSE=0.32086) outperformed the winning
models with a marginal of (0.02112).

On the other hand, when comparing it to the
literature, I chose related works considering the same
benchmark dataset (Stanford dataset on Kaggle) and
evaluation metric (MCRMSE). Imran et al'®, used a
regularized LSTM network to conclude the
deterioration rates of COVID-19 mRNA Vaccine.
They found that LSTM performed better than tree-
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based algorithms with MCRMSE of 0.4904 and
0.5165 for the training and validation sets compared
to 0.32536 and 0.46672 in this study on the training
and validation sets®. Ing et al*®, used two machine
learning algorithms to predict the deterioration rate

Conclusion

In this study, five deterioration reactivity
values for every position at each base in the mMRNA
sequence were predicted. The bidirectional GRU
uses the Stanford dataset to build a deterioration
prediction for the COVID-19 mRNA vaccine model.
Although deterioration prediction models prove to be
helpful in finding stable mRNA vaccine candidates,
there are several limitations that need to be
addressed. A significant limitation of this study is
the length of the mRNA sequences used. The length
of the mRNA molecule used in this study is 107
bases and the deterioration rates were scored for the
first 68 bases of the sequence, while an actual
COVID-19 mRNA vaccine would likely be longer?,
which indicates further research exploring the
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