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Abstract 
In this paper, a subspace identification method for bilinear systems is used . Wherein 

a " three-block " and " four-block " subspace algorithms are used. In this algorithms the input 

signal to the system does not have to be white . Simulation of these algorithms shows that the 

" four-block " gives fast convergence and the dimensions of the matrices involved are 

significantly smaller so that the computational complexity is lower as a comparison with " 

three-block " algorithm . 

 

Introduction 
Bilinear systems are attractive 

models for many dynamical processes, 

because they allow a significantly larger 

class of behaviors than linear systems, yet 

retain a rich theory which is closely related 

to the familiar theory of linear systems . 

They exhibit phenomena encountered in 

many engineering systems, such as 

amplitude-dependent time constants . 

Many practical system models are bilinear, 

and more general nonlinear systems can 

often be well approximated by bilinear 

models . 

Most studies of identification 

problem of bilinear systems have assumed 

an input-output formulation . Standard 

methods such as recursive least squares, 

extended least squares, recursive auxiliary 

variable and recursive prediction error 

algorithms, have been applied to 

identifying bilinear systems . Simulation 

studies have been undertaken and some 

statistical results ( strong consistency and 

parameter estimate convergence rates ) are 

also available 
(1)

. 

Favoreel et al proposed a " bilinear 

N4SID " algorithm which gave unbiased 

results only if the measured input signal 

was white 
(2)

. Favoreel and De Moor 

suggested an alternative algorithm for 

general input signals 
(3)

. Verdult and  

Verhaegen pointed out that this algorithm 

gives biased results, and proposed an 

alternative algorithm, which involved a 

nonlinear optimization step 
(4)

. Chen and 

Maciejowski proposed algorithms for the 

deterministic and combined deterministic-

stochastic cases which give asymptotically 

unbiased estimates with general inputs, 

and for which the rate of reduction of bias 

can be estimated . The computational 

complexity of these algorithms  

 

was also significantly lower than the 

earlier ones, both because the matrix 

dimensions were smaller, and because 

convergence to correct estimates ( with 

sample size ) appears to be much faster 
(5-

6)
. 

 In this paper, A comparison 

between the " three-block " and " four-

block " subspace algorithms is shown in 

two examples. 

A " three-block " algorithm can 

remove the effective of unmeasured noise 

sources and obtain accurate estimates . In 

the linear system case, its linked with the 

systems Markov parameters. 

Unfortunately, the realization theory for 

bilinear systems is more complicated than 

for linear systems. 

In " four-block " subspace method  
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for bilinear systems, the data 

matrix arrangement and the observation 

matrix equation are used to linearise the 

system equation in the block matrix form 

using linear and bilinear algebra . This 

allows bilinear models to be obtained from 

row and column spaces of certain matrices, 

calculated from the input-output data by 

means of some bilinear-algebraic 

operations 
(6)

. 

 

Notations 
The use of much specialized notation 

seems to be unavoidable in the current 

context . Mostly we follow the notation 

used in 
(5-7)

, but we introduce all the 

notation here for completeness. 
We use  to denote the Kronecker 

product and ּס the Khatri-Rao product of 

two matrices with ptRF   and 
puRG  as: 

 

 

+,   and ∩ denote the sum, the direct sum 

and the intersection of two vector spaces, 

┴ denotes the orthogonal complement of a 

subspace with respect to the predefined 

ambient space, the Moore-penrose inverse 

is written as 
T
, and the Hermitian as * . 

In this paper we consider the 

bilinear system of the form: 
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The input ut is assumed to be 

independent of the measurement noise vt 

and the process noise wt . The covariance 

matrix of wt and vt is: 
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we assume that the sample size is Ñ, 

namely that input-output data 

{u(t),y(t):t=0,1,….., Ñ} are available . For 

arbitrary t we define 

 

 

but for the special cases t=0, t=k, t=2k and 

t=3k we define with some abuse of 

notation, 
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where k is the row block size. The suffices 

p, c, f and r are supposed to be mnemonic, 

representing 'past', 'current', 'future' and 

'remote future' respectively. This division 

of the state history into four (overlapping) 

segments is the reason for 'four-block' 

method. The 'remote future' segment is not 

necessary in 'three-block' method. 

        We define 

,,,,,,,, rfptrfpt YYYYUUUU   

,,,,,,,, rfptrfpt VVVVWWWW similarly. 

These matrices will later be used to 

construct larger matrices with a 

'generalized block-Hankel' structure. In 

order to use all the available data in these, 

the number of columns j is such that 

Ñ=3k+j-1 and let 
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For arbitrary q and 2 qi  , we define 
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qiqi WU /1/1 ,   and qiV /1  can be defined 

similarly 
(6)

. 

 

Remark 1. The meaning of 

 qiU /1  is: 

     ,/12 kk
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,,,,,,,,,,,, crfcrfcrfcpr UVVVWWWYYYYU 

 

rfcrf UUUUU  ,,,,  and yurU ,,  can 

be defined similarly . Finally, we denote 

by up the space spanned by all the rows of 

the matrix pU . That is,  

  km

pp RUspanu   ,:  

,,,,,,,,,,,, ,,, yupffpp

rfcprfc uyuyuyyyyuuu

yufu ,,  etc are defined similarly. 

 

 

Analysis 
Lemma 1. The system (1) can be rewritten 

in the following matrix equation form: 

tttt

tttttt

VDUCXY

WBUXNUAXX



1
      

...(2) 

Lemma 2. For ,0j  and the block size k, 

we have  
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Lemma 3. For JHGF ,,,  of compatible 

dimensions, ,lkRF   ,mlRG   
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Lemma 4. (Input-Output Equation). For 

the system (1) and ,0j  we have the 

following Input-Output Equation: 
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Lemma 5. For system (1) , if 

,1
1

,
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then 
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where  ko   is used to denote a matrix M, 

such that  koM 
1

 . 

 

Remark 2. This holds for any matrix E of 

compatible dimensions. In particular, it 

holds for ,TCE  where ICCT  , and if 

nl  , then 0 CCI T  and the 

expression become exact. In the sequel, we 

will assume the Moore-Penrose pseudo-

inverse is used. 

 

Theorem 1. The system (1) can be written 

in the following form if the condition (3) 

holds: 
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where u

kk

v

k

u

kk gFTTO ,,,,  and v

kg  

are system-dependent constant matrices. 

 

Theorem 2. If the linear part of the system 

(1) is observable and 
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is a full row rank matrix, denoting  
yuryufyucc uuuyS ,,,,,,:   

 and yuf

fS uyR ,, , then  

  kyur

R

u
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….(8) 

where   is the orthogonal projection 

operator 
(6)

. 

 

Algorithm 

Step 1. Decompose rY  into rk XO  and 

uyru

k UT ,,  using orthogonal projection . 

Step 2. Computing the constant matrix via 

pseudo-inverse . 

Step 3. Constructing matrices for SVD 

decomposition . 

Step 4. Performing SVD decomposition 

and selecting model order. 

Step 5. Determining the system matrices 

using constrained least squares . 
 

Examples 
 Tow second-order bilinear systems 

introduced in 
(5)

 are used to see how the 

two algorithms work, and how it compare 

between them. 

0 

0 

0 

0 

0 
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 The two examples work in the 

same conditions , equal ' j ' , ' k ' ,and input 

signals. 

 

Example 1. The system matrices are 













05.0

5.00
A  , 












01

10
B  , 











20

01
C  , 










10

01
D , 











3.00

03.0
1N  , 










4.00

02.0
2N  

Table (1) shows the eigen values of the 

estimated A and N using the two 

algorithms . 

 

Table (1): results for different 

algorithms. 
 True 'Three-block' 'Four-block' 

A ±0.5i 0.0010±0.4920i ±0.5001i 

N1 0.3 , 0.3 0.2520 , 0.2895 0.3021 , 0.3015 

N2 0.2 ,0.4 0.3193 , 0.4545 0.1998 , 0.4009 

 

Example 2. The system matrices are 











5.00

05.0
A  , 












01

10
B , 











20

01
C  , 











11

01
D , 










4.00

06.0
1N , 











5.00

02.0
2N  

 

Table (2) shows the eigen values of the 

estimated A and N using the two 

algorithms. 

 

Table (2): results for different 

algorithms. 
 True 'Three-block' 'Four-block' 

A 0.5 , 0.3 0.5046 , 0.3033 0.5008 , 0.3011 

N1 0.6 , 0.4 0.5518 , 0.2864 0.6409 , 0.3972 

N2 0.5 ,0.2 0.4783 , 0.1046 0.5055 , 0.2309 

Conclusions 
 A two different subspace 

algorithms for identifying the bilinear 

systems has been used. Its major 

advantage is that the system input does not 

have to be white.  

From the results above we  show 

that the ' Four-block ' algorithm gives 

accurate estimation in a comparison with 

the ' Three-block ' algorithm, its 

convergence is faster and its need small 

sample size. 
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 تشخيص الأنظمة الخطية الثنائية بإستخدام طريقة مصفوفات التباعد
 

 *وسام محمد جاسم
 
 وماتقسم نظم المعل –كلية الحاسوب  –جامعة الأنبار *

 
 :الخلاصة

خوارزميات ذات الثلاث  . بإستخدام bilinearلتشخيص الأنظمة  subspaceتم تطبيق طريقة التشخيص المسماة 
صفوف وأخرى ذات أربع صفوف . وفي هذه الخوارزميات لم يكن من الضروري أن تكون إشارة الدخول إلى النظام 

ات أن الخوارزمية ذات الأربع صفوف أعطت تقارب سريع إشارة بيضاء . وأظهرت نتائج محاكاة هذه الخوارزمي
 وتعقيدات أبعاد المصفوفات أصغر وكذلك تعقيدات الحسابات اقل بالمقارنة مع الخوارزمية ذات الثلاث صفوف .

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


