Some New Results on Lucky Labeling

J. Ashwini ${ }^{1,3 *}$ (D.Pethanachi Selvam ${ }^{2}$ (D) R.B.Gnanajothi ${ }^{3}$ (D)
${ }^{1}$ School of Mathematics, Madurai Kamaraj University, Madurai, Tamilnadu, India.
${ }^{2}$ Department of Mathematics, The Standard Fireworks Rajaratnam College for Women, Sivakasi, Tamilnadu, India.
${ }^{3}$ Department of Mathematics, V.V. Vanniaperumal College for Women, Virudhunagar, Tamilnadu, India.
*Corresponding author: aswiniprakash777@gmail.com
E-mail addresses: pethanachi-mat@sfrcollege.edu.in , gnanajothi pcs@rediff.com
ICAAM= International Conference on Analysis and Applied Mathematics 2022.

Received 11/2/2023, Revised 18/2/2023, Accepted 19/2/2023, Published 1/3/2023

This work is licensed under a Creative Commons Attribution 4.0 International License.

Abstract

: Czerwi'nski et al. introduced Lucky labeling in 2009 and Akbari et al and A.Nellai Murugan et al studied it further. Czerwi'nski defined Lucky Number of graph as follows: A labeling of vertices of a graph G is called a Lucky labeling if $S(u) \neq S(v)$ for every pair of adjacent vertices u and v in G where $S(v)=$ $\sum_{u \in N(v)} l(u)$. A graph G may admit any number of lucky labelings. The least integer k for which a graph G has a lucky labeling from the set $1,2, \mathrm{k}$ is the lucky number of G denoted by $\eta(G)$. This paper aims to determine the lucky number of Complete graph K_{n}, Complete bipartite graph $K_{m, n}$ and Complete tripartite graph $K_{l, m, n}$. It has also been studied how the lucky number changes while adding a graph G with K_{n} and deleting an edge e from K_{n}.

Keywords: Complete graph, Complete Bipartite graph, Complete Tripartite graph, Lucky Labeling, Lucky Number.

Introduction:

Graph Labeling is one of the most interesting areas in Graph Theory. Lucky Labeling is one among them yet to be studied in detail. As in other labelings, trial and error method is used to determine a lucky labeling of given graph. But it is a hectic job to determine the lucky number of a given graph since it is to be justified that there is no lucky labeling with fewer numbers. Taking little diversions and defining new labelings happen to be the second step. Edge lucky labeling has been introduced by us in the paper "An Exploration into Lucky Labeling". R. Sridevi and S. Ragavi have studied the Lucky Edge Labeling ${ }^{1,2}$, of K_{n} and Special types of graphs. Numerous studies have been conducted on various families of graphs using various fortunate labelling techniques, including Lucky Edge Lableing ${ }^{3,4}$, Proper Lucky Labeling ${ }^{5}$, e Lucky Labeling ${ }^{6}$, d-Lucky Labeling ${ }^{7}$, Proper dLucky Labeling ${ }^{8}$ etc. This paper aims to find the lucky number of prominent families ${ }^{9-11}$ namely Complete graphs and Complete Bipartite graphs.

Preliminaries

The book ${ }^{12}$, "Graph Theory with Applications" by J.A.Bondy and U.S.R.Murthy is followed for definitions of Complete graph, Complete Bipartite graph and Complete Tripartite graph.

Definition. 1: ${ }^{13}$ Let $G_{1}=\left(V_{1}, X_{1}\right)$ and $G_{2}=\left(V_{2}, X_{2}\right)$ be two graphs with $V_{1} \cap V_{2}=\phi$. Then the sum $G_{1}+G_{2}$ is defined as $G_{1} \cup G_{2}$ together with all the lines joining points of V_{1} to points of V_{2}. Similarly the cartesian product $G_{1} \times G_{2}$ is defined as having $V=V_{1} \times V_{2}$ and $u=\left(u_{1}, u_{2}\right)$ and $v=\left(v_{1}, v_{2}\right)$ are adjacent if $u_{1}=v_{1}$ and u_{2} is adjacent to v_{2} in G_{2} or u_{1} is adjacent to v_{1} in G_{1} and $u_{2}=v_{2}$.

Definition. 2: ${ }^{14}$ Suppose that G is a graph and $f: V(G) \rightarrow N$ is a labeling of the vertices of G. Let $\mathrm{S}(\mathrm{v})$ denote the sum of labels of overall neighbors of the vertex in G. A labeling f of G is called lucky if $S(u) \neq S(v)$ for every pair of adjacent vertices u and v in G . The least integer k for which a graph G has a lucky labeling from the set $\{1,2, \ldots, \mathrm{k}\}$ is the lucky number of G , denoted by $\eta(G)$.

Example 1: The following graph (Fig.1) G admits Lucky Labeling and its lucky number is 2.

Figure 1. Lucky Labelling of a graph

Main Results:

Theorem. 1: $\eta\left(\mathrm{K}_{n}\right)=\mathrm{n}$
Proof: Let $V\left(K_{n}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. Label v_{i} with i for i varies from 1 to n .
$S\left(v_{i}\right)=\sum_{j=1 \neq i} j=\frac{n(n+1)}{2}-i ;$ For $i \neq j, S\left(v_{i}\right) \neq$ $S\left(v_{j}\right)$.
Hence it is a lucky labeling of K_{n} and lucky number of K_{n} is less than or equal to n.
Suppose there exists a lucky labeling with maximum label strictly less than n.
In that case, at least one label must be repeated.
Let $l\left(\mathrm{v}_{1}\right)=\mathrm{r}=l\left(\mathrm{v}_{2}\right)$
Then $\quad S\left(\mathrm{v}_{1}\right)=\sum_{i=3}^{n} l\left(v_{i}\right)+r=S\left(\mathrm{v}_{2}\right), \quad$ a contradiction.
Therefore $\eta\left(\mathrm{K}_{n}\right)=\mathrm{n}$.

Theorem 2: $\quad \eta\left(K_{m, n}\right)=\left\{\begin{array}{l}1 \text { if } m \neq n \\ 2 \text { if } m=n\end{array}\right.$
Proof: Let $\quad V\left(\mathrm{~K}_{m, n}\right)=$
$\left\{u_{1}, u_{2}, \ldots, u_{m}, v_{1}, v_{2}, \ldots, v_{n}\right\}$
$\mathrm{E}\left(K_{m, n}\right)=$
$\left\{u_{i} v_{j}\right.$ for i lying between 1 and m and j lying between
Case. 1: $m=n$
Define $l\left(u_{i}\right)=1$ for i lying between 1 and m and $\mathrm{l}\left(\mathrm{v}_{j}\right)=2$ for j lying between 1 and n.
Then $S\left(u_{i}\right)=2 n$ and $S\left(\mathrm{v}_{j}\right)=n$ for $1 \leq i, j \leq n$
Clearly $S\left(u_{i}\right) \neq S\left(v_{j}\right)$ for $1 \leq i, j \leq n$. Therefore $K_{m, n}$ admits lucky labeling with lucky number 2.
Case. 2: $m \neq n$
Define $l\left(u_{i}\right)=1=l\left(v_{j}\right)$ for i taking integer values from 1 and m and j lying between 1 and n.
Then $S\left(u_{i}\right)=n$ for i lying between 1 and m and $\mathrm{S}\left(\mathrm{v}_{j}\right)=m$ for j lying between 1 and n.
Clearly $S\left(u_{i}\right) \neq S\left(v_{j}\right)$ for any i and j .
Therefore $\mathrm{K}_{m, n}$ admits lucky labeling with lucky number 1.

Illustration: The lucky labeling of $\mathrm{K}_{2,3}$ (Fig.2) is given below

Figure 2. Lucky Labeling of $\boldsymbol{K}_{2,3}$

Theorem. 3: Lucky number of $K_{l, m, n}$ is less than or equal to 3 .
Proof: Let $\quad V\left(\mathrm{~K}_{l, m, n}\right)=$ $\left\{u_{1}, u_{2}, \ldots, u_{l}, v_{1}, v_{2}, \ldots, v_{m}, w_{1}, w_{2}, \ldots, w_{n}\right\}$ $\mathrm{E}\left(K_{l, m, n}\right)=\left\{\mathrm{u}_{i} \mathrm{v}_{j}, \mathrm{u}_{i} \mathrm{w}_{k}, \mathrm{v}_{j} \mathrm{w}_{k} / 1 \leq i \leq l, 1 \leq j \leq\right.$ $m, 1 \leq k \leq n\}$
Case. 1: $\mathrm{l}=\mathrm{m}=\mathrm{n}$
Define $l\left(u_{i}\right)=1$ for i lying between 1 and $l ; l\left(v_{j}\right)=2$ for j taking integer values from 1 and $\mathrm{m} ; l\left(w_{k}\right)=3$ for k lying between 1 and n .
Then $S\left(u_{i}\right)=2 m+3 n$ for i taking integer values from 1 and 1 .
$S\left(v_{j}\right)=l+3 n$ for j taking integer values from 1 and m.
$S\left(w_{k}\right)=n+2 m$ for k lying between 1 and n .
$\mathrm{S}\left(\mathrm{u}_{i}\right)=S\left(v_{j}\right)$ implies $l=2 m$, which is a contradiction.
$S\left(\mathrm{u}_{i}\right)=S\left(w_{k}\right)$ implies $n=0$, which is a contradiction.
$\mathrm{S}\left(\mathrm{v}_{j}\right)=S\left(w_{k}\right)$ implies $l=2(m-n)$, which is a contradiction.
Therefore $K_{l, m, n}$ admits lucky labeling with lucky 1nambley 3 .
Case. 2: $l=m$ and $m \neq n$
Define $l\left(u_{i}\right)=1$ for i taking integer values from 1 and l. $; l\left(v_{j}\right)=2$ for j taking integer values from 1 and $\mathrm{m} ; l\left(w_{k}\right)=1$ for k lying between 1 and n .
Then $S\left(\mathrm{u}_{i}\right)=2 m+n$ for i taking integer values from 1 and 1 .
$S\left(w_{k}\right)=2 m+l$ for k lying between 1 and n .
$S\left(\mathrm{u}_{i}\right)=S\left(v_{j}\right) \quad$ implies $\quad l=2 m$, which is a contradiction.
$\mathrm{S}\left(\mathrm{u}_{i}\right)=S\left(w_{k}\right)$ implies $n=l$, which is a contradiction.
$\mathrm{S}\left(\mathrm{v}_{j}\right)=S\left(w_{k}\right)$ implies $n=2 m$, which is a contradiction.
Therefore $K_{l, m, n}$ admits lucky labeling with lucky number 2.

Case. 3: $l \neq m \neq n$
Define $l\left(u_{i}\right)=1=l\left(v_{j}\right)=l\left(w_{k}\right)$ for i taking integer values from 1 and l, j taking integer values from 1 and m and k lying between 1 and n.
Then $\mathrm{S}\left(\mathrm{u}_{i}\right)=m+n$ for i taking integer values from 1 and 1 .
$S\left(v_{j}\right)=l+n$ for j taking integer values from 1 and m.
$S\left(w_{k}\right)=m+l$ for k lying between 1 and n .
$S\left(\mathrm{u}_{i}\right)=S\left(v_{j}\right) \quad$ implies $\quad l=m$, which is a contradiction.
$\mathrm{S}\left(\mathrm{u}_{i}\right)=S\left(w_{k}\right)$ implies $n=l$, which is a contradiction.
$\mathrm{S}\left(\mathrm{v}_{j}\right)=S\left(w_{k}\right)$ implies $n=m$, which is a contradiction.
Therefore $K_{l, m, n}$ admits lucky labeling with lucky number 1.

Theorem. 4: $\quad \eta\left(K_{n}+G\right) \geq n$ for any n .
Proof: Let m be the number of vertices of the graph
G. $\mathrm{V}\left(\mathrm{K}_{n}\right)=\left\{\mathrm{u}_{1}, u_{2}, \ldots, u_{n}\right\}$;
$\mathrm{V}(\mathrm{G})=\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$
Take $K_{n}+G=G^{\prime}$
Let l be any labeling of the vertices of G^{\prime}; Let $\mathrm{K}=$ $\sum_{j=1}^{m} l\left(v_{j}\right)$
$S_{G^{\prime}}\left(u_{i}\right)=\sum_{j=1 \neq i}^{m} l\left(u_{j}\right)+K ; S_{G^{\prime}}\left(u_{i}\right)=S_{G^{\prime}}\left(u_{j}\right) \quad$ if and only if $\mathrm{S}_{K_{n}}\left(u_{i}\right)=S_{K_{n}}\left(v_{j}\right)$
$S_{G^{\prime}}\left(u_{i}\right) \neq S_{G^{\prime}}\left(u_{j}\right)$ only when 1 is a lucky labeling of K_{n}.
So there should be at least n numbers to label G^{\prime}.
Therefore $\eta\left(K_{n}+G\right) \geq n$ for any n.
Theorem. 5: $\eta\left(K_{n}+\overline{\mathrm{K}_{\mathrm{m}}}\right)=n$ for $\mathrm{n}, \mathrm{m} \geq 3$.
Proof: Let $\mathrm{G}=\mathrm{K}_{n}+\overline{\mathrm{K}_{\mathrm{m}}}$ where $\mathrm{n}, \mathrm{m} \geq 3$
Let $\quad \mathrm{V}(\mathrm{G})=\left\{v_{1}, v_{2}, \ldots, v_{n}, u_{1}, u_{2}, \ldots, u_{m}\right\} ; \mathrm{E}(\mathrm{G})=$ $\left\{\mathrm{v}_{i} v_{j} / 1 \leq i \neq j \leq n\right\} \cup\left\{v_{i} u_{j} / 1 \leq i \leq n, 1 \leq j \leq\right.$ m;
Label the vertices of G as follows
$l\left(v_{i}\right)=i$ for $1 \leq i \leq n$ and $l\left(u_{j}\right)=n$ for $1 \leq j \leq$ m
Then $\mathrm{S}\left(\mathrm{v}_{i}\right)=\frac{n(n+1)}{2}-i+m n$ and $\mathrm{S}\left(\mathrm{u}_{j}\right)=\frac{n(n+1)}{2}$
Minimum $\mathrm{S}\left(\mathrm{v}_{i}\right)$ is attained at $\mathrm{i}=\mathrm{n}$.
i.e. $\mathrm{S}\left(\mathrm{v}_{n}\right)=\frac{n(n-1)}{2}+m n$

Claim: $S\left(v_{i}\right) \neq S\left(v_{j}\right)$ for $i \neq j$
Suppose $\mathrm{S}\left(\mathrm{v}_{i}\right)=S\left(v_{j} ;\right.$ Then $\frac{n(n+1)}{2}-i+m n=$ $\frac{n(n+1)}{2}-j+m n$

$$
\Rightarrow i=j, \quad \mathrm{a}
$$

$S\left(v_{n}\right)-S\left(u_{j}\right)=\frac{n(n-1)}{2}+m n=\frac{n(n+1)}{2}=n(m-$

1) >0

It follows that $S\left(\mathrm{v}_{i}\right) \neq S\left(u_{j}\right)$ for all i and j . If possible let $\eta(G)<n$
Then at least two $\mathrm{v}_{i}^{\prime} s$ should receive same labels. Without loss of generosity assume that $\mathrm{l}\left(\mathrm{v}_{1}\right)=$ $l\left(v_{2}\right)$. Then there exists a lucky labeling with lucky number number less than n. i.e there will be two vertices with same label.
Take $\sum_{i=1}^{n} l\left(v_{i}\right)+\sum_{i=1}^{n} l\left(u_{j}\right)=K($ say $) . S\left(v_{1}\right)=$ $K-l\left(v_{2}\right)$ and $S\left(v_{2}\right)=K-l\left(v_{2}\right)$
$l\left(v_{1}\right)=l\left(v_{2}\right) \Longrightarrow S\left(v_{1}\right)=S\left(v_{2}\right)$, a contradiction. Hence $\eta(G) \geq n$.
Therefore $\eta\left(K_{n}+\overline{\mathrm{K}_{\mathrm{m}}}\right)=n$ for $\mathrm{n}, \mathrm{m} \geq 3$.

Theorem. 6: $\quad \eta\left(K_{2}+P_{n}\right)=2$ for $\mathrm{n}>3$.
Proof: Let $V\left(K_{2}\right)=\left\{u_{1}, u_{2}\right\} ; V\left(P_{n}\right)=$ $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$
Take $\mathrm{G}=\mathrm{K}_{2}+P_{n}$ for $n>3$.
Let l be the labeling of the vertices of G. Define $l\left(u_{1}\right)=1 ; l\left(u_{2}\right)=2$ and
$l\left(v_{i}\right)=\left\{\begin{array}{lll}1 & \text { for } \quad & i=1,5,9,13, \ldots, 4 n-3 \\ 2 & \text { for } \quad i=2,4,6, \ldots, 2 n \\ 2 & \text { for } \quad i=3,7,11, \ldots, 4 n-1\end{array}\right.$
Then for n even, $S\left(\mathrm{u}_{1}\right)=$
$\begin{cases}7 i+2 & \text { for } i=4,8, \ldots, 4 n \\ 7 i+5 & \text { for } i=6,10, \ldots, 4 n+2\end{cases}$
$\mathrm{S}\left(\mathrm{u}_{2}\right)= \begin{cases}7 i+1 & \text { for } \quad i=4,8, \ldots, 4 n \\ 7 i+4 & \text { for } \quad i=6,10, \ldots, 4 n+2\end{cases}$
For $n \quad$ odd, $\quad S\left(u_{1}\right)=$
$\begin{cases}7 i+3 & \text { for } i=5,9, \ldots, 4 n-1 \\ 7 i+7 & \text { for } i=7,11, \ldots, 4 n+3\end{cases}$
$\mathrm{S}\left(\mathrm{u}_{2}\right)= \begin{cases}7 i+2 & \text { for } i=5,9, \ldots, 4 n-1 \\ 7 i+6 & \text { for } \quad i=7,11 \ldots, 4 n+3\end{cases}$
$S\left(v_{1}\right)=5$ for all $n ; S\left(v_{2}\right)=6$ for $i=$ $2,4,6,8, \ldots, 2 n ; S\left(v_{3}\right)=7$ for $i=3,5,7,9, \ldots, 2 n+1$ $S\left(v_{4}\right)=5$ for $n=4 ; S\left(v_{5}\right)=5$ for $n=5 ; S\left(v_{6}\right)=$ 4 for $n=6 ; S\left(v_{7}\right)=5$ for $n=7$
$S\left(v_{8}\right)=5$ for $n=8 ; S\left(v_{9}\right)=5$ for $n=$ 9; $\mathrm{S}\left(\mathrm{v}_{10}\right)=4$ for $\mathrm{n}=10$
Clearly $S\left(u_{i}\right) \neq S\left(v_{j}\right)$ and $S\left(u_{1}\right) \neq S\left(u_{2}\right)$ for i taking values 1 and 2 and j varies from 1 to n.
Therefore $\eta\left(K_{2}+P_{n}\right)=2$ for $\mathrm{n}>3$.
Illustration The lucky labeling of $\mathrm{K}_{2}+\mathrm{P}_{4}$ (Fig.3) is given below
contradiction.
Claim: $S\left(v_{n}\right)>S\left(u_{j}\right)$

Figure 3. Lucky Labeling of $\boldsymbol{K}_{2}+\boldsymbol{P}_{4}$
Theorem. 7: $\quad \eta\left(P_{m} \times P_{n}\right)=2$ for $m, n \geq 2$.
Proof: Consider the graph $\mathrm{P}_{m} \times P_{n}$ where $\mathrm{m}, \mathrm{n} \geq 2$
Let $V\left(\mathrm{P}_{m} \times P_{n}\right)=\left\{u_{i j}\right.$ for i lying between 1 and m and j taking integer values from iton\}
$E\left(P_{m} \times P_{n}\right)=\left\{u_{i j} u_{i, j+1}, u_{i j} u_{i+1, j}\right.$ for \quad i lying between 1 and $\mathrm{m}-1$ and j taking integer values between 1 and $n-1\}$
Define $l\left(u_{i j}\right)=\left\{\begin{array}{l}1 \text { if } i \text { and } j \text { are of same parity } \\ 2 \text { otherwise }\end{array}\right.$
Case. 1: Both m and n are odd Then $S\left(\mathrm{u}_{11}\right)=$ $S\left(u_{1 n}\right)=S\left(u_{m 1}\right)=S\left(u_{m n}\right)=4$
$S\left(u_{1 j}\right)=S\left(u_{m j}\right)$
$=\left\{\begin{array}{l}3 \text { for even values of } \mathrm{j} \text { from } 2 \text { to } \mathrm{m}-1 \\ 6 \text { for odd values of } \mathrm{j} \text { from } 3 \text { to } \mathrm{n}-2\end{array}\right.$
$S\left(\mathrm{u}_{i 1}\right)=S\left(u_{i n}\right)=3$ for even values of i from 2 to m-1
$S\left(u_{i j}\right)=\left\{\begin{array}{l}8 \text { if } i \text { and } j \text { are of same even parity } \\ 4 \text { if } i=2,4,6\end{array}\right.$
$S\left(u_{i j}\right)$
$=\left\{\begin{array}{c}8 \text { if } i \text { and } j \text { are of same even parity } \\ 4 \text { if } i=2,4,6, \ldots, m-1 \text { and } j=3,5,7, \ldots, n-2\end{array}\right.$
$S\left(\mathrm{u}_{i 1}\right)=S\left(u_{i n}\right)=6$ for odd values of i from 3 to $\mathrm{m}-2$
$\mathrm{S}\left(\mathrm{u}_{i j}\right)$
$=\left\{\begin{array}{l}4 \text { if } i \text { and } j \text { are of same odd parity } \\ 8 \text { if } i=3,5,7, \ldots, m-2 \text { and } j=3,5,7, \ldots, n-1\end{array}\right.$
For $\mathrm{i}=1, \mathrm{~S}\left(\mathrm{u}_{11}\right)=4 \neq 3=S\left(u_{12}\right)$ and $\mathrm{S}\left(\mathrm{u}_{11}\right)=$ $4 \neq 3=S\left(u_{21}\right)$
When $\mathrm{i}=1$ and $\mathrm{j}=2,4,6, \ldots, \mathrm{n}-1, \mathrm{~S}\left(\mathrm{u}_{12}\right)=3 \neq$ $6=S\left(u_{13}\right)$ and $S\left(\mathrm{u}_{12}\right)=3 \neq 8=S\left(u_{22}\right)$
When $\mathrm{i}=2,4,6, \ldots, \mathrm{~m}-1$ and $\mathrm{j}=1, \mathrm{~S}\left(\mathrm{u}_{21}\right)=3 \neq$ $8=S\left(u_{22}\right)$ and $S\left(\mathrm{u}_{21}\right)=3 \neq 6=S\left(u_{13}\right)$
When i and j are of same even parity, $S\left(u_{22}\right)=8 \neq$ $4=S\left(u_{23}\right)$ and $S\left(\mathrm{u}_{22}\right)=8 \neq 4=S\left(u_{32}\right)$
When $\mathrm{i}=3,5,7, \ldots, \mathrm{~m}-2$ and $\mathrm{j}=1, \mathrm{~S}\left(\mathrm{u}_{31}\right)=6 \neq$ $4=S\left(u_{32}\right)$ and $S\left(\mathrm{u}_{31}\right)=6 \neq 3=S\left(u_{41}\right)$
When i and j are of same odd parity, $\mathrm{S}\left(\mathrm{u}_{33}\right)=8 \neq$ $4=S\left(u_{34}\right)$ and $S\left(u_{33}\right)=8 \neq 4=S\left(u_{43}\right)$
Case 2: Both m and n are even
Then $\quad \mathrm{S}\left(\mathrm{u}_{11}\right)=S\left(u_{m n}\right)=4 \quad$ and $\quad \mathrm{S}\left(\mathrm{u}_{1 n}\right)=$ $S\left(u_{m 1}\right)=2$
$S\left(u_{1 j}\right)=\left\{\begin{array}{l}3 \text { for even values of } \mathrm{j} \text { from } 2 \text { to } \mathrm{n}-1 \\ 6 \text { for odd values of } \mathrm{j} \text { from } 3 \text { to } \mathrm{n}-2\end{array}\right.$
$S\left(u_{m j}\right)=\left\{\begin{array}{l}6 \text { for even values of } j \text { from } 2 \text { to } n-1 \\ 3 \text { for odd values of } j \text { from } 3 \text { to } n-2\end{array}\right.$
$S\left(u_{i 1}\right)=3$ for even values of ifrom 2 to $m-2$
$S\left(u_{i n}\right)=6$ for even values of i from 2 to $m-2$
$S\left(u_{i j}\right)=\left\{\begin{array}{l}8 \text { for even values of } i \text { from } 2 \text { to } m-2 \text { and for even values of } \mathrm{j} \text { from } 2 \text { to } \mathrm{n}-2 \\ 4 \text { for even values of } \mathrm{i} \text { from } 2 \text { to } \mathrm{m}-2 \text { and for odd values of } \mathrm{j} \text { from } 3 \text { to } \mathrm{n}-1\end{array}\right.$
$S\left(u_{i 1}\right)=6$ for odd values of i from 3 to $m-1$
$S\left(u_{i n}\right)=3$ for odd values of ifrom 3 to $m-1$
$S\left(u_{i j}\right)=\left\{\begin{array}{l}4 \text { for even values of } i \text { from } 2 \text { to } m-2 \text { and for even values of } j \text { from } 2 \text { to } n-2 \\ 8 \text { for odd values of } \mathrm{i} \text { from } 3 \text { to } \mathrm{m}-2 \text { and for odd values of } \mathrm{j} \text { from } 3 \text { to } \mathrm{n}-1\end{array}\right.$

For $\mathrm{i}=1, \mathrm{~S}\left(\mathrm{u}_{11}\right)=4 \neq 3=S\left(u_{12}\right)$ and $\mathrm{S}\left(\mathrm{u}_{11}\right)=$ $4 \neq 3=S\left(u_{21}\right)$
When $\mathrm{i}=1$ and $\mathrm{j}=2,4,6, \ldots, \mathrm{n}-1, \mathrm{~S}\left(\mathrm{u}_{12}\right)=3 \neq$ $6=S\left(u_{13}\right)$ and $S\left(u_{12}\right)=3 \neq 8=S\left(u_{22}\right)$
When $\mathrm{i}=2,4,6, \ldots, \mathrm{~m}-1$ and $\mathrm{j}=1, \mathrm{~S}\left(\mathrm{u}_{21}\right)=3 \neq$ $8=S\left(u_{22}\right)$ and $S\left(u_{21}\right)=3 \neq 6=S\left(u_{13}\right)$
When i and j are of same even parity, $S\left(u_{22}\right)=8 \neq$ $4=S\left(u_{23}\right)$ and $S\left(u_{22}\right)=8 \neq 4=S\left(u_{32}\right)$
When $\mathrm{i}=3,5,7, \ldots, \mathrm{~m}-2$ and $\mathrm{j}=1, \mathrm{~S}\left(\mathrm{u}_{31}\right)=6 \neq$ $4=S\left(u_{32}\right)$ and $S\left(u_{31}\right)=6 \neq 3=S\left(u_{41}\right)$
When i and j are of same odd parity, $S\left(u_{33}\right)=8 \neq$ $4=S\left(u_{34}\right)$ and $S\left(u_{33}\right)=8 \neq 4=S\left(u_{43}\right)$
The proof is similar for the other cases.
Illustration: The lucky labeling of $P_{2} \times P_{3}$ (Fig.4) is given below

Figure 4. Lucky Labeling of $\boldsymbol{P}_{\mathbf{2}} \times \boldsymbol{P}_{\mathbf{3}}$
Theorem. 8: $\eta\left(K_{n} \sim e\right)=n-2$ for $\mathrm{n}>3$.
Proof: Let $V=\left\{\mathrm{v}_{1}, v_{2}, \ldots, v_{n}\right\}$
Consider $K_{n} \sim e$ where $\mathrm{E}=\left\{e_{i} e_{j} / i<j\right\}$

Let

$$
\mathrm{l}\left(\mathrm{v}_{k}\right)=
$$

$\left\{\begin{array}{l}k \text { for } k=1,2, \ldots, i-1 \\ n-2 \text { for } k=i \\ k-1 \text { for } k=(i+1),(i+2), \ldots,(j-1) \\ n-3 \text { for } k=j \\ k-2 \text { for } k=(j+1),(j+2), \ldots, n\end{array}\right.$
Take $\mathrm{S}_{0}=\frac{(n-2)(n-1)}{2}+(2 n-5)$
Then $\quad \mathrm{A}=\left\{\mathrm{S}\left(\mathrm{v}_{k}\right): k=1,2, \ldots, i-1\right\}=$
$\left\{S_{0}-i+1, S_{0}-i+2, \ldots, S_{0}-1\right\}$
$S\left(v_{i}\right)=S_{0}-2 n+5$
$B=\left\{S\left(v_{k}\right): k=(i+1),(i+2), \ldots,(j-1)\right\}$

$$
\begin{aligned}
& =\left\{S_{0}-j+2, S_{0}-j+3, \ldots, S_{0}\right. \\
& -i\}
\end{aligned}
$$

$$
S\left(v_{j}\right)=S_{0}-2 n+5
$$

$$
C=\left\{S\left(v_{k}\right): k=(j+1),(j+2), \ldots, n\right\}
$$

$$
=\left\{S_{0}-n+2, S_{0}-n+3, \ldots, S_{0}\right.
$$

$$
-j+1\}
$$

$\min \mathrm{A}=\mathrm{S}_{0}-i+1>S_{0}-i=\max \mathrm{B}$
$\min \mathrm{B}=\mathrm{S}_{0}-j+2>S_{0}-j+1=\max \mathrm{C}$
In all cases, $\mathrm{S}\left(\mathrm{v}_{k}\right) \neq S\left(v_{k}+1\right)$
Therefore $\eta\left(K_{n} \sim e\right)=n-2$ for $\mathrm{n}>3$.

Conclusion:

While working on Complete graphs and Complete Bipartite graphs, it has been observed that most of the families have lucky number less than or equal to two. This motivates to attempt the characterization problems on the graphs with lucky number 1 in our previous paper. The characterization of graphs with lucky number 2 seems to be the next interesting research problem.

Acknowledgement:

I would like to thank my Guides, Organizers of this Conference "ICAAM2022", Reviewers of this paper and the Publishers of the "Baghdad Sci. J" for providing me this wonderful opportunity.

Authors' Declaration:

- Conflicts of Interest: None
- We hereby confirm that all the Figures in the manuscript are ours. Besides, the Figures which are not ours have been given the permission for re-publication attached with the manuscript.
- Ethical Clearance: The project was approved by the local ethical committee at The Madurai Kamaraj University, India.

Authors' Contribution Statement:

This work was carried out in collaboration between all authors. J.A., S.P.S. and R.B.G. contributed to the design and implementation of the research, to the analysis of the results and to the writing of the manuscript.

Ethical Clearance: The project was approved by the local ethical committee in The Standard Fireworks Rajaratnam College for Women, Sivakasi, India.

References:

1. Nagarajan S, Priyadharsini G. Lucky Edge Labeling of New graphs. Int J Math Trends Technol. 2019; 65(8): 26-30. https://www.ijmttjournal.org/Volume-65/Issue-8/IJMTT-V65I8P505.pdf
2. Murugan AN, Chitra RMIA. Lucky Edge Labeling of Triangular Graphs. Int J Math Trends Technol. August 2016; 36(2): 116 - 118. http://www.ijmttjournal.org/2016/Volume-
36/number-2/IJMTT-V36P516.pdf
3. Sridevi R, Ragavi S. Lucky Edge Labeling of K_{n} and Special Types of Graphs. Int J Math. Appl. 2016; 4(1C): $125 \quad 131$.
http://ijmaa.in/index.php/ijmaa/article/view/605
4. Aishwarya A. Lucky Edge Labeling of Certain Graphs. IJI RSE. Techno. January 2015; 4(1): 18708 - 18711.
https://doi.org/10.15680/IJIRSET.2015.0401099
5. Indira P, Selvam B, Thirusangu K. Lucky and Proper Lucky Labeling for the extended duplicate graph of Triangular Snake. JETIR. June 2020; 7(6): 883-890. https://www.jetir.org/papers/JETIR2006465.pdf
6. Augustine T, Roy S. e-Lucky Labeling of Certain Graphs. Int J Math Comput Sci. 2020; 15(4): 10911097. http://ijmcs.future-in-tech.net/15.4/RAugustine.pdf
7. Niazi ZH, Bhatti MAT, Aslam M, Qayyum Y, Ibrahim M, Qayyum A. d - Lucky Labeling of Some Special Graphs. Am J Math Anal. 2022; 10(1): 3-11. https://doi.org/10.12691/ajma-10-1-2
8. Esakkiammal E, Thirusangu K, Seethalakshmi S. Proper D - Lucky Labeling on Arbitrary Super Subdivision of New Family of Graphs. Int J Comput Sci Eng. March 2019; 7(5(Special Issue)): 85-90.
9. Ramya N, Shalini R. On Lucky Edge labeling of Some Trees. J Mech Cont Math Sci. August 2019; (2(Special Issue)): 594-601. https://doi.org/10.26782/jmcms.spl.2019.08.00071
10. Abdul-Ghani SA, Abdul-Wahhab RD, Abood EW. Securing Text Messages Using Graph Theory and Steganography. Baghdad Sci J. 2022; 19(1): 189-196. https://doi.org/10.21123/bsj.2022.19.1.0189
11. Adirasari RP, Suprajitno H, Susilowati L. The Dominant Metric Dimension of Corona Product Graphs. Baghdad Sci J. 2021; 18(2): 349356. https://doi.org/10.21123/bsj.2021.18.2.0349
12. Bondy JA, Murty USR. Graph Theory with Applications. $5^{\text {th }}$ edition. London: Macmillan Press, Basingstoke; 1976. 270 p.
13. Emilet DA, Rajasingh I. Lucky Labeling of Certain Cubic Graphs. Int J Pure Appl Math. 2018; 120(8): 167-175. https://acadpubl.eu/hub/2018-1208/1/18.pdf
14.Czerwinski S, Grytczuk J, Zelazny W. Lucky labelings of graphs. Inf Process Lett. 2009; 109(18): 1078 1081. https://doi.org/10.1016/j.ipl.2009.05.011

$$
\begin{aligned}
& \text { بعض النتائج الجديدة على وضع العلامـات المحظوظة }
\end{aligned}
$$

$$
\begin{aligned}
& \text { اكلية الرياضيات، جامعة مادور اي كامار اج، مادور اي، تاميل نادو ، الهنا. }
\end{aligned}
$$

3 قسم الرياضيات، كلية V.V.Vanniaperuma للبنات، فيرودوناغار، تاميل نادو، الهند.

الخلاصة:
قلم . Czerwi'nski et al وضع العلامات المحظوظة في عام 2009 وقام أكبري وآخرون والاكتور A.Nellai Murugan et al بدر استه بشكل أكبر .عرف Czerwi'nski رقم الحظ للرسم البياني على النحو التالي :يطلق على تسمية رؤوس الرسم البياني G تسمية الحظ إذا كانت (علامات الحظ. أقلر عدد صحيح k الذي يحتوي الرسم البياني k ع

الكلمات المفتاحية: رسم بياني كامل، رسم بياني ثنائي كامل، الرسم اليباني الثلاثي الكامل، وضع العلامات المحظوظة، رقم الحظ.

