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Introduction 

Primes have always been shrouded in 

mystery, intriguing mathematicians, especially 

number theorists, who are continuously curious 

about their distribution and behavior. There are 

numerous conjectures and unresolved problems 

related to primes, one of which is the Twin prime 

conjecture1. According to this hypothesis, an 

infinite quantity of twin primes exists, with each pair 

comprising two prime numbers that are precisely 2 

units apart. It is a special case of the Prime k-tuples 

conjecture2 which states that a set H = {h1, . . ., hk} 

is considered “admissible” if it consists of distinct 

non-negative integers, and there exists an integer 

“ap” such that ap ≢ h (mod p) for all h ∈ H and for all 

p ∈ prime, then “n + h1, . . ., n + hk” are primes for 

infinitely many integers “n”. 

The k-tuple {n + h1, . . ., n + hk}                              1  

 with “n” as a natural number where {h1, . . ., hk} 

belongs to the set of distinct non-negative integers, 

can be considered as a prime tuple if all its 

components are prime. Number theorists are 

interested in determining how often Eq 1 is a prime 

tuple. 

Let us consider the tuple {n, n+1}, where 

"n" represents a natural number, and the k-tuple H = 

{0,1}. By substituting n = 2 into the equation, we 

obtain the tuple {2,3}, which is prime. However, this 

is the only prime tuple of this specific form because 

either n or n+1 is even and greater than 2. The Twin 

Prime Conjecture suggests that if we consider the k-

tuple {n, n+2} with H = {0,2}, there are infinitely 

many prime tuples of this form. In general, for any 

k-tuple that contains more than one "n", it can only 

be a prime tuple if none of the residue classes 
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modulo p, where "p" is a prime, are occupied by the 

elements of H. This condition holds true for all 

primes "p" greater than k. To verify this condition 

for Eq 1, it is sufficient to test it using smaller 

primes. 

If the number of distinct residue classes modulo p 

where “p” is a prime which was occupied by the 

integers hi, was being denoted by 𝜑𝑝(𝐻), then the 

requirement is: 

𝜑𝑝(𝐻) < 𝑝 for all primes p                                  2   

to avoid “p” dividing some component of Eq 1 for 

every natural number “n”.  

The condition mentioned above determines the 

admissibility of a set "H", ensuring that the tuple Eq 

1 corresponding to "H" is also admissible. 

Mathematicians have a long-standing conjecture 

that admissible tuples will occur infinitely often as 

prime tuples. Although Mathematicians don't know 

of any cases of prime k-tuples conjecture when k >1. 

Various mathematicians are working on 

approximating this conjecture and have also 

demonstrated that small gaps between primes exist. 

However, Goldston, Pintz, and Yildirim's proposed 

a unique method for counting prime tuples in their 

paper "Primes in tuples"3, which led them to 

demonstrate the following result:  

𝜌1  = lim
𝑛→∞

inf 
𝑝𝑛+1−𝑝𝑛

𝑙𝑜𝑔𝑝𝑛
=0                                        3                   

Twin prime conjecture is currently under 

investigation by number theorists who have made 

notable advancements. One significant breakthrough 

occurred in 2013 when mathematician “Yitang 

Zhang” published a paper4 that established the first 

finite bound on gaps between primes. i.e. 

 lim
𝑛→∞

inf (𝑃𝑛+1  −  𝑃𝑛)  <  7 × 107, where pn is 𝑛𝑡ℎ 

prime number.                                                         4 

The main area of his research is the refinement of the 

techniques employed by "Goldston, Pintz, and 

Yildirim" in the context of small gaps between 

consecutive primes3. He has achieved impressive 

results in generating these small gaps by building 

upon the Bombieri-Vinogradov Theorem5 

(stronger version), which applies only when the 

large prime divisors do not have any moduli.                                                                          

Bombieri- Vinogradov Theorem 1:5 Let x and Q 

be any two positive real numbers with                
x1/2

(logx)A ≤ Q ≤ x1/2  where A is a positive constant. 

Then    

∑
𝑚𝑎𝑥

𝑦 ≤ 𝑥 
𝑚𝑎𝑥

     1 ≤ 𝑎 ≤ 𝑞, (𝑎, 𝑞) = 1 |𝜓(𝑦; 𝑞, 𝑎) −𝑞≤𝑄

𝑦

𝜑(𝑞)
| = 𝑂 (𝑥

1

2𝑄(𝑙𝑜𝑔𝑥)5)                                        5                                                                                                             

Here 𝜑(𝑞) is the Euler totient function, which is 

the number of summands for the modulus q, and 

𝜓(𝑦; 𝑞, 𝑎) = ∑ Λ(𝑛)𝑛≤𝑦,𝑛≡𝑎(𝑚𝑜𝑑𝑞)  where Λ(𝑛) is 

Von-Mangoldt function defined as 

 Λ(𝑛) = {
𝑙𝑜𝑔𝑛, 𝑛 = 𝑝𝛼  𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝛼 ∈ ℝ 

0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                      
   

This theorem is a special case of 

Elliott-Halberstam Conjecture:6  𝜋(𝑥; 𝑞, 𝑎) ≈
𝜋(𝑥)

𝜑(𝑞)
  where  𝜋(𝑥) is prime counting function.         6                                                        

If the Error function is defined as:  

E(x; q) = 
𝑚𝑎𝑥

gcd(𝑎, 𝑞) = 1 |π(x; q, a) −  
π(x)

φ(q)
|  

where max is taken over all “a” which is coprime 

to “q”, then the Elliott–Halberstam conjecture6 

states that for every 𝜃 < 1  and A > 0, ∃ a 

constant C such that: 

∑ E(x; q) ≤
𝐶𝑥

(𝑙𝑜𝑔𝑥)𝐴

1≤𝑞≤𝑥𝜃

 ∀𝑥 > 2. 

Goldston, Pintz, and Yildirm (GPY) as well as 

Bomieri, Friedlander, and Iwaniec7 made a 

remarkable discovery linking the challenge of 

finding bounded gaps between prime numbers with 

the Elliott-Halberstam conjecture. Building on 

this work, number theorists were able to locate 

primes in other sets besides intervals, enabling them 

to prove that there are two primes among the 

numbers n+𝑎𝑖 , 1≤ 𝑖 ≤ ℎ, for N < n ≤ 2𝑁 and the 

𝑎𝑖′𝑠 are given arbitrary integers in the interval [1, N] 

if h < C√logN(loglogN)2 and N is constraint to 

some sequence 𝑁𝜎 which is tending to infinity, 

which avoids Siegel zeros8 for moduli near to N and 

also a recent result by James Maynard which shows 

the bounded gaps between primes i.e. 

lim
𝑛→∞

𝑖𝑛𝑓(𝑝𝑛+𝑚 − 𝑝𝑛) ≪ 𝑚3𝑒4𝑚  . This general 

result stands in contrast to Gallagher’s theorem9, 

which requires the ai’s to lie with in an interval such 

a general result can be proved without caring that 

how “ai” values are distributed.  

However, the GPY approach is unable to 

demonstrate robust findings, such as searching for 

two or more primes in intervals of restricted length. 

According to the Prime number theorem10, number 

theorists can only improve the trivial bound by a 

constant factor (Unconditionally) 3. Currently, the 

https://dx.doi.org/10.21123/bsj.2023.8635
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best result is   lim
𝑛→∞

inf 
𝑝𝑛+2−𝑝𝑛

𝑙𝑜𝑔𝑝𝑛
= 0, by assuming 

Elliott–Halberstam conjecture.  

To prove a result as described in James Maynard's 

paper1,  

i.e., lim
𝑛→∞

inf 𝑝𝑛+𝑚 − 𝑝𝑛 = 𝑂(𝑚3𝑒2𝑚)                   7 

Mathematicians must assume the Elliott-Halberstam 

conjecture. This conjecture is believed to exceed the 

current understanding of Sieve methods11, 

especially the "Selberg" Sieve method11. However, 

this paper aims to refine Goldston, Pintz, and 

Yildirim's and James Maynard's arguments to 

demonstrate that for a positive proportion of 

admissible k-tuples, there exists the Prime k-tuples 

conjecture (for each k), which means there exist 

admissible k-tuples whose proportion is positive for 

which the prime k-tuples conjecture holds. The 

paper employs various analytical methods from 

different branches of Mathematics12 and Physics13, 

and its assumptions and techniques are similar to 

Maynard's method but produce numerically superior 

results.  

Additionally, the paper suggests the use of different 

Sieves like Large Sieve14 rather than the traditional 

“Selberg” Sieve to improve the limit's 

approximation given in “Theorem 1”. 

The significance of “Theorem 1” is that it is a 

positive step towards achieving the conjectural 

bound that is lim
𝑛→∞

inf 𝑝𝑛+𝑚 − 𝑝𝑛 = 𝑂(𝑚3𝑒2𝑚) , 

unconditionally without assuming the Elliott-

Halberstam conjecture. 

 

This section provides the complete proof of 

“Theorem 1” which includes various analytical 

techniques along with numerous assumptions and 

restrictions. Additionally, the proof of the theorem 

required extensive calculations and analysis. 

Theorem 1: Let m∈ ℕ  and 𝑝𝑛 denote 𝑛𝑡ℎprime 

number, then 

lim
𝑛→∞

𝑖𝑛𝑓(𝑝𝑛+𝑚 − 𝑝𝑛) ≪ 𝑚2𝑒4𝑚 −𝜒𝑙𝑜𝑔𝑚  

where 𝑝𝑛 is 𝑛𝑡ℎ prime number, “m” and “𝜒" are 

constants such that “𝜒𝑙𝑜𝑔𝑚" does not exceed “m”. 

Proof: Let 𝑆𝑘 represents the set of functions (F) 

which are Riemann-integrable15 defined as 

F:[0,1]𝑘 →  ℝ with support in 

𝑅𝑘= {(x1,…,,xk)  ∈ [0,1]𝑘 : ∑ 𝑥𝑖 ≤ 1}𝑘
𝑖=1  with 

𝑄𝑘(𝐹) = ∫ … … ∫ 𝐹(𝑦1, … … , 𝑦𝑘)2 𝑑𝑦1 … . . 𝑑𝑦𝑘

1

0

1

0

 

𝑃𝑘
(𝑚)(𝐹) =

∫ … … ∫ (∫ 𝐹(𝑦1, … … , 𝑦𝑘)𝑑𝑦𝑚
1

0
)

2
𝑑𝑦1 … . . 𝑑𝑦𝑘

1

0

1

0
  

provided that 𝑄𝑘(𝐹) ≠ 0 and 𝑃𝑘
(𝑚)(𝐹) ≠ 0 for all 

individual m. 

Let        𝐿𝑘 =
𝑠𝑢𝑝

𝐹 ∈ 𝑆𝑘
 
∑ 𝑃𝑘

(𝑚)(𝐹)𝑘
𝑚=1

𝑄𝑘(𝐹)
                         8 

Now, a lower bound for 𝐿𝑘 is required which could 

be obtained by using a function F = 𝐹𝑘 which has 

been created to make the ratio  
∑ 𝑃𝑘

(𝑚)(𝐹)𝑘
𝑚=1

𝑄𝑘(𝐹)
  large 

by assuming “k” to very be large. This could be done 

by taking function (F) which has the following form: 

𝐹(𝑦1, … … , 𝑦𝑘) = {
∏ ℎ(𝑘𝑦𝑖)𝑘

𝑖=1 , 𝑖𝑓 ∑ 𝑦𝑖 ≤ 1𝑘
𝑖=1

 0                 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
    9                             

Here h: [0,∞) →  ℝ supported on [0, H] is some 

Smooth function16. Notice that “F” is symmetric, 

with this choice of “F” 𝑃𝑘
(𝑚)(𝐹) is same, regardless 

of m. So that’s why 𝑃𝑘 = 𝑃𝑘
(1)(𝐹) was considered. 

Likewise, one can also write 𝑄𝑘 = 𝑄𝑘(𝐹). 

The key point is that if  
∫ 𝑢ℎ(𝑢)2𝑑𝑢

∞

0

∫ (ℎ(𝑢))2∞

0
𝑑𝑢

  is less than 1 

which is defined as Center of mass17 of ℎ2, then 

letting “k” to be large enough, this was anticipated 

that the limits imposed by “F” that is ∑ 𝑦𝑖 ≤ 1,𝑘
𝑖=1  

could be settled by having only a small error term 

because the main contribution of the integrals (which 

have no restrictions) defined as:  

𝑄𝑘
′(𝐹) = ∫ … . . ∫ ∏ ℎ(𝑘𝑦𝑖)2𝑘

𝑖=1
∞

0

∞

0
𝑑𝑦1 … . . 𝑑𝑦𝑘   

and 

  𝑃𝑘
′(𝐹) =

∫ … ∫ (∫ ∏ ℎ(𝑘𝑦𝑖)𝑑𝑦1)2𝑘
𝑖=1

∞

0

∞

0

∞

0
𝑑𝑦2 … . . 𝑑𝑦𝑘   

should majorly come when  ∑ 𝑦𝑖
𝑘
𝑖=1  is close to 

Center of mass (by the concentration of measure). 

So 𝑄𝑘 and 𝑃𝑘 are well approximated by 𝑄𝑘
′ and 𝑃𝑘

′ 

respectively, because if center of mass of ℎ2 < 1 

then one must anticipate the contribution to be small, 

when ∑ 𝑦𝑖
𝑘
𝑖=1 > 1. 

For the convenience of notion, let 𝛼 = ∫ ℎ(𝑢)2𝑑𝑢
∞

0
, 

now focus only on “h” such that 𝛼 > 0. Then     

𝑄𝑘 = ∫ … … ∫ 𝐹(𝑦1 , … … , 𝑦𝐾)2𝑑𝑦1 … . . 𝑑𝑦𝐾                                                                       

              𝑅𝐾 

          ≤ (∫ ℎ(𝑘𝑦)2𝑑𝑦
∞

0
)

𝐾
= 𝑘−𝑘𝛼𝑘                       10 

          

Now consider 𝑃𝑘, then  

𝑃𝑘 ≥ ∫ … ∫(∫ (∏ ℎ(𝑘𝑦𝑖))𝑑𝑦1)2𝑑𝑦2 … . . 𝑑𝑦𝑘
𝑘
𝑖=1

𝐻

𝑘
0

  

where 𝑦2, … … , 𝑦𝑘 ≥ 0, ∑ 𝑦𝑖 ≤ 1 −
𝐻

𝑘
𝑘
𝑖=2               11 

https://dx.doi.org/10.21123/bsj.2023.8635
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Since squares are non-negative, together with this 

the restriction of the outer integral to ∑ 𝑦𝑖 ≤ 1 −𝑘
𝑖=2

𝐻

𝑘
 to obtain lower bound for 𝑃𝑘  has been made. This 

is being done because with the support of “h”, this 

has the advantage of removing all the limitations 

from the inner integral. 

The right-hand side of Eq 11 can be written as   

𝑃𝑘
′ − 𝐸𝑘, where  

𝑃𝑘
′ = ∫ … . ∫(∫ (∏ ℎ(𝑘𝑦𝑖))𝑑𝑦1)2𝑑𝑦2 … . . 𝑑𝑦𝑘

𝑘
𝑖=1

𝐻

𝑘
0

  

where 𝑦2, … … , 𝑦𝑘 ≥ 0 

      = (∫ ℎ(𝑘𝑦1)𝑑𝑦1
∞

0
)

2
(∫ ℎ(𝑘𝑦)𝑑𝑦

∞

0
)

𝑘−1
 

      =  𝑘−𝑘−1𝛼𝑘−1(∫ ℎ(𝑢)𝑑𝑢
∞

0
)

2
                 12 

𝐸𝑘 = ∫ … ∫(∏ ℎ(𝑘𝑦𝑖))𝑑𝑦1)2𝑑𝑦2 … . . 𝑑𝑦𝑘
𝑘
𝑖=1 )

 
   

where 𝑦2, … … , 𝑦𝑘 ≥ 0, ∑  𝑦𝑖 > 1 −
𝐻

𝐾
𝑘
𝑖=2              

𝑘−𝑘−1(∫ ℎ(𝑢)𝑑𝑢
∞

0
)

2
∫ … ∫(∏ ℎ(𝑢𝑖)2𝑘

𝑖=2 ) 𝑑𝑢2 … 𝑑𝑢𝑘    

𝑢2, … … , 𝑢𝑘 ≥ 0, ∑ 𝑢𝑖 > 𝑘 − 𝐻𝑘
𝑖=2      13 

To show that error integral (𝐸𝑘) to be small, this 

error integral (𝐸𝑘) could be compared with a Second 

Moment18. If  
∫ 𝑢ℎ(𝑢)2𝑑𝑢

∞

0

∫ (ℎ(𝑢))2∞

0
𝑑𝑢

<
𝑘−𝐻

𝑘−1
, then the bound for 

𝐸𝑘  could be expected to be small. This is why it is 

necessary to impose a restriction on “h” that 

𝛾 =
∫ 𝑢ℎ(𝑢)2𝑑𝑢

∞

0

∫ ℎ(𝑢)2𝑑𝑢
∞

0

< 1 −
𝐻

𝑘
                             14 

For ease of notation, let 𝜂 =
𝑘−𝐻

𝑘−1
− 𝛾 > 0. If 

∑ 𝑢𝑖 > 𝑘 − 𝐻𝑘
𝑖=2 , then it follows that  ∑ 𝑢𝑖 >𝑘

𝑖=2

(𝑘 − 1)(𝛾 + 𝜂).  
which implies that   

1 ≤ 𝜂−2 (
1

𝑘−1
∑ 𝑢𝑖 − 𝑘

𝑖=2  𝛾)
2
                              15                     

Since the term on the right of Eq 15 is non-negative 

for all 𝑢𝑖, multiply the integrand by 

“𝜂−2 (
1

𝑘−1
∑ 𝑢𝑖 − 𝑘

𝑖=2  𝛾)
2
” with the constraint that 

∑ 𝑢𝑖 > 𝑘 − 𝐻𝑘
𝑖=2    yields an upper bound for “𝐸𝑘”. 

Thus, it can be inferred that: 

𝐸𝑘 ≤

𝜂−2𝑘−𝑘−1(∫ ℎ(𝑢)𝑑𝑢)
∞

0
)

2
∫ … … ∫ (

1

𝑘−1
∑ 𝑢𝑖 −𝑘

𝑖=2
∞

0

∞

0

  𝛾)
2

×  (∏ ℎ(𝑢𝑖)2𝑘
𝑖=2 )𝑑𝑢2 … … . 𝑑𝑢𝑘                   16                     

All the terms in the expanded inner square can be 

explicitly calculated as an expression in "𝛾" and "𝛼", 

provided "𝛾" and "𝛼"  are not of the form 𝑢𝑗
2. This 

implies 

∫ … … ∫ (
2 ∑ 𝑢𝑖𝑢𝑗 2≤𝑖<𝑗≤𝑘

(𝑘−1)2 +  𝛾2 −
∞

0

∞

0

2𝛾 ∑ 𝑢𝑖
𝑘
𝑖=2

𝑘−1
) (∏ ℎ(𝑢𝑖)2𝑘

𝑖=2 ) 𝑑𝑢2. . . 𝑑𝑢𝑘 =
−𝛾2𝛼𝑘−1

𝑘−1
     17                                          

For 𝑢𝑗
2 terms, with the support of “h”, it could be 

seen that 𝑢𝑗
2ℎ(𝑢𝑗)2 ≤ 𝐻𝑢𝑗ℎ(𝑢𝑗)

2
. Thus 

∫ … … ∫ 𝑢𝑗
2(

∞

0

∞

0
∏ ℎ(𝑢𝑖)2)𝑑𝑢2 … … . 𝑑𝑢𝑘

𝑘
𝑖=2 ≤

𝐻𝛼𝑘−2 ∫ 𝑢𝑗
∞

0
ℎ(𝑢𝑗)

2
𝑑𝑢𝑗 = 𝛾𝐻𝛼𝑘−1                    18                               

This gives 

𝐸𝑘 ≤ 𝜂−2𝑘−𝑘−1(∫ ℎ(𝑢)𝑑𝑢)
∞

0

2
(

𝛾𝐻𝛼𝑘−1

𝑘−1
−

𝛾2𝛼𝑘−1

𝑘−1
) ≤

𝜂−2𝛾𝐻𝑘−𝑘−1𝛼𝑘−1

𝑘−1
(∫ ℎ(𝑢)𝑑𝑢)

∞

0

2
             19                       

Since  (𝑘 − 1)𝜂2 ≥ 𝑘(1 −
𝐻

𝑘
− 𝛾)2 and 𝛾 ≤ 1, now 

Eq 10, Eq 11, Eq 12 and Eq 19 together implies 

   
𝑘𝑃𝑘

𝑄𝑘
≥

(∫ ℎ(𝑢)𝑑𝑢
∞

0
)

2

∫ ℎ(𝑢)2𝑑𝑢
∞

0

(1 −
𝐻

𝑘(1−
𝐻

𝑘
−𝛾)

2)                 20                                                                          

To maximize the lower bound value in Eq 20, the 

integral ∫ ℎ(𝑢)𝑑𝑢
𝐻

0
 must be maximized, subject to 

the constraints that ∫ ℎ(𝑢)2𝑑𝑢 = 𝛼
𝐻

0
 and 

∫ 𝑢ℎ(𝑢)2𝑑𝑢 = 𝛾𝛼
𝐻

0
. Thus, the main goal is to 

maximize the expression: 

∫ ℎ(𝑢)𝑑𝑢 − 𝜏(
𝐻

0 ∫ ℎ(𝑢)2𝑑𝑢 − 𝛼) −
𝐻

0

𝛽 (∫ 𝑢ℎ(𝑢)2𝑑𝑢 − 𝛾𝛼).
𝐻

0
)                                    21                    

with respect to 𝜏, 𝛽 and the function h. This occurs 

when 
𝜕

𝜕ℎ
(ℎ(𝑡) − 𝜏ℎ(𝑡)2 − 𝛽𝑡ℎ(𝑡)2) = 0 for all t ∈

[0, 𝐻] by making use of Euler-Lagrange eq 19. 

This implies that                                                                                 

h(t) = 
1

2𝜏+2𝛽𝑡
                                                           22                                                                     

Noting that if a positive constant is multiplied by 

“h”, the ratio which is being maximized remains 

unchanged. Let's now consider functions of “h” in 

the form of “
𝑛

1+𝑛𝐴𝑡
” for t ∈ [0, 𝐻] where “n” is a 

constant depending on “A” which in turn depends on 

k that will be chosen later. This selection of “h” 

implies: 

 ∫ h(u)du =
1

A
log (1 + nAH)

H

0
                              23                      

∫ h(u)2du =
n

A
[1 −

1

1+nAH
]

H

0
                                 24 

∫ uh(u)2du =
1

A2

H

0
[log(1 + nAH) + (

1

1+nAH
− 1)]         

                                           25                   

“H” could be taken such that 1 +  nAH = eAn−n 

(which is the optimal choice). With this selection,  

  γ =
1

An
[

An−n+e−(An−n)−1

1−e−(An−n) ]   and   H ≤
eAn−n

An
    

Next, choose A = log k > 0 and n = log log log A.  
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Note: It must be ensured that the value of “n” which 

is dependent on “A” which in turn depends on “k” 

≈1 (almost equal to 1) which can be achieved by 

taking a sufficiently large value of "k". This 

condition on “n” is necessary because of following 

two reasons: 

If the value of “n” > 1 then the 2nd term on right-

hand side of Eq 26 i.e., 
𝑒𝐴𝑛−𝑛

𝐴𝑛𝑘
 > 1, so by this the 

expression on right-hand side of  Eq 26 becomes 
negative as the 3rd term on right-hand side of Eq   

26 i.e.,  
1

𝐴𝑛
[

𝐴𝑛−𝑛+𝑒−(𝐴𝑛−𝑛)−1

1−𝑒−(𝐴𝑛−𝑛) ] is always less than 1. 

1. If the value of “n” < 1 then the expression 

on right-hand side of Eq 26 becomes 

positive but the best optimal bound would 

not be obtained in Eq 27. 

So, to make right-hand side of Eq 26 positive and 

also to get best optimal bound in Eq 28, it must be 

ensured that the value of “n” ≈1(almost equal to 1) 

which can be achieved by taking a sufficiently large 

value of "k" so that the 2nd term on right-hand side of 

Eq 26 i.e., 
𝑒𝐴𝑛−𝑛

𝐴𝑛𝑘
 is less than 1. 

This implies: 

1 −
𝐻

𝑘
− 𝛾 ≥ 1 −

𝑒𝐴𝑛−𝑛

𝐴𝑛𝑘
−

1

𝐴𝑛
[

𝐴𝑛−𝑛+𝑒−(𝐴𝑛−𝑛)−1

1−𝑒−(𝐴𝑛−𝑛) ] > 0                                                                           

                                                                               26 

Now, just substitute the values of Eq 23, Eq 24, Eq 

25 and Eq 26 into Eq 20 to obtain the desired result.                                                                                                     

   𝑀𝑘 ≥
𝑘𝑃𝑘

𝑄𝑘
≥

(𝐴𝑛−𝑛)2

𝐴𝑛(1−𝑒−(𝐴𝑛−𝑛))
[1 −

𝑒𝐴𝑛−𝑛

𝐴𝑛𝑘(1−
𝑒𝐴𝑛−𝑛

𝐴𝑛𝑘
−

1

𝐴𝑛
[

𝐴𝑛−𝑛+𝑒−(𝐴𝑛−𝑛)−1

1−𝑒−(𝐴𝑛−𝑛) ])
2] ≥

(𝐴𝑛−𝑛)2

𝐴𝑛
      and 

       
(𝐴𝑛−𝑛)2

𝐴𝑛
= 𝑙𝑜𝑔𝑘𝑙𝑜𝑔𝑙𝑜𝑔𝑙𝑜𝑔𝑙𝑜𝑔𝑘 +

𝑙𝑜𝑔𝑙𝑜𝑔𝑙𝑜𝑔𝑙𝑜𝑔𝑘

𝑙𝑜𝑔𝑘
− 2𝑙𝑜𝑔𝑙𝑜𝑔𝑙𝑜𝑔𝑙𝑜𝑔𝑘                           27                                                                                                                          

Now 𝜃 =
1

2
− 𝜖 could be taken (by Bombieri- 

Vinogradov Theorem 1) thus, by Eq 27 and for “k” 

being sufficiently large implies: 
𝜃𝑀𝑘

2
≥ (

1

4
−

𝜖

2
) (

(𝐴𝑛−𝑛)2

𝐴𝑛
) = (

1

4
−

𝜖

2
) (𝑙𝑜𝑔𝑘𝑙𝑜𝑔𝑙𝑜𝑔𝑙𝑜𝑔𝑙𝑜𝑔𝑘 +

𝑙𝑜𝑔𝑙𝑜𝑔𝑙𝑜𝑔𝑙𝑜𝑔𝑘

𝑙𝑜𝑔𝑘
−

2𝑙𝑜𝑔𝑙𝑜𝑔𝑙𝑜𝑔𝑙𝑜𝑔𝑘)                                                  28                                                                                  

Now choose 𝜖 =
1

𝑘
 and see that if k≥

𝐶𝑚𝑒4𝑚 −𝜒𝑙𝑜𝑔𝑚 where “m” and “𝜒" are constants 

such that “𝜒𝑙𝑜𝑔𝑚" does not exceed “m”, then  
𝜃𝑀𝑘

2
>

𝑚, for C which is also a constant that doesn’t depend 

on “m” and “k”. 

Therefore, if an admissible set H = {h1,..,hk} is 

considered, where k ≥ 𝐶𝑚𝑒4𝑚 −𝜒𝑙𝑜𝑔𝑚 ,then for 

large number of integers “n” at least “m+1” of “n+hi” 

must be prime. 

Let us choose that the set “H” to be 

{𝑝𝜋(𝑘)+1, … … . , 𝑝𝜋(𝑘)+𝑘}  which consists of the first 

k primes which are greater than k. This set “H” is 

admissible because no element less than k is a 

multiple of a prime, and there are k elements in the 

set, ensuring that all classes with Residue20 that are 

moded (modulo) by any prime greater than k are not 

covered. The diameter of the set 

𝑝𝜋(𝑘)+1, … … . , 𝑝𝜋(𝑘)+𝑘 ≪ 𝑘𝑙𝑜𝑔𝑘 thus, if k = 

⌈𝐶𝑚𝑒4𝑚 −𝜒𝑙𝑜𝑔𝑚 ⌉, where ⌈x⌉ denotes smallest 

integer n≥ 𝑥,then this implies lim
𝑛→∞

𝑖𝑛𝑓(𝑝𝑛+𝑚 −

𝑝𝑛) ≪ 𝑘𝑙𝑜𝑔𝑘 ≪ 𝑚2𝑒4𝑚 −𝜒𝑙𝑜𝑔𝑚 . This satisfies our 

desired result.

Results and Discussion 

This section presents the description of “Theorem 

1” which has been proven using advanced 

techniques from “Goldston, Pintz and Yildirim” and 

“James Maynard”. In particular, the following 

theorem has been proved: 

lim
𝑛→∞

𝑖𝑛𝑓(𝑝𝑛+𝑚 − 𝑝𝑛) ≪ 𝑘𝑙𝑜𝑔𝑘 ≪ 𝑚2𝑒4𝑚 −𝜒𝑙𝑜𝑔𝑚 

where 𝑝𝑛 is 𝑛𝑡ℎprime number, “m” and “𝜒" are 

constants such that “𝜒𝑙𝑜𝑔𝑚" does not exceed “m” 

and “k” is taken to be very large. 

In comparison to previous result in “James 

Maynard” paper, modified upper bound of “𝑚3𝑒4𝑚” 

to 𝑚2𝑒4𝑚 −𝜒𝑙𝑜𝑔𝑚 has been given. 

 

 

 

 

 

                                                                                                 

 

Conclusion 
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In this paper some existence of Primes k-tuples 

conjecture for positive proportion of admissible k-

tuples has been shown, in particular, it has been 

shown that: lim
𝑛→∞

𝑖𝑛𝑓(𝑝𝑛+𝑚 − 𝑝𝑛) ≪

𝑚2𝑒4𝑚 −𝜒𝑙𝑜𝑔𝑚   where 𝑝𝑛 is 𝑛𝑡ℎprime number, “m” 

and “𝜒" are constants such that “𝜒𝑙𝑜𝑔𝑚" does not 

exceed “m” and “k” is taken to be very large. This 

result is a positive step towards achieving the 

conjectural bound that is  lim
𝑛→∞

inf 𝑝𝑛+𝑚 − 𝑝𝑛 =

𝑂(𝑚3𝑒2𝑚)  and to prove this, one has to prove 

Elliott-Halberstam conjecture which is being 

assumed to be beyond the known techniques of 

Sieve methods, especially “Selberg” Sieve method. 

Many breakthroughs happened in the last few years 

as described above (in introduction) but no one was 

able to develop new techniques to solve the Elliott-

Halberstam conjecture. But in comparison to 

previous result in “James Maynard” paper, modified 

upper bound of “𝑚3𝑒4𝑚” to "𝑚2𝑒4𝑚 −𝜒𝑙𝑜𝑔𝑚 " where 

“m” and "𝜒" are constants such that “𝜒𝑙𝑜𝑔𝑚" does 

not exceed “m” has been given.

In this paper some existence of Primes k-tup
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 المقبولة K-Tuples للنسبة الإيجابية منالرئيسي  K-Tuples وجود تخمينحول 

 أشيش مور ، سوربي غوبتا 

  قسم الرياضيات، معهد أميتي للعلوم التطبيقية، جامعة أميتي، نويدا، الهند

 

 :ةالخلاص

ؤدي ييعتقد منظرو الأعداد أن الأعداد الأولية تلعب دورًا مركزياً في نظرية الأعداد وأن حل المشكلات المتعلقة بالأعداد الأولية يمكن أن 

إلى إثبات وجود هذا التخمين  البحث اهدف هذي.k-tuples التخمينات الأخرى التي لم يتم حلها ، بما في ذلك التخمين الأوليإلى حل العديد من 

دراسة ب  "جيمس مينراد كولدستون و بنتز و يلدرم و طرقذلك من خلال تحسين  الباحثونالمقبولة بنسب موجبة. حقق  k-tuples بالنسبة لـ

من التغلب على القيود والمعوقات السابقة ولإظهار أنه  التحسيناتالأولية.  تم تمكين هذه  k-tuples الأعداد الأولية و الفجوات المحدودة بين

تكمن أهمية هذه النتيجة في أنها غير  "k"لكل k-tuples  المقبولة ، هناك وجود التخمين الأولي k بالنسبة لنسبة إيجابية من مجموعات

 .هالبرستام-م إثباتها دون افتراض أي شكل من أشكال التخمين القوي مثل تخمين إليوتمشروطة مما يعني أنه ت
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