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Introduction 

The oil palm industry plays an essential role in the 

economy, while its product serves as a fundamental 

ingredient in cooking oil and enhances communal 

welfare through exportation which creates more 

employment opportunities. In 2016, Indonesia 

exported 24.15 million tons of crude palm oil (CPO) 

for USD 14,744 million1, surpassing the value of all 

other commodities sold. The oil palm plantation 

sector provides livelihoods for approximately 16.2 

million citizens, constituting a primary source of 

income. To sustain the quality and quantity of palm 

oil yield, the plantation industry is striving to meet 

environmental standards2. 

Since 2008, Indonesia has become the largest 

producer and exporter of palm oil worldwide. The 

surge in global demand for vegetable oil during the 

1990s catalyzed the expansion of plantations 

cultivated due to their lucrative nature. The 

distribution of large-scale compared to smallholder 

plantations is 60% higher, with the majority being 

located across regions such as Kalimantan and 

Sumatra Islands, and more recently in Papua. This 

transition rendered palm oil a crucial agricultural 
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product, contributing significantly to the GDP of the 

country3. 

In the oil palm industry, effective plant management 

is crucial for increasing productivity and income. 

However, the control of pests and diseases persists 

as a conspicuous challenge within cultivation 

activities. The advent of diseases poses an 

impediment to the growth and development of palm 

trees, leading to decreased productivity. Recent 

research by Satia, Firmansyah, and Umami has 

highlighted the importance of shrubs in regions 

where palm trees are grown. Additionally, palm trees 

thrive in tropical climates with consistent 

precipitation as annual rainfall patterns influence the 

growth and yield of their fruit4. 

Disease in oil palm trees manifests in three distinct 

forms depending on the location of the symptoms, 

such as the roots, basal stems, or leaves. This 

research primarily focuses on detecting diseases that 

predominantly affect leaves compared to other parts. 

However, exploration of the basal stem is important 

due to its potential to inflict substantial damage on 

the plants, specifically through basal stem rot 

disease, which can be detected using image 

processing techniques5. The early infestation stages 

usually display signs on the leaves, where fungi, 

parasites, or viruses incubate before outward 

symptoms become evident6. 

Photosynthesis, a crucial process determining palm 

productivity, mainly occurs in the leaves. On the 

contrary, these leaves are susceptible to invasion by 

pests and disruptive organisms, which 

fundamentally compromise the level of 

productivity7. The well-being of the trees is essential 

in achieving maximal yield considering that diseases 

often impede oil production. Diseases can infiltrate 

oil palm trees at any developmental stage, but they 

are commonly recognized in mature plants6. 

To sustain high yield, adequate plant maintenance 

and disease control are essentially required8. 

Diseases manifesting on leaf surfaces can lead to 

reduced oil palm fruit production, culminating in 

economic losses. On the other hand, a substantial 

proportion of farmers lack adequate awareness 

concerning prevalent diseases and their mitigation 

strategies9. General plant disease identification relies 

on visual symptoms recognizable by agricultural 

experts, facilitating an effective treatment process. 

There is a need for urgent development of novel 

field-based diagnostic techniques in locations with 

no readily available experts10. Although farmers 

have access to various information about oil palm 

leaf diseases, their direct comprehension remains 

confined to diseases manifesting within the plant11,12. 

This research aimed to rectify the existing 

identification errors by using image-based analysis 

to detect diseases or pests afflicting the leaves. 

Furthermore, it focuses on creating an expert system 

for disease detection through visual symptoms and 

data input, compared to previous investigations 

incorporating the agricultural Expert System for 

Identifying Diseases of Oil Palm Plants12. By 

employing image processing in conjunction with the 

Support Vector Machine (SVM) method, a high-

precision solution is offered for identifying diseases 

in oil palm leaves, providing both diagnoses and 

control strategies. This approach involves capturing 

leave images, after which the system deciphers 

patterns based on training data.13. 

In this research, although the Convolutional Neural 

Network (CNN) method has been deployed to 

classify diseases in oil palm leaves, the results failed 

to consistently meet anticipated accuracy levels14. 

This situation triggered the necessity for a refined 

approach or model to accurately detect diseases in 

oil palm trees. Among diverse deep learning models, 

the GoogLeNet architecture created by Google 

within the Convolutional Neural Network (CNN) 

domain has emerged as a promising option. The 

GoogLeNet architecture, due to its training on 

millions of images, has secured victory in the 

ILSVRC competition in 201415 and also achieved 

high accuracy reaching 99.35%16 in previous 

investigations related to Leaf Plant Recognition and 

Disease Detection. 

Foliar diseases in oil palm trees can be categorized 

through image-based analysis using GoogLeNet 

Architecture with meticulously selected 

hyperparameters. Therefore, this research aimed to 

determine the superior architecture for classifying 

captured foliar images, enabling the recognition of 

diseases impacting oil palm leaves based on their 

distinctive textures.
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Materials and Methods 

Research Architecture 

The architectural model employed in this research is 

presented in Fig. 1. 

 

Figure 1. Research Architecture 

As shown in Fig 1, the architectural model devised 

for this research commenced with data collection, 

which applied the technique explained in the 

subsequent paragraph. The next was pre-processing, 

aimed at segregating appropriate and unsuitable 

images to be used as samples. This step helped to 

identify and eliminate unsuitable images that did not 

meet the established criteria. The goal was to 

guarantee accurate samples aligning with the 

research objectives. Pre-processing might 

encompass actions such as data cleaning, 

noise/interference removal, contrast or brightness 

normalization, and image cropping or resizing to fit 

the pre-set requirements. Additionally, it ensured the 

used images were of high quality and relevant for the 

analysis to be conducted. In the step of data splitting 

for training and testing, the GoogleNet architecture 

was employed to construct a deep learning model for 

classifying disease types in oil palm leaves following 

pre-defined requirements. The generated model was 

subjected to thorough evaluations using Eqs 1-4. 

 

 

Data Collection Technique 

To collect data for this research, images were 

captured at a 30cm distance using the camera of a 

Vivo Y35 mobile phone. This process was 

conducted through direct observations, specifically 

by photographing oil palm leaves within the primary 

tree plantations at Dolok Baja, Tanah Jawa District, 

Simalungun Regency, North Sumatra Province. 

Insights from conversations with professionals 

working in the plant protection sector at Pusat 

Penelitian Kelapa Sawit (PPKS) further contributed 

to the dataset. 

The collected data encompassed healthy, bagworm-

infested, and fire caterpillar-infested oil palm leaves. 

After gathering the necessary materials, each leaf 

type was photographed. The methodology employed 

for capturing images at a 30cm distance involved 

initially positioning the leaves on HVS paper. 

Various caterpillar species, including the 

polyphagous bagworms (Cremastopsyche pendula), 

infest and cause damage to oil palm plantations. 

Similarly, Metisa plana commonly infect palm trees 

alongside cocoa, sago, acacia, coffee, tea, and 

alzazia leaves. The surfaces of leaves are often 

directly covered by these caterpillar sacs17, 18. 

The fire caterpillar species, such as Setohosea 

asigna, Setora nitens, Darna trima, Darna diducta, 

Darna brodley, Susi malayana, Birthose bisura, 

Thosea vetusta, and Olona gater, pose a substantial 

threat to young oil palm plantations by devouring 

their leaves19. 

Data Analysis 

Three different categories of oil palm leaves were 

identified as healthy, bagworm-infested, and fire 

caterpillar-infested leaves. Following the data 

collection process, it was discovered that each 

category contributed 410 samples, forming a total of 

1,230 palm leave images suitable for this research. 

The dataset was divided into two sections to 

accommodate both training and testing data. A 

comprehensive comparison of the data split 

percentages at a 70:30 ratio is presented in Table 1. 

 

Data Collection 

 

Split Data 

Training Model use 

GoogLeNet Architecture 

Evaluation Model 

Training Testing 

Pre-Process Data 
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Table 1. Comparison of training data and testing 

data 

Leaf type Training Testing 

Healthy Leaves 287 123 

Leaf affected by 

bagworms 

287 123 

leaf affected by the 

Fire Caterpillar 

287 123 

   

GoogLeNet Architecture 

A modified version of the CNN architecture serves 

as the basis for the GoogLeNet model developed by 

Google, which can perform data training operations 

with millions of images. GoogLeNet uses batch 

normalization to adjust inputs sequentially, along 

with image distortion to suitably resize inputs. As the 

model progresses across its initial inception phase, 

numerous features are channeled through fully 

connected neurons at the fifth layer. The 

architectural structure of GoogLeNet is presented in 

Fig 2 15, 20. 

 

Figure 2. GoogLeNet Architecture 
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Hyperparameter Initialization 

Hyperparameters constitute pivotal elements for 

optimizing deep learning models. Table 2 presents 

the array of hyperparameters applied in this research. 

Table 2. Hyperparameter Initialization 

Parameter Value 

Epoch {15;25} 

Batch Size  {32;64} 

Learning Rate {0.001;0.009} 

Optimizer {Adam; RMSprop} 

Performance Measures 

The confusion matrix stands as a fundamental tool to 

assess the accuracy of a predictive model. This 

matrix, which is compared against the initial input 

class, elucidates the actual and predicted 

classification results, and the representation can be 

seen in Fig 321, 22. 

The accuracy of the method reflects the precision of 

the projected values23. Precision denotes the 

repeatability of the measurement, or the proportion 

of accurate forecasts, often expressed as a 

percentage24. The recall indicates the level of correct 

responses identified 25. To provide a balanced 

average result, precision and recall are combined to 

yield the f1-score. These metrics are calculated using 

the following formulas, where TP, TN, FP, and FN 

represent true positive, true negative, false positive, 

and false negative, respectively26-28. 

 
Figure 3. Confusion Matrix 

 

Description 

TP = True Positive 

FP = False Positive 

FN = False Negative  

TN = True Negative 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
TN + TP

TN + FP + TP + FN
                 1 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
TP

TP + FP
                                        2 

𝑅𝑒𝑐𝑎𝑙𝑙 =   
TP

TP + FN
                                            3 

𝐹1 =  
2 ∗ 𝑃𝑟𝑒𝑠𝑖𝑐𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

Presicion + Recall
                          4 

 

Results and Discussion 

Palm Leaf Samples 

A comparison between healthy oil palm leaves and 

those affected by pests or diseases was conducted 

through a sample analysis. This examination allows 

for the differentiation of characteristics between 

healthy leaves and those affected by bagworms or the 

Fire Caterpillar. The healthy samples displayed an 

intact leaf structure with a vibrant green color, while 

the infected ones exhibited damaged parts or 

abnormal coloration. The utilization of oil palm 

leaves facilitated a precise assessment of the health 

of the plants, enabling proactive measures to tackle 

arising issues. Multiple visual representations of oil 

palm leaves can be seen in Fig 4 

     

             (a)                     (b)                     (c) 

Figure 4. Palm leaf samples (a) Healthy Leaves, 

(b) Leaf affected by bagworms, (c) Leaf affected 

by Fire Caterpillar 
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Training of the GoogLeNet Model in epoch 15 

 

(a)                                                                          (b) 

 

(c)                                                  (d) 

Figure 5. Training of the GoogLeNet Model in epoch 15 (a) Training accuracy, (b) Validation 

Accuracy, (c) Loss Accuracy, and (d) Loss Validation 

Fig 5 provides insights into the training and 

validation phases of the applied model. The 

hyperparameters that achieved peak accuracy, in 

terms of a combination of batch size (64), optimizer 

(Adam), and learning rate (0.001), exhibited a trend 

of sustained accuracy exceeding 95% from the first 

to the fifteenth epoch. This was depicted in Fig 5(a) 

portraying the accuracy of GoogLeNet network 

training in modeling the classification of pest species 

on oil palm leaves. Moreover, batch size 64 was 

better than 32, Adam optimizer proved superior to 

RMSprop, and the learning rate of 0.001 

demonstrated better performance compared to 0.009. 

The validation model exhibited instability all 

through the experiment, evidenced by fluctuations in 

accuracy, as indicated in Fig 5(b). According to Fig 

5(c), the pest classification obtained using the 

GoogLeNet network revealed promising results with 

an observable decline. The loss validation model 

employed for the pest species classification was 

further presented in Fig 5(d), signifying instability 

across the experiment.
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Training Model GoogLeNet in epoch 25 

 

(a)                                                                         (b) 

 

(c)                                                           (d) 

Figure 6. Training of the GoogLeNet Model in epoch 25 (a) Training accuracy, (b) Validation 

Accuracy, (c) Loss Accuracy, and (d) Loss Validation 

Fig 6 presents the training and validation procedure 

for the epoch 25 experiment. Among the 

hyperparameters explored, the combination that 

achieved accuracy consistently above 95% from the 

first to 26th epoch was batch size = 64, optimizer = 

RMSprop, and learning rate = 0.001. This was 

indicated in Fig. 6(a) displaying the accuracy of 

GoogLeNet network training in modeling the pest 

classification. Furthermore, the batch size of 64 was 

preferred over 32, the RMSprop optimizer 

outperformed Adam, and a learning rate of 0.001 

showed superior results compared to 0.009. 

According to Fig 6(b), the validation model exhibited 

instability across the experiment, similar to the 

fluctuation in accuracy observed in Epoch 15. As 

portrayed in Fig 6(c), the classification of pest 

species found on oil palm leaves using the 

GoogLeNet network revealed promising results with 

a significant loss decline. Based on Fig 6(d), the 

validation loss model used during the pest 

classifications demonstrated instability across the 

conducted experiment. 

GoogLeNet Performance 

Fig 7 shows the results of 16 experiments applying 

the confusion matrix, a tool for assessing the 

performance of classification models or algorithms. 

Within this context, the confusion matrix was 

employed to evaluate the results of 16 distinct 

experiments aimed at classifying data. This process 

facilitated a comprehensive assessment of the 

competency of GoogleNet in data classification, as 

https://dx.doi.org/10.21123/bsj.2023.8547
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well as the measurement of key performance metrics 

including precision, recall, accuracy, and F1-Score. 

 

    
                     M3                                     M4                                    M1                                     M2 

   
                     M7                                     M8                                     M5                                     M6                                     

    
                    M11                                   M12                                 M9                                     M10 

      
                    M15                                   M16                                M13                                    M14                                   

Figure 7. Confusion matrix results from 16 experiments 

 

The experiments conducted using the GoogLeNet 

model incorporated the hyperparameters presented in 

Table 3, yielding 16 models when combined, each 

with different results.
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Table 3. Experiments Results GoogLeNet Model with a Combination Hyperparameter 

Model Hyperparameters Accuracy Precision Recall F1-

Score 

Time 

Computation 

 Epoch Batch 

Size 

Optimizer Learning 

Rate 

     

M1 15 32 Adam 0.001 0.737127 0.734505 0.762233 0.737825 3 Minutes 
M2 15 32 RMSprop 0.001 0.617886 0.629199 0.80548 0.61483 3 Minutes 
M3 15 32 Adam 0.009 0.558266 0.571089 0.620927 0.535394 2 Minutes 
M4 15 32 RMSprop 0.009 0.932249 0.933317 0.939553 0.931545 3 Minutes 
M5 15 64 Adam 0.001 0.401084 0.388371 0.631536 0.298791 7 Minutes 
M6 15 64 RMSprop 0.001 0.417344 0.401279 0.791667 0.300592 2 Minutes 
M7 15 64 Adam 0.009 0.349593 0.368071 0.775281 0.228341 5 Minutes 
M8 15 64 RMSprop 0.009 0.512195 0.513825 0.767967 0.47291 2 Minutes 
M9 25 32 Adam 0.001 0.669377 0.672226 0.777102 0.575666 4 Minutes 
M10 25 32 RMSprop 0.001 0.742547 0.744299 0.834221 0.708312 5 Minutes 
M11 25 32 Adam 0.009 0.883469 0.885763 0.897436 0.882342 7 Minutes 
M12 25 32 RMSprop 0.009 0.775068 0.774657 0.825672 0.752565 6 Minutes 
M13 25 64 Adam 0.001 0.449864 0.436142 0.570628 0.366544 4 Minutes 
M14 25 64 RMSprop 0.001 0.699187 0.694012 0.771784 0.682614 5 Minutes 
M15 25 64 Adam 0.009 0.766938 0.765955 0.818608 0.747502 6 Minutes 
M16 25 64 RMSprop 0.009 0.831978 0.827957 0.87168 0.832283 4 Minutes 

 

Based on Table 3, Model 4 (M4) produced the best 

performance among the 16 GoogLeNet model 

testing experiments. An examination of epoch 

utilization in deep learning models reveals that epoch 

15 yielded superior results compared to epoch 25, 

with accuracy, precision, recall, and f1-score values 

of 0.932249, 0.933317, 0.939553, and 0.931545, 

respectively. Meanwhile, epoch 25 had lower values 

of 0.349593, 0.368071, 0.775281, and 0.228341 for 

the respective aforementioned metrics. Batch size 

analysis within the experimental model 

demonstrated the superiority of batch size 32 over 

64. Batch size 32 achieved the highest accuracy at 

0.932249 (M4), while the lowest performance was 

observed at 0.558266 (M3). In batch size 64. the 

highest accuracy was attained at 0.831978 (M16), 

while the lowest was at 0.349593 (M7). In the 

context of optimizer selection, RMSprop exhibited 

greater reliability than Adam. The best accuracy 

value produced by Adam was 0.883469 (M11), and 

the lowest was 0.349593. (M7). The maximum 

accuracy for RMSprop was 0.932249 (M4), and the 

lowest was 0.417344 (M6). A comparison of the 

employed learning rates, 0.001 and 0.009, indicated 

that 0.009 generated superior results. The accuracy 

gain between both rates was discovered to be 

0.932249 (M1) and 0.742547 (M10), respectively. 

 

 

Discussion 

In this research, deep learning was closely related to 

the computational time required for model creation, 

where the GoogLeNet deep learning model was 

created using the free version of Google Colab and a 

GPU runtime. Among the experimental models, M3, 

M6, and M8 exhibited the shortest computational 

time at 2 minutes. However, these three models 

yielded unsatisfactory accuracy results, with the 

highest value being attained by M3 at 0.558266. 

Across the 16 experiments, computational time 

remained within a 10-minute range, with the 

dominant duration ranging from 2 to 7 minutes. 

Despite extended computational times for M5 and 

M11 compared to other experimental models, the 

highest accuracy achievement was obtained in M11, 

reaching 0.883469. Additionally, the precision 

achieved within 6 minutes of experimentation for 

M12 and M15 was 0.775068, which was good but 

not sufficiently adequate. These results were 

consistent with the previous models (M7, M10, and 

M14) tested within 5 minutes of computation, 

achieving the best accuracy at 0.742547. The 

performance of GoogleNet was deemed satisfactory 

with a maximum accuracy of 0.831978 in M16 while 

requiring only 4 minutes of computation for M9, 

M13, and M16. M4 delivered the highest accuracy 

compared to other experiments, reaching 0.932249 

in a duration of 3 minutes. 
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Asrianda et al.,14 evaluated the performance of a 

CNN model in classifying palm leaf diseases into six 

types, comprising curvularia sp, cochiobolus 

carbonus, capnodium sp, drecshlera nutrient 

deficiency, and healthy leaves. The dataset used in 

this investigation consisted of 60 samples, with 10 

samples for each type. The results showed a 

relatively low accuracy of approximately 69%. In 

contrast, this current research demonstrated 

remarkable success in classifying pest-infested oil 

palm leaves, achieving an impressive accuracy of 

93.22%, which held significant practical relevance in 

oil palm plantations. 

Comprehensive data preprocessing was also 

conducted in this research, including data 

augmentation, to enhance dataset quality and 

diversity. The use of GPU runtime on Google Colab 

aided in accelerating the model training. Diverse 

hyperparameter variations in the GoogleNet model, 

such as learning rate, activation function, and batch 

size, were meticulously adjusted to determine the 

optimal combination that could yield the best results. 

Ensuring a balanced representation of each disease 

class and healthy leaves within the dataset was 

essential to prevent bias and guarantee accurate 

classification. 

The obtained results demonstrated the capability of 

the model in accurately identifying and classifying 

pest-infested oil palm leaves. This achievement 

positions the model as a potential tool to support pest 

management in oil palm plantations. The ability of 

the model to classify various diseases and pests 

would assist farmers and plantation managers in 

promptly addressing plant health issues and 

improving productivity. 

Conclusion 

In conclusion, this research provided new insights 

into the role of the Adam Optimizer as a 

development optimization model, which was a 

combination of RMSprop and Stochastic Gradient 

Descent with momentum. These observations 

indicated that Adam did not perform better than 

RMSprop. However, the results of the experiment 

conducted computational time as a secondary 

priority in achieving optimal accuracy. The number 

of epochs used in the model training significantly 

influenced the identification of optimal conditions 

for achieving maximum accuracy during the training 

and validation stages. 

The results further showed that epoch 15 produced 

better performance than 25. Moreover, a 

combination of hyperparameters including a batch 

size of 32, RMSprop optimizer, and a learning rate 

of 0.009, found in Epoch 15, was identified as the 

optimal model. This research revealed the critical 

role of hyperparameters in optimizing deep learning 

model performance. The results equally emphasized 

the importance of selecting the appropriate 

hyperparameter combination to achieve superior 

accuracy within efficient training periods. These 

could provide valuable guidance for future research 

in developing deep-learning models for classifying 

diseases and pests in oil palm leaves, enhancing 

general performance and efficiency. 

Subsequent investigations might involve expanding 

and refining the model to classify a broader type of 

diseases and pests. Incorporating data from various 

geographical locations and agricultural settings 

tended to enhance the generalization capability of the 

model. Further exploration of transfer learning 

methods and the use of other techniques to improve 

model accuracy could also be conducted. The 

implementation of this model in the field and its 

adaptation to the specific needs of farmers and oil 

palm plantation managers might feature in future 

research.
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 GoogLeNetتصنيف الأمراض في أوراق نخيل الزيت باستخدام نموذج 

  2، مهاتير1، إيروين بان 1، عبد الرحمن 1أسماء إندراواتي 
 

 .التكنولوجيا الزراعية، وزارة الزراعة، جامعة منطقة ميدان، إندونيسيا كلية1
 .هندسة المعلوماتية، قسم الهندسة، جامعة منطقة ميدان، إندونيسياكلية 2

 

 ةالخلاص

اجة إلى لذلك هناك حتؤثر الصحة العامة لأشجار النخيل، بما في ذلك الجذور والسيقان والأوراق، بشكل كبير على إنتاج زيت النخيل، 

أحد التحديات التي تواجه استدامة المحاصيل الإنتاجية هو انتشار الآفات والأمراض التي تصيب نباتات  اهتمام دقيق لتحقيق العائد الأمثل.

خيل الزيت ن نخيل الزيت. يمكن أن تؤثر هذه الأمراض بشكل ضار على النمو والتطور، مما يؤدي إلى انخفاض الإنتاجية. ترتبط إنتاجية

 . استخدم هذا البحث مجموعة بيانات شاملة مكونة من. ارتباطًا وثيقاً بظروف أوراقه، والتي تلعب دورًا حيوياً في عملية التمثيل الضوئي

إضافية تظهر الإصابة باليرقات. علاوة  001أخرى تصور الإصابة بدودة القز، و 001أوراقاً تظهر، و 001صورة، تتألف من  0321

ذلك، كان الهدف الرئيسي هو صياغة نموذج تعلم عميق لتحديد الأمراض والآفات التي تصيب أوراق نخيل الزيت، باستخدام تقنيات  على

، جنبًا GoogLeNetولمعالجة المشكلة الأساسية قيد التحقيق، تم تطبيق نهج التعلم العميق  تحليل الصور لتسهيل ممارسات إدارة الآفات.

دقائق،  01تجربة، كل منها محدد بإطار زمني حسابي مدته  01د من المعلمات الفائقة. تم تنفيذ تجارب التصنيف عبر إلى جنب مع العدي

(، دقة التقييم، M4) 0دقائق. أظهرت النتائج، المستمدة بشكل خاص من الأداء المتفوق في النموذج  7إلى  3وامتدت المدة السائدة من 

، على التوالي. وكانت هذه مرضية للغاية، %22.09، و%22.29، و%22.22، و%22.33تبلغ  F1قاط والدقة، والاستدعاء، ومعدلات ن

 مما يستدعي تطبيقها في شركات زيت النخيل لتعزيز إدارة هجمات الآفات والأمراض.

 .، نخيل الزيت، سعف النخيل، أمراض النخيل.GoogLeNet ،Hyperparameter الكلمات المفتاحية:

https://dx.doi.org/10.21123/bsj.2023.8547

