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Introduction 

Multi-objective linear programming 

(MOLP) techniques play an important role in solving 

decision problems, which involve more than one 

objective function1. These techniques use the priority 

factor or weighting factor according to the 

information obtained from the decision maker and 

provide the decision maker with solutions. However, 

since there are multi-objectives, it is very difficult to 
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obtain optimal solutions using these techniques. 

Therefore, one must look for satisfactory or bargain 

solutions2,3. 

In mathematical techniques, both method of solution 

and constraints affect the solution4. If the constraint 

resources are not used to their full potential in a 

mathematical model, the unused resources reduce the 

level of achievement of the goals. Therefore, it is 

very important to ensure that all objectives are 

achieved at optimal levels, and that constrained 

resources are used to their full potential5. 

De novo programming (DNP) was 

conducted by Zeleny6, which represents an ideal 

system rather than an optimization of a specific 

system. Today's production and management 

systems are necessarily more flexible. It must be 

quickly designed and redesigned, disassembled and 

reassembled again, which requires continuous 

reorganization of resources to ensure the feature. 

Because all systems are built within their boundaries, 

they lack alternatives, options, and design variables 

in their creation environment. Therefore, when 

redesigning, reconfiguring or optimizing the system, 

its limitations and limitations must be worked out as 

well. It is not enough to reshape it on the basis of a 

specific system with its priorities and options. 

Therefore, system design requires creation of 

alternatives rather than selection. As opposed to 

optimizing a specific system as standard methods do, 

see7-9 

There are plenty of studies on DNP methods 

and applications under certainty for instance, the 

researchers7 proposed a new approach to project 

portfolio design based on a systematic combination 

of the data envelop analysis (DEA) model and DNP 

optimization approach, the proposed model provides 

optimal project portfolio design with minimal budget  

as well, authors8 generalized the DNP approach to 

find the optimal design for production system, 

suggesting more types of restrictions possible, in 

particular ′ ≥′, =.  

The worker9 used lexical-objective 

programming to find solutions of MODNP problem 

with positive ideal solutions. New authors10 

suggested a new approach min-max GP for solving 

MODNP, they compare it with Umarusman’s 

problem, they found that the solution gotten by min-

max GP approach are better than Umarusman’s 

problem in same weights used.  

 Participants11were used DNP to the 

planning of urban parks in Taichung city, Taiwan. 

They found that the DNP increases the total utility of 

metropolitan parks by move resources from the 

economic and ecological, thus MCDM and MOP 

methods were able to provide an effective solution 

for evaluating metropolitan parks.  

Several authors12 applied MODNP by 

formulating a problem to solve budget optimization 

in the stock market, they proposed a new approach as 

a case study based on data collected from the Bomba 

Stock Exchange (BSE). 

 New study 13 applied DNP on PT.X 

company by formulating LP problem to DNP, it 

solved the problem by simplex method, where the 

DNP technique achieved the optimal number of 

productions.   

They14 proposed general method for solving 

MODNP, by assuming the problem has two types of 

objectives (Max and Min), they obtained that the 

proposed method gives the DM freedom to select the 

objectives functions which should be prioritized. 

another workers15 suggested new approach named 

‘one-step method’ for solving general DNP using 

min-max GP technique, the solution obtained from 

the one-step method is more efficient than the 

classical DNP with crisp parameters. 

In spite of Zeleny approach gives an optimal 

system design when he applied DNP at certainty 

conditions only, it did not work with uncertainty 

conditions6. Many systems analysis methods were 

developed for solving DNP under uncertainty, such 

as fuzzy, interval, and stochastic programming. For 

example,  

 The author16 applied the fuzzy goal 

programming approach to a multi-criterion de novo 

linear programming problem (𝛼 -MDNPLPP) by 

defining appropriate membership functions and 

aspiration levels, she found that the main advantage 

of this approach gives to the DM more freedom to 

determine the 𝛼-level and thus evaluate the effective 

solution to reduce his incomplete knowledge about 

the field. 

The same above author17 introduced a new 

approach to solve MODNP by assuming possibilistic 

objective functions coefficients. The solution of the 

problem is achieved by using an efficient and 

necessary condition.  

The researchers18 proposed two concepts of 

fuzzy and interval type-II fuzzy resources. The main 

targets of their study are developed for resource 

allocation and target setting using DNP. 

The author19 used the fuzzy goal with fuzzy 

parameters model and then integrating (positive and 

negative) ideal solutions, also introduced a new 
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fuzzy DNP technique, the recommended method, 

which combined fuzzy resource unit pricing and 

fuzzy constraint amount was used to construct the 

fuzzy budget. 

The researcher20 is mainly concerned with 

optimization, both static and dynamic. Under 

ambiguous (Fuzzy) information, the optimization 

problem is formulated as maximizing (or 

minimizing) some utility function. He applied fuzzy 

DNP model on sustainable regional development. 

The interval DNP method for planning water 

resources systems was used under uncertainty 

conditions by21. The interval-fuzzy DNP for 

planning water resources systems was used by22. 

Monte-Carlo23-based interval fuzzy DNP method 

developed for land-use planning under uncertainty. 

Luhandjula's compensatory 𝜇𝜃 - operator used to 

solve the general MODNP problem under a fuzzy 

environment in one step23,24. The fuzzy budget is 

constructed by 25 using fuzzy unit pricing of 

resources and fuzzy resource amounts of restrictions 

In our study, rough interval coefficient (RIC) 

used to develop the Zeleny approach by applying 

uncertainty conditions. RIC has a main advantage 

that makes it applicable when data are not available 

or vague 26,27. 

The main question of our work is “How to 

allocate resources under uncertainty conditions with 

an un-determent budget?”   

In this paper, a proposed model is presented 

to solve the uncertainty problem using multi-

objective linear programming with rough interval 

coefficients (RIC) combine with de novo 

programming, the proposed model would be Rough 

Interval Multi-Objective De Novo Programming 

(RIMODNP), three methods are used to solve 

RIMODNP  (First: WSM before formulation, 

assume right- hand side known, Second: Zeleny’s 

approach, Third: Optimal path-ratios, two methods 

are assumed right-hand side of constraints 

unknown),    rest of this research is organized as 

follows: Section 2 presents "Methodology" which 

includes multi-objective linear programming, WSM, 

Rough interval linear programming model, DNP and 

MORIDNP and the steps of the proposed method. 

Section 3 considers "applied example and results and 

discussions ". And finally, the conclusion is given in 

Section 4. 

 

Materials and Methods 

Methodology 

Multi-objective Linear Programming Model 

Multi-objective linear programming 

(MOLP) is a model of optimizing a given system by 

multiple objectives. It is usually impossible to 

optimize all objectives simultaneously in a given 

system. A trade-off means that one cannot increase 

the level of satisfaction for an objective without 

decreasing it for another one. Trade-offs is property 

of an inadequately designed system and thus it can 

be eliminated through designing a better one. MOLP 

problem can be described as follows: 

Consider the standard model of MOLP 

𝑚𝑎𝑥 𝑓𝑘 = ∑ 𝐶𝑘𝑗
𝑛
𝑗=1 𝑋𝑗 ,                k = 1,2,… , 𝑙,    

      subject to : 

     ∑ 𝑎𝑖𝑗
𝑛
𝑗=1 𝑋𝑗𝑖 ≤ 𝑏𝑖,    𝑖 = 1,2, … ,𝑚,                                                             

1 

𝑋𝑗 ≥ 0, 𝑗 = 1,2,… , 𝑛    

Where: 

   The parameters 𝑏𝑖 (𝑖 = 1,2,… ,𝑚) represent 

the given available resources as constants. The 

efficient solution concept results from the solution of 

the MOLP model see for more details27-29. 

 

 

The Weighting Sum Method (WSM) 

WSM3,5,14 is used to solve multi-objective 

functions, The basic idea of WSM is that it is uses 

non-negative weights 𝑤1, 𝑤2, … . 𝑤𝑘 multiplied by 

the corresponding objective and then a composite 

objective is calculated using summation of the 

weighted objectives.  Then, the objective is modified 

for different weight combinations over and over 

again. 

 

Rough Interval Linear Programming Model:  

The rough interval linear programming 

Model (RILP) is extension of the linear 

programming problem with rough interval 

coefficients, to predict when a data value is not 

properly known, but can be estimated with upper 

interval and lower interval bounds, a rough interval 

linear programming problem can be formulated as 

follows:   

𝑀𝑎𝑥 𝑜𝑟 𝑀𝑖𝑛  𝑓 = ∑ ([𝑐𝑗
𝐿𝑛

𝑗=1 , 𝑐𝑗
𝑈], [𝑐𝑗

𝐿
, 𝑐𝑗
𝑈
])𝑥𝑗  

https://dx.doi.org/10.21123/bsj.2023.8740
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𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: ∑ ([𝑎𝑖𝑗
𝐿𝑛

𝑗=1 𝑎𝑖𝑗
𝑈 ], [𝑎𝑖𝑗

𝐿
, 𝑎𝑖𝑗
𝑈
])𝑥𝑗 ≤

([𝑏𝑖
𝐿 , 𝑏𝑖

𝑈], [𝑏𝑖
𝐿
, 𝑏𝑖
𝑈
])                       2                                            

𝑥𝑗 ≥ 0, 𝑗 = 1,2,… , 𝑛,     𝑖 = 1,2,… ,𝑚  

Where: 

([𝑐𝑗
𝐿 , 𝑐𝑗

𝑈], [𝑐𝑗
𝐿
, 𝑐𝑗
𝑈
]),(

[𝑎𝑖𝑗
𝐿 , 𝑎𝑖𝑗

𝑈 ], [𝑎𝑖𝑗
𝐿
, 𝑎𝑖𝑗
𝑈
]), and([𝑏𝑖

𝐿, 𝑏𝑖
𝑈], [𝑏𝑖

𝐿
, 𝑏𝑖
𝑈
])are 

rough interval coefficients of objective function and 

constraints and also, let x = (x1,x2,….,xn)
t represent 

the vector of all decision variables see for more 

details21,28,29. 

Properties of Rough Interval (RIC) 

In order to validate the proposed model, three 

properties must be met30:  

[𝑓𝑖𝑗
𝐿, 𝑓𝑖𝑗

𝑈] ⊆ [𝑓𝑖𝑗
𝐿
, 𝑓
𝑖𝑗

𝑈
] ⇒ 𝑓

𝑖𝑗

𝐿
≤ 𝑓𝑖𝑗

𝑈 ≤ 𝑓𝑖𝑗
𝐿 ≤ 𝑓

𝑖𝑗

𝑈

[𝐶𝑖𝑗
𝐿 , 𝐶𝑖𝑗

𝑈] ⊆ [𝐶𝑖𝑗
𝐿
, 𝐶𝑖𝑗

𝑈
] ⇒ 𝐶𝑖𝑗

𝐿
≤ 𝐶𝑖𝑗

𝑈 ≤ 𝐶𝑖𝑗
𝐿 ≤ 𝐶𝑖𝑗

𝑈

[𝑎𝑖𝑗
𝐿 , 𝑎𝑖𝑗

𝑈 ] ⊆  [𝑎𝑖𝑗
𝐿
, 𝑎𝑖𝑗
𝑈
] ⇒ 𝑎𝑖𝑗

𝐿
≤ 𝑎𝑖𝑗

𝑈 ≤ 𝑎𝑖𝑗
𝐿 ≤ 𝑎𝑖𝑗

𝑈
}
 
 

 
 

                                               

3 

 

De Novo Programming Model  

DNP is used for reshaping feasible sets in 

linear systems, it is utilized as an approach of 

optimum system design. Given resource pricing and 

a budget, the MODNP problem is reformulated. To 

get the DNP formulation from the problem 1, it is 

necessary to convert 𝑏𝑖 from constants to variables, 

and then determine their values as follows: 

 

 𝑚𝑎𝑥 𝑓𝑘 = ∑ 𝐶𝑘𝑗
𝑛
𝑗=1 𝑋𝑗,                k = 1,2,… , 𝑙,   

subject to :  
∑ 𝑎𝑖𝑗
𝑛
𝑗=1 𝑋𝑗𝑖 ≤ 𝑏𝑖, 𝑖 = 1,2,… ,𝑚,                                                                         

4    
∑ 𝑝𝑖
𝑚
𝑗=1 𝑏𝑖 ≤ 𝐵,  

         𝑋𝑗 ≥ 0, 𝑗 = 1,2, … , 𝑛   

Where: 

 𝑋𝑗, . 𝑏𝑖 are decision variables for products and 

available resources respectively, 𝑝𝑖, B are the given 

of both the unit price of resource i and total available 

budget respectively.   
For single or multiple objective problems, 𝒇𝒌 is for 

maximizing profit. 

From 2 follows:              𝑃𝐴𝑥 ≤ 𝑃𝑏 ≤ 𝐵 

Defining n-vector of unit cost 𝑉 = 𝑃𝑏  it can be 

rewriting problem 4 as the follows:  

𝑀𝑎𝑥    𝑓𝑘 = 𝐶𝑋   

𝑠. 𝑡.       𝑉𝑋 ≤ 𝐵 , 𝑋 ≥ 0                                                                                       

5 

Solving single objective problems  

𝑀𝑎𝑥    𝑓𝑖 = 𝐶𝑖𝑋                                  i= 1, 2, 3,…, k 

𝑠. 𝑡.       𝑉𝑋 ≤ 𝐵   
𝑋 ≥ 0                                                                                                                  
6 

𝑓∗  is k- vector of objective values for the ideal 

system with respect to B. 

 the meta-optimum problem can be formulated as 

follows: 

𝑀𝑖𝑛   𝑍 = 𝑉𝑋  

𝑠. 𝑡.          𝐶𝑋 ≥ 𝑓∗                          
𝑋 ≥ 0                                                                                                                  
7  

Solving problem 5 provides the solution: 

𝑋∗      , 𝐵∗ = 𝑉𝑋∗     ,𝑏∗ = 𝐴𝑋∗  , for more details 

see9,10.  

 

Optimum-Path Ratio Method for Solving DNP 

           The optimum-path ratio31 for achieving the 

best performance for a given budget B is defined as: 

𝒓𝟏 =
𝑩

𝑩∗
  the given budget level ≤ 𝐵∗ . Optimal 

system design for B: 𝑋 = 𝑟1𝑋
∗, 𝑏 = 𝑟1𝑏

∗, 𝑍 = 𝑟1𝑓
∗ 

, the optimum-path ratio represents an effective and 

fast tool for the efficient optimal redesign of large-

scale linear systems. There are possible define six 

types of optimum-path ratios as shown in Table 1:  

 

Table 1. Six types of optimum-path ratios. 

Rati

o 1 

Rati

o 2 
Ratio 3 

Rati

o 4 
Ratio 5 Ratio 6 

𝒓𝟏

=
𝑩

𝑩∗
 

 

𝑟2

=
𝐵

𝐵∗∗
 

 

𝑟3

=
∑ 𝛼𝑖𝐵𝑖

𝑗
𝑖

𝐵∗∗
 

 

𝑟4

=
𝐵

𝐵∗∗
 

 

𝑟5

=
∑ 𝛼𝑖𝐵𝑖

𝑗
𝑖

𝐵∗
 

 

𝑟6

=
∑ 𝛼𝑖𝐵𝑖

𝑗
𝑖

𝐵∗∗
 

 

  

Where: ( 𝑋∗, 𝐵∗ = 𝑉 𝑋,∗ 𝑏∗ = 𝐴𝑋∗)  represent the 

results of a meta-optimum and the value 𝐵∗identifies 

the minimum budget to achieve 𝑓∗ 

So, ( 𝑋∗∗, 𝐵∗∗ = 𝑉 𝑋∗∗, 𝑏∗∗ = 𝐴𝑋∗∗) represent the 

results of a synthetic optimal solution: where the 

value 𝐵∗∗ identifies the synthetic-optimum 

performance f** related to given combined budget 

level ∑ 𝛼𝑖𝐵𝑖
𝑗

𝑖 , (𝛼𝑖  represent the weight of benefit 

each 𝑩𝒊
𝒋
 to produce 𝑋𝒊

𝒋
 in terms of the jth  criterion)31-

33.  
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Optimal System Design 

  It’s a set of designs that can be found through 

optimum-path ratios as in Table 1, the following 

optimum system designs can be determined: 

(i) 𝑥1 = 𝑟1𝑥∗∗,       𝑏1 =
𝑟1𝑏∗∗       𝑎𝑛𝑑  𝑓1 = 𝑟1𝑓∗∗                                  
8 

(ii) 𝑥2 = 𝑟2𝑥∗∗,       𝑏2 =
𝑟2𝑏∗∗       𝑎𝑛𝑑  𝑓2 = 𝑟2𝑓∗∗                                 
9 

(iii) 𝑥3 = 𝑟3𝑥∗∗,       𝑏3 =
𝑟3𝑏∗∗        𝑎𝑛𝑑  𝑓3 = 𝑟3𝑓∗∗                               
10  

(iv) 𝑥4 = 𝑟4𝑥∗,         𝑏4 =
𝑟4𝑏∗          𝑎𝑛𝑑  𝑓4 = 𝑟4𝑓∗                                
11 

(v) 𝑥5 = 𝑟5𝑥∗,         𝑏5 =
𝑟5𝑏∗          𝑎𝑛𝑑  𝑓5 = 𝑟5𝑓∗                                
12 

(vi) 𝑥6 = 𝑟6𝑥𝑛𝑑 ,       𝑏6 =
𝑟6𝑏𝑛𝑑        𝑎𝑛𝑑  𝑓6 = 𝑟6𝑓𝑛𝑑                             

13 

  

The optimum system design above ( 𝑥𝑖 , 𝑏𝑖, 𝑓𝑖) , 

i=1,….,6, Where: 

 𝑏𝑖: Optimum portfolio of resources to be acquired at 

the current market prices, p, allows one to produce 

𝑥𝑖  and realize the multi-criteria performance 𝑓𝑖 
see10-12. 

The Proposed Model of Rough Interval Multi-

Objective De Novo Programming (RIMODNP) 

The general mathematical model 14 rough 

interval multi-objective de novo programming 

problem (RIMODNP) is as follows: 

 𝑀𝑖𝑛 𝑜𝑟 𝑀𝑎𝑥 𝑓𝐾(𝑋)  =

∑ ∑ ([𝐶𝑖𝑗
𝐾𝐿 , 𝐶𝑖𝑗

𝐾𝑈𝑛
𝑗=1

𝑚
𝑖=1 ], [𝐶𝑖𝑗

𝐾𝐿
, 𝐶𝑖𝑗

𝐾𝑈
])𝑥𝑖𝑗     

𝑤ℎ𝑒𝑟𝑒 𝑘 = 1,2. . , 𝐾                         

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜   

∑ ([𝑎𝑖𝑗
𝐿𝑛

𝑗=1 , 𝑎𝑖𝑗
𝑈 ], [𝑎𝑖𝑗

𝐿
, 𝑎𝑖𝑗
𝑈
])𝑥𝑗 ≤ 𝑏𝑖  

∑ ([𝑃𝑖
𝐿𝑛

𝑗=1 , 𝑃𝑖
𝑈], [𝑃𝑖

𝐿
, 𝑃𝑖

𝑈
])𝑏𝑖 ≤ ([𝐵

𝐿 , 𝐵𝑈], [𝐵
𝐿
, 𝐵

𝑈
])                                              

14 

𝑥𝑗 ≥ 0 ,    𝑖 = 1,2,… . , 𝑚, 𝑗 = 1,2, … . , 𝑛, 𝑎𝑛𝑑  𝑘 =

1,2,… . , 𝑙….                                                     

Where: 

 ( [𝐶𝑖𝑗
𝐾𝐿 , 𝐶𝑖𝑗

𝐾𝑈], [ 𝐶𝑖𝑗
𝐾𝐿
, 𝐶𝑖𝑗

𝐾𝑈
])  is a vector of rough 

interval coefficients for multi objective function 

([𝑎𝑖𝑗
𝐿 , 𝑎𝑖𝑗

𝑈 ], [𝑎𝑖𝑗
𝐿
, 𝑎𝑖𝑗
𝑈
]):  is a matrix of rough interval 

coefficients for  constraints of multi objective 

function, ([𝑃𝑖
𝐿 , 𝑃𝑖

𝑈], [𝑃𝑖
𝐿
, 𝑃𝑖

𝑈
]): is a vector of rough 

interval coefficients of unit price of resources i and 

([𝐵𝐿 , 𝐵𝑈], [𝐵
𝐿
, 𝐵

𝑈
]) : is a rough interval of total 

available budget. 

where (𝑖 = 1,2, … . ,𝑚;    𝑗 = 1,2, … . , 𝑛)   , 𝑥 =
(𝑥1, 𝑥2, … . , 𝑥𝑛)

𝑡  denote the vector of all decision 

variables. 

𝑓𝑅𝐼(𝑘) = ([𝑓𝑘𝐿, 𝑓𝑘𝑈] : [𝑓
𝑘𝐿
, 𝑓
𝑘𝑈
]) respectively and 

𝑘 = 1,2, … . ,    𝐾 is the number of objectives.  

(i) The rough interval ( [𝑓𝑘𝐿, 𝑓𝑘𝑈] : [𝑓
𝑘𝐿
, 𝑓
𝑘𝑈
]) is 

called the surely (possibly) optimal range of 

problem 3, if optimal range is subset of 

([𝑓𝑘𝐿, 𝑓𝑘𝑈] : [𝑓
𝑘𝐿
, 𝑓
𝑘𝑈
]). 

(ii) Let [𝑓𝑘𝐿, 𝑓𝑘𝑈] : [𝑓
𝑘𝐿
, 𝑓
𝑘𝑈
]  be surely optimal 

(possibly) optimal range of the problem 14. 

Then the rough interval 

([𝑓𝑘𝐿, 𝑓𝑘𝑈] , [𝑓
𝑘𝐿
, 𝑓
𝑘𝑈
])  is called the rough 

optimal range of problem 14. 

(iii) The optimal solution of each corresponding 

MODNP problem 14 which its optimal value 

belongs to [𝑓𝑘𝐿, 𝑓𝑘𝑈] : [𝑓
𝑘𝐿
, 𝑓
𝑘𝑈
]  is called a 

completely (rather) satisfactory solution of the 

problem 14.     

 

 
[𝑃𝑖

𝐿 , 𝑃𝑖
𝑈] ⊆ [𝑃𝑖

𝐿
, 𝑃𝑖

𝑈
] ⇒ 𝑃𝑖

𝐿
≤ 𝑃𝑖

𝑈 ≤ 𝑃𝑖
𝐿 ≤ 𝑃𝑖

𝑈

[𝐵𝐿 , 𝐵𝑈] ⊆ [𝐵
𝐿
, 𝐵

𝑈
] ⇒ 𝐵

𝐿
≤ 𝐵𝑈 ≤ 𝐵𝐿 ≤ 𝐵

𝑈}                                                  

15 

 

Converting the Proposed Model “Rough 

Interval Multi-Objective De Novo 

Programming” into Four Sub-models: 

           The rough interval multi-objective de novo 

programming problem can be transformed into a 

linear multi-objective program using Tong-

Shochang28 Method, this method is used for solving 

the problem by converting the major problem into 

two classical sub-problems (Lower interval sub-

problem and Upper problem) and then convert lower 

interval into two (1st bound of lower rough interval 

and  2nd bound of lower rough interval) also convert 
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upper interval into two (1st bound of upper rough 

interval and 2nd bound of upper rough interval) as 

shown in 16:  

𝑀𝑖𝑛 𝑜𝑟 𝑀𝑎𝑥 𝑓𝐾(𝑋)  =

∑ ∑ ([𝐶𝑖𝑗
𝐾𝐿 , 𝐶𝑖𝑗

𝐾𝑈𝑛
𝑗=1

𝑚
𝑖=1 ], [𝐶𝑖𝑗

𝐾𝐿
, 𝐶𝑖𝑗

𝐾𝑈
])𝑥𝑖𝑗  

Subject to 

∑ ([𝑃𝑖
𝐿𝑛

𝑗=1 , 𝑃𝑖
𝑈], [𝑃𝑖

𝐿
, 𝑃𝑖

𝑈
])𝑏𝑖 ≤ ([𝐵

𝐿 , 𝐵𝑈], [𝐵
𝐿
, 𝐵

𝑈
])  

∑ ([𝑎𝑖𝑗
𝐿𝑛

𝑗=1 , 𝑎𝑖𝑗
𝑈 ], [𝑎𝑖𝑗

𝐿
, 𝑎𝑖𝑗
𝑈
])𝑥𝑗 ≤ 𝑏𝑖         

𝑤ℎ𝑒𝑟𝑒 𝑘 = 1,2,… . , 𝐾, 𝑥𝑗 ≥ 0  

 

𝑀𝑖𝑛 𝑜𝑟 𝑀𝑎𝑥 𝑓𝑘𝐿(𝑥) = ∑ ∑ 𝐶𝑘𝐿𝑛
𝑗=1

𝑚
𝑖=1 𝑥𝑖𝑗  

s.to ∑ 𝑎𝑖𝑗
𝐿𝑛

𝑗=1 𝑥𝑖𝑗 ≤ 𝑏𝑖 

∑ 𝑃𝑖
𝐿𝑛

𝑗=1 𝑏𝑖 ≤ 𝐵
𝑈 , 𝑥𝑗 ≥ 0  

  

𝑀𝑖𝑛 𝑜𝑟 𝑀𝑎𝑥 𝑓𝑘𝑈(𝑥) = ∑ ∑ 𝐶𝑘𝑈𝑛
𝑗=1

𝑚
𝑖=1 𝑥𝑖𝑗  

s.to ∑ 𝑎𝑖𝑗
𝑈𝑛

𝑗=1 𝑥𝑖𝑗 ≤ 𝑏𝑖 

∑ 𝑃𝑖
𝑈𝑛

𝑗=1 𝑏𝑖 ≤ 𝐵
𝐿 ,  𝑥𝑗 ≥ 0  

 

 𝑀𝑖𝑛 𝑜𝑟 𝑀𝑎𝑥 𝑓
𝑘𝐿
(𝑥) = ∑ ∑ 𝐶

𝑘𝐿
𝑥𝑖𝑗

𝑛
𝑗=1

𝑚
𝑖=1   

s.to ∑ 𝑎𝑖𝑗
𝐿
𝑥𝑖𝑗

𝑛
𝑗=1 ≤ 𝑏𝑖, 

∑ 𝑃𝑖
𝐿
𝑏𝑖 ≤ 𝐵

𝑈𝑛
𝑗=1  ,     𝑥𝑗 ≥ 0  

 

𝑀𝑖𝑛 𝑜𝑟 𝑀𝑎𝑥 𝑓
𝑘𝑈
(𝑥) = ∑ ∑ 𝐶

𝑘𝑈
𝑥𝑖𝑗

𝑛
𝑗=1

𝑚
𝑖=1   

s.to ∑ 𝑎𝑖𝑗
𝑈
𝑥𝑖𝑗

𝑛
𝑗=1 ≤ 𝑏𝑖 ,       

∑ 𝑃𝑖
𝑈
𝑏𝑖 ≤ 𝐵

𝐿𝑛
𝑗=1  ,  

𝑥𝑗 ≥ 0       , 𝑖 = 1,2… . ,𝑚 , 𝑗 =

1,2,… , 𝑛 𝑎𝑛𝑑 𝑎𝑛𝑑  𝑘 = 1,2,… . , 𝑙                              
16 

 

Where: 

 𝑓𝑘𝐿(𝑥): the multi-objective of the 1st bound of lower 

rough interval. 

𝑓𝑘𝑈(𝑥)  : the multi-objective of the 2nd bound of 

lower rough interval. 

𝑓
𝑘𝐿
(𝑥) : the multi-objective of the 1st bound of upper 

rough interval. 

𝑓
𝑘𝑈
(𝑥)  : the multi-objective of the 2nd bound of 

upper rough interval.     

 

The Steps of Proposed Model are as Follows:  

Step1: Converting RIMOP to MOP with four sub-

models with fixed right-hand side 

(resources). 

Step2: Solving MOP model using WSM with value 

of 𝑤𝑖 = 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 (0 ,1) reaching to the 

optimal values. 

Step 3: Reformulating RIMOP obtain to RIMODNP 

with unknown right-hand side 

(resources). 

Step 4: Converting RIMODNP into four sub-models 

using Tong-Shochang method. 

Step 5: Solving each multi-objective function 

individually under the set of constrains 

using POM- QM for windows v5 

software. 

Step 6: Reformulating model 2 with multi-objectives 

to allow the change the value of 𝑏𝑖, as in 

model 16 with unknown variables x 

which represents unknown values of 

capacities and requirements respecting 

budget B that will be used.   

Step 7: Computing structure design for model 16 

separately for the individual objective 

functions. 

Step 8: Checking the results as to whether it is 

feasible or not based on Shi’s theorem, if 

the results gave infeasible solution go to 

Step 9. 

Step 9: Checking the results (bounds of rough 

interval for objectives f and resources b of 

optimal system design) for proposed model 

16 if the results according to the properties 

go to step 10, otherwise go to step 6. 

Step 10: Calculating optimum-path ratios to find the 

optimum system design. 

Step 11: Choosing a design from among designs by 

the decision maker. 

 

Results and Discussion 

In order to check our proposed model, numerical 

example can be applied as follows: 
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Applied Example: 

         The following example Rough Interval Multi-

Objective Linear Programming problem 17 

(RIMOP): 

𝑀𝑎𝑥 𝑓1 = ([2.5,3], [1.5,3.5])𝑥1 +
([2.5,3], [2,3.5])𝑥2        (profit) 

 𝑀𝑎𝑥 𝑓2 = ([3,2.5], [2.5,4])𝑥1 + ([3.5,4], [3,5])𝑥2             

(quality) 

𝑠. 𝑡.  ([3,3.5], [2.5,5])𝑥1 + ([2.5,3], [2,4])𝑥2 ≤ 60              
(raw materal1)                               17 

        ([2.5,3],[2,4]) 𝑥1 + ([3,3],[1.5, 4]) 𝑥2 ≤ 40                    

(raw materal2) 

       ([1.5,2],[1,2.5]) 𝑥1 + ([3.5,4],[3,5]) 𝑥2 ≤ 30                   

(raw materal3)          , 𝑥1, 𝑥2 ≥ 0                                           

 

Step1: Solving RIMOP before reformulation using 

WSM: RIMOP is converted into four sub-models of 

MOP as shown in Table 2 and then each sub-model 

is solved individually. 

 

 

Table 2. Convert RIMOP to MOP into four sub-models. 

1st problem 2nd problem 3th problem 4th problem 

𝑴𝒂𝒙 𝒇𝟏
𝑳 = 𝟐. 𝟓𝒙𝟏 + 𝟐. 𝟓𝒙𝟐  

𝑴𝒂𝒙 𝒇𝟐
𝑳 = 𝟑𝒙𝟏 + 𝟑. 𝟓𝒙𝟐  

𝒔. 𝒕.  
𝟓𝒙𝟏 + 𝟒𝒙𝟐 ≤ 𝟔𝟎                           

𝟒𝒙𝟏+ 4𝒙𝟐 ≤ 𝟒𝟎 

 2.5 𝒙𝟏+ 5 𝒙𝟐 ≤ 𝟑𝟎 

𝒙𝟏, 𝒙𝟐 ≥ 𝟎 

𝑀𝑎𝑥 𝑓1
𝑈 = 3𝑥1 + 3𝑥2  

𝑀𝑎𝑥 𝑓2
𝑈 = 2.5𝑥1 + 4𝑥2  

𝑠. 𝑡.  
2.5𝑥1 + 2𝑥2 ≤ 60                      

2𝑥1+ 1.5𝑥2 ≤ 40 

  𝑥1+ 3 𝑥2 ≤ 30 

𝑥1, 𝑥2 ≥ 0 

𝑀𝑎𝑥 𝑓1̅
𝐿 = 1.5𝑥1 + 2𝑥2  

𝑀𝑎𝑥 𝑓2̅
𝐿 = 2.5𝑥1 + 3𝑥2  

𝑠. 𝑡.  
3.5𝑥1 + 3𝑥2 ≤ 60   

3𝑥1+ 3𝑥2 ≤ 40                               

 2 𝑥1+ 4 𝑥2 ≤ 30  

𝑥1, 𝑥2 ≥ 0                                   

𝑀𝑎𝑥 𝑓1̅
𝑈 = 3.5𝑥1 + 3.5𝑥2  

𝑀𝑎𝑥 𝑓2̅
𝑈 = 4𝑥1 + 5𝑥2  

𝑠. 𝑡.  
3𝑥1 + 2.5𝑥2 ≤ 60   

2.5𝑥1+ 3𝑥2 ≤ 40                     

 1.5 𝑥1+ 3.5 𝑥2 ≤ 30 

𝑥1, 𝑥2 ≥ 0                        

 

Step 2: Table 3 represents the results obtained using 

the WSM under the ratio between 𝑤𝑖 = (0,1). The 

method is as follows: Determine the proportion for 

each objective functions and then multiply the 

objective function by the proportion that has been 

determined, then collect the objective functions, 

getting a composite objective function, finally, the 

model is solved by PRO-QM to plot functions, as 

shown in Table 3, and Figs. 1-4 for each sub-

problem. 

 

Table 3. Results obtained from solving WSM provide optimal solutions for 1st problem. 

1
st

 p
ro

b
le

m
 

Weight 

𝒘 = (𝒘𝟏, 𝒘𝟐) 
Composite’s 

objective 

Optimal solution 

(𝒙𝟏, 𝒙𝟐) 

Optimal objective 

value (𝒇𝟏, 𝒇𝟐) 
Optimal Composite’s 

objective 

(0.0,1.0) 3𝑥1 + 3.5𝑥2 (0,6) (15,21) 30.00 

(0.1, 0.9) 2.65𝑥1 + 3.15𝑥2 (2,8) (25,31) 30.50 

(0.2,0.8) 2.9𝑥1 + 3.4𝑥2 (8,2) (25,31) 30.00 

(0.3,0.7) 2.85𝑥1 + 3.2𝑥2 (8,2) (25,31) 29.20 

(0.4,0.6) 2.8𝑥1 + 2.9𝑥2 (8,2) (25,31) 28.20 

(0.5,0.5) 2.75𝑥1 + 3𝑥2 (8,2) (25,31) 28.00 

(0.6,0.4) 2.5𝑥1 + 2.9𝑥2 (8,2) (25,31) 25.80 

(0.7,0.3) 2.65𝑥1 + 2.8𝑥2 (8,2) (25,31) 26.80 

(0.8,0.2) 2.6𝑥1 + 2.7𝑥2 (8,2) (25,31) 26.20 

(0.9, 0.1) 2.55𝑥1 + 2.6𝑥2 (8,2) (25,31) 27.16 

(1.0,0.0) 2.5𝑥1 + 2.5𝑥2 (10,0) (25,30) 25.00 

 

Below is a graphical depiction of feasible decision 

spaces, feasible objective space and optimal solution 

of WSM for each sub-problem.  
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         B 

Figure 1. Feasible of WSM for 1stbound lower rough interval (1st problem): 

A) decision space, B) objective space.   

 

          From the results obtained in Table 3, 

optimizing the first objective with weight (0,1) the 

result of optimal solution is (𝒙𝟏 =0, 𝒙𝟐 =6) with 

optimal objective values  (𝑓1 = 15, 𝑓2 = 21) , the 

second objective results in the optimal solution 

(𝒙𝟏 =8, 𝒙𝟐 =2), the unique optimal solution (𝑓1 =
25, 𝑓2 = 31) , and the third objective with weight 

(1,0) the  results of optimal  solution (𝒙𝟏 = 10, 

𝒙𝟐 =0), the objective values (𝑓1 = 25, 𝑓2 = 30), it is 

clear from the results the weight of second objective 

dominates the weights of first objective and third 

objective, so the second objective with point (𝒙𝟏 =8, 

𝒙𝟐 = 2) and (𝑓1 = 25, 𝑓2 = 31)  is optimal for 1st 

problem. As shown in Fig 1 B. 1st problem the point 

(25,31) in feasible objective space is dominates all 

points. 

         According to results are obtained from Table 4. 

using upper for lower rough interval 2nd problem, it 

is noticed that the objective results in the optimal 

solution (𝒙𝟏 =16.67, 𝒙𝟐 =4.44) the unique optimal 

solution (𝑓1 = 63.33, 𝑓2 = 59.44), as shown in Fig 

2 B. of 2nd problem. 

 

Table 4. Results obtained from solving WSM provide optimal solutions for 2nd problem. 

2
n

d
 p

ro
b

le
m

 

Weight 

𝒘 = (𝒘𝟏, 𝒘𝟐) 
Composite’s 

objective 

Optimal solution 

(𝒙𝟏, 𝒙𝟐) 

Optimal objective 

value (𝒇𝟏, 𝒇𝟐) 
Optimal 

Composite’s 

objective 

(0.0,1.0) 2.5𝑥1 + 4𝑥2 (16.67,4.44) (63.33,59.44) 59.44 

(0.1, 0.9) 2.55𝑥1 + 3.9𝑥2 (16.67,4.44) (63.33,59.44) 59.83 

(0.2,0.8) 2.6𝑥1 + 3.8𝑥2 (16.67,4.44) (63.33,59.44) 60.22 

(0.3,0.7) 2.65𝑥1 + 3.7𝑥2 (16.67,4.44) (63.33,59.44) 60.61 

(0.4,0.6) 2.7𝑥1 + 3.6𝑥2 (16.67,4.44) (63.33,59.44) 61 

(0.5,0.5) 2.75𝑥1 + 3.5𝑥2 (16.67,4.44) (63.33,59.44) 61.39 

(0.6,0.4) 2.8𝑥1 + 3.4𝑥2 (16.67,4.44) (63.33,59.44) 61.78 

(0.7,0.3) 2.85𝑥1 + 3.3𝑥2 (16.67,4.44) (63.33,59.44) 62.17 

(0.8,0.2) 2.9𝑥1 + 3.2𝑥2 (16.67,4.44) (63.33,59.44) 62.56 

(0.9, 0.1) 2.95𝑥1 + 3.1𝑥2 (16.67,4.44) (63.33,59.44) 62.94 

(1.0,0.0) 3𝑥1 + 3𝑥2 (16.67,4.44) (63.33,59.44) 63.33 

 

A 
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Figure 2. Feasible of WSM for 2nd bound lower rough interval (2nd problem): 

A) decision space, B) objective space.  

 

       The results obtained from 3th problem, is the 

best results were at the weight is (0,1) the objective 

results in the optimal solution (𝒙𝟏 =11.67, 

𝒙𝟐 =1.67) the unique optimal solution (𝑓1 =

20.83, 𝑓2 = 34.17), Fig. 3 B. explains feasible 

objective space and the point (𝑓1 = 20.83, 𝑓2 =
34.17) is dominated for all points, as shown in Table 

5. 

 

 

Table 5. Results obtained from solving WSM provide optimal solutions for 3th problem. 

3
th

 p
ro

b
le

m
 

Weight 

𝒘 = (𝒘𝟏, 𝒘𝟐) 
Composite’s 

objective 

Optimal 

solution (𝒙𝟏, 𝒙𝟐) 

Optimal objective 

value (𝒇𝟏, 𝒇𝟐) 
Optimal Composite’s 

objective 

(0.0,1.0) 2.5𝑥1 + 3𝑥2 (11.67,1.67) (20.83,34.17) 34.17 

(0.1, 0.9) 2.4𝑥1 + 2.9𝑥2 (11.67,1.67) (20.83,34.17) 32.85 

(0.2,0.8) 2.3𝑥1 + 2.9𝑥2 (11.67,1.67) (20.83,34.17) 31.67 

(0.3,0.7) 2.2𝑥1 + 2.7𝑥2 (11.67,1.67) (20.83,34.17) 30.17 

(0.4,0.6) 2.1𝑥1 + 2.6𝑥2 (11.67,1.67) (20.83,34.17) 28.83 

(0.5,0.5) 2𝑥1 + 2.5𝑥2 (11.67,1.67) (20.83,34.17) 27.50 

(0.6,0.4) 1.9𝑥1 + 2.4𝑥2 (11.67,1.67) (20.83,34.17) 26.17 

(0.7,0.3) 1.8𝑥1 + 2.3𝑥2 (11.67,1.67) (20.83,34.17) 24.83 

(0.8,0.2) 1.7𝑥1 + 2.2𝑥2 (11.67,1.67) (20.83,34.17) 23.50 

(0.9, 0.1) 1.6𝑥1 + 2.1𝑥2 (11.67,1.67) (20.83,34.17) 22.18 

(1.0,0.0) 1.5𝑥1 + 2𝑥2 (11.67,1.67) (20.83,34.17) 20.83 

 

 
Figure 3. Feasible of WSM for 1st bound upper rough interval (3thproblem): 

A) decision space, B) objective space. 

 

A 
B 

B 

 
A 
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Optimizing the first objective for  the 4th problem 

with w = [0,1] the optimal solution is (𝒙𝟏 =11.77, 

𝒙𝟐 =3.53) with optimal objective value (𝑓1 =
53.53, 𝑓2 = 64.71), and optimizing second objective 

with w = [1,0] the results of optimal solution 

(𝒙𝟏 =16., 𝒙𝟐 =0) the unique optimal solution (𝑓1 =

56, 𝑓2 = 64), it is clear second objective dominates 

the weight of the first objective, so the point 

(𝒙𝟏 =16., 𝒙𝟐 =0) with (𝑓1 = 56, 𝑓2 = 64) is optimal. 

So as shown in Fig 4 B., all results of 4th problem are 

explained in Table 6. 

 

Table 6. Results obtained from solving WSM provide optimal solutions for 4th problem. 

4
th

 p
ro

b
le

m
 

Weight 

𝒘 = (𝒘𝟏, 𝒘𝟐) 
Composite’s 

objective 

Optimal 

solution 

(𝒙𝟏, 𝒙𝟐) 

Optimal objective 

value (𝒇𝟏, 𝒇𝟐) 
Optimal Composite’s 

objective 

(0.0,1.0) 4𝑥1 + 5𝑥2 (11.77,3.53) (53.53,64.71) 64.71 

(0.1, 0.9) 3.95𝑥1 + 4.85𝑥2 (11.77,3.53) (53.53,64.71) 63.61 

(0.2,0.8) 3.9𝑥1 + 4.7𝑥2 (11.77,3.53) (56,64) 62.47 

(0.3,0.7) 3.85𝑥1 + 4.55𝑥2 (16,0) (56,64) 61.60 

(0.4,0.6) 3.8𝑥1 + 4.4𝑥2 (16,0) (56,64) 60.80 

(0.5,0.5) 3.75𝑥1 + 4.25𝑥2 (16,0) (56,64) 60.00 

(0.6,0.4) 3.7𝑥1 + 4.1𝑥2 (16,0) (56,64) 59.20 

(0.7,0.3) 3.65 + 3.95𝑥2 (16,0) (56,64) 58.40 

(0.8,0.2) 3.6𝑥1 + 3.8𝑥2 (16,0) (56,64) 57.60 

(0.9, 0.1) 3.55𝑥1 + 3.65𝑥2 (16, 0) (56, 64) 56.80 

(1.0,0.0) 3. 5𝑥1 + 3.5𝑥2 (16,0) (56,64) 56.00 

 

 
Figure 4. Feasible of WSM for 2nd bound upper rough interval (4th problem): 

A) decision space, B) objective space. 

 

As a result, it’s difficult to use WSM when the DM 

is unable to determine the weights for each problem 

as shown in Tables 3,4,5,6; also, this WSM method 

is limited because it deals with one type of objective 

function (Max or Min). Thus, when using this 

method, it is necessary to make all objective 

functions in one type. 

 

Solving Example Problem 17 Using Proposed 

Model RIMODNP:  

To apply RIMODNP for problem 17, to provide the 

problem with the data: Input Unit prices of resources 

are 𝑃1 = ([0.5,0.65], [0.4.0.75]), 𝑃2 = 

([0.3,0.4],[0.35,0.5]) , 𝑃3=([0.4,0.5],[0.45,0.6]), and 

the initial budget 𝐵=([40,55],[50,65]).  

The RIMODNP problem 17 is formulated as the 

following: 

𝑀𝑎𝑥 𝑓1 = ([2.5,3], [1.5,3.5])𝑥1 +
([2.5,3], [2,3.5])𝑥2             (profit) 

 𝑀𝑎𝑥 𝑓2 = ([3,2.5], [2.5,4])𝑥1 + ([3.5,4], [3,5])𝑥2                 
(quality) 

𝑠. 𝑡.  ([3,3.5], [2.5,5])𝑥1 + ([2.5,3], [2,4])𝑥2 ≤ 𝑏1               
(raw materal1)                             

        ([2.5,3],[2,4]) 𝑥1 + ([3,3],[1.5, 4]) 𝑥2 ≤ 𝑏2                    

(raw materal2) 

       ([1.5,2],[1,2.5]) 𝑥1 + ([3.5,4],[3,5]) 𝑥2 ≤ 𝑏3                   

(raw materal3),𝑥1, 𝑥2 ≥ 0                                      17                                         

([0.5,0.65],[0.4.0.75])𝑏1+([0.3,0.4],[0.35,0.5])  𝑏2+  

([0.4,0.5],[0.45,0.6]) 𝑏3 ≤([40,55],[50,65])                                                       

𝑥1, 𝑥2 ≥ 0         

A 
B 
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 𝑥1 : represent product 1, 𝑥2 : represent product 2.      

Step 3: To solve problem 17, the problem can be 

converted into two sub-problems (interval multi-

objective de novo programming (IMODNP) as 

shown in Table 7:  

 

Table 7. Convert RIMODNPP into two sub-problems Lower and Upper interval. 

IMODNP/ Lower IMODNP/ Upper 

𝑴𝒂𝒙𝒇𝟏
𝑳 = [𝟐. 𝟓, 𝟑]𝒙𝟏 + [𝟐. 𝟓, 𝟑]𝒙𝟐  

𝑴𝒂𝒙𝒇𝟐
𝑳 = [𝟑, 𝟐. 𝟓]𝒙𝟏 + [𝟑. 𝟓, 𝟒]𝒙𝟐  

𝒔. 𝒕.   
  [𝟑, 𝟑. 𝟓]𝒙𝟏 + [𝟐. 𝟓, 𝟑]𝒙𝟐 ≤ 𝒃𝟏   

  [2.5,3] 𝒙𝟏+ [3,3]𝒙𝟐 ≤ 𝒃𝟐              

   [1.5,2]𝒙𝟏+ [3.5,4] 𝒙𝟐 ≤ 𝒃𝟑 

[0.5,0.65] 𝒃𝟏+[0.3,0.4] 𝒃𝟐+ [0.4,0.5] 𝒃𝟑 ≤ [40,55] 

 𝒙𝟏, 𝒙𝟐 ≥ 𝟎                                            18           

𝑀𝑎𝑥 𝑓1̅
𝑈 = [1.5,3.5]𝑥1 + [2,3.5]𝑥2  

𝑀𝑎𝑥 𝑓2̅
𝑈 = [2.5,4]𝑥1 + [3,5]𝑥2  

𝑠. 𝑡.  
[2.5,5]𝑥1 + [2,4]𝑥2 ≤ 𝑏1   
[2,4]𝑥1+ [1.5, 4]𝑥2 ≤ 𝑏2                                     

 [1,2.5] 𝑥1+ [3,5] 𝑥2 ≤ 𝑏3 

[0.4.0.75] 𝑏1+ [0.35,0.5] 𝑏2+ [0.45,0.6] 𝑏3 ≤ [50,65]    

𝑥1, 𝑥2 ≥ 0                                               19 

Step 4: The IMODNP problem 18 is converted to 

MODNP problems 20 and 21. Also, the IMODNP 

problem 19 is converted to MODNP problems 22 and 

23, as the below Table 8, Table 9, respectively. 

Table 8. Convert IMODNP into two sub-problems IMODNP for the lower interval. 

1st bound of lower rough interval                                      2nd bound of Lower rough interval     

𝑴𝒂𝒙 𝒇𝟏
𝑳 = 𝟐. 𝟓𝒙𝟏 + 𝟐. 𝟓𝒙𝟐  

𝑴𝒂𝒙 𝒇𝟐
𝑳 = 𝟑𝒙𝟏 + 𝟑. 𝟓𝒙𝟐  

𝒔. 𝒕.  
𝟓𝒙𝟏 + 𝟒𝒙𝟐 ≤ 𝒃𝟏                                            

𝟒𝒙𝟏+ 4𝒙𝟐 ≤ 𝒃𝟐 

 2.5 𝒙𝟏+ 5 𝒙𝟐 ≤ 𝒃𝟑 

0.75 𝒃𝟏+ 0.5 𝒃𝟐+ 0.6 𝒃𝟑 ≤ 40   

 , 𝒙𝟏, 𝒙𝟐 ≥ 𝟎                                  20 

𝑀𝑎𝑥 𝑓1
𝑈 = 3𝑥1 + 3𝑥2  

𝑀𝑎𝑥 𝑓2
𝑈 = 2.5𝑥1 + 4𝑥2  

𝑠. 𝑡.  
2.5𝑥1 + 2𝑥2 ≤ 𝑏1                                         

2𝑥1+ 1.5𝑥2 ≤ 𝑏2 

  𝑥1+ 3 𝑥2 ≤ 𝑏3 

0.4 𝑏1+ 0.35 𝑏2+ 0.45 𝑏3 ≤ 55  

, 𝑥1, 𝑥2 ≥ 0                                         21    

 

Table 9. Convert IMODNP into two sub-problems LMODNP for the upper interval. 

1st bound of Upper rough interval   2nd bound of Upper rough interval    

𝑴𝒂𝒙 �̅�𝟏
𝑳 = 𝟏. 𝟓𝒙𝟏 + 𝟐𝒙𝟐  

𝑴𝒂𝒙 �̅�𝟐
𝑳 = 𝟐. 𝟓𝒙𝟏 + 𝟑𝒙𝟐  

𝒔. 𝒕.  
𝟑. 𝟓𝒙𝟏 + 𝟑𝒙𝟐 ≤ 𝒃𝟏   

𝟑𝒙𝟏+3𝒙𝟐 ≤ 𝒃𝟐                                              

 2 𝒙𝟏+ 4 𝒙𝟐 ≤ 𝒃𝟑 

0.65 𝒃𝟏+ 0.4 𝒃𝟐+ 0.5 𝒃𝟑 ≤ 50   

 ,𝒙𝟏, 𝒙𝟐 ≥ 𝟎                          22 

𝑀𝑎𝑥 𝑓1̅
𝑈 = 3.5𝑥1 + 3.5𝑥2  

𝑀𝑎𝑥 𝑓2̅
𝑈 = 4𝑥1 + 5𝑥2  

𝑠. 𝑡.  
3𝑥1 + 2.5𝑥2 ≤ 𝑏1   

2.5𝑥1+3𝑥2 ≤ 𝑏2                                           

 1.5 𝑥1+ 3.5 𝑥2 ≤ 𝑏3 

0.5 𝑏1+ 0.3 𝑏2+ 0.4 𝑏3 ≤ 65   

 ,𝑥1, 𝑥2 ≥ 0                                 23 

 

Results obtained by Zeleny’s approach (Structure 

Design) for problem (RIMODNP): 

 Step 5:  Calculating optimal system design for 1st 

problem 20 represent (1st bound of lower rough 

interval) using problem 2, solve problem 20:  

𝑀𝑎𝑥 𝑓1
𝐿 = 2.5𝑥1 + 2.5𝑥2  

𝑀𝑎𝑥 𝑓2
𝐿 = 3𝑥1 + 3.5𝑥2  

𝑠. 𝑡.  

5𝑥1 + 4𝑥2 ≤ 𝑏1                                                                                         

4𝑥1+ 4𝑥2 ≤ 𝑏2 

 2.5 𝑥1+ 5 𝑥2 ≤ 𝑏3 

0.75 𝑏1+ 0.5 𝑏2+ 0.6 𝑏3 ≤ 40    

𝑥1, 𝑥2 ≥ 0   

Take a budget constraint and replace 𝑏1 , 𝑏2 , 𝑏3 with 

constraints of problem as the following: 

0.75(5𝑥1 + 4𝑥2 ) + 0.5(4𝑥1 +  4𝑥2) +

0.6(2.5 𝑥1 +  5 𝑥2) ≤ 40 easily the budget 

constraint was gotten as follows: 
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7.5 𝑥1 +  8 𝑥2 ≤ 40                                             24 

To find 𝑓1
𝐿 with respect to given budget equal 40, let 

𝑥1
2𝐿 =0, where  

𝑥2
1𝐿 = 5 and the value of 𝑓1

𝐿 = 12.5, to obtain of the 

value of resources, the values are substituted of 

(𝑥1
2𝐿 =0, 𝑥2

1𝐿 = 5) in constraints of problem 20: 

𝑏1
𝐿 = 5 ∗ 0 + 4 ∗ 5 = 20 

𝑏2
𝐿 = 4 ∗ 0 + 4 ∗ 5 = 20 

𝑏3
𝐿 = 2.5 ∗ 0 + 5 ∗ 5 = 25. so, the value of 𝐵2

1𝐿 

using budget constraint 24 as follows:  

𝐵2
1𝐿 = 7.25*0 + 8*5 = 40,  

as well as for 𝑥2
1𝐿  = 5.517 when 𝑥1

2𝐿 =0, so 𝑓2
𝐿 =

16.552, and then substitute the values in constraints 

of problem 20: 

𝑏1
𝐿 = 5 ∗ 5.517 + 4 ∗ 0 = 27.585 

𝑏2
𝐿 = 4 ∗ 5.517 + 4 ∗ 0 = 22.069 

𝑏3
𝐿 = 2.5 ∗ 5.517 + 5 ∗ 0 = 13.793. 

 So, the value of 𝐵1
2 obtained from budget constraint 

24 as follows: 

𝐵1
2𝐿 = 7.25 ∗ 5.517 + 8 ∗ 0 = 39.998). The rest of 

results is as shown in the Table 10. 

 

Table 10. Results obtain Zeleny’s approach (structure design) for problems 20,21,22,23. 

1
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0
 

Optimal System Design 

𝑥2
1𝐿 5 𝑥1

2𝐿 5.517 

𝑏1 20 𝑏1
𝐿 27.585 

 

𝑏2 20 𝑏2
𝐿 22.069 

𝑏3 25 𝑏3
𝐿 13.793 

𝑓2
1𝐿 12.5 𝑓1

2 16.552 

𝐵2
1𝐿 40 𝐵1

2 39.998 

𝐵𝐿 40 
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m
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2
1
 

Optimal System Design 

𝑥2
1𝑈 20.561 𝑥1

2𝑈 25.582 

𝑏1 41.122 𝑏1
𝑈 63.954 

𝑏2 30.841 𝑏2
𝑈 51.163 

𝑏3 61.682 𝑏3
𝑈 25.582 

𝑓2
1𝑈 82.243 𝑓1

2𝑈 76.744 

𝐵2
1𝑈 55.00014 𝐵1

2𝑈 55.000014 

𝐵𝑈55 
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Optimal System Design 

𝑥2
1𝐿

 9.7087 𝑥1
2𝐿

 11.173 

𝑏1
𝐿
 29.126 𝑏1

𝐿
 39.106 

𝑏2
𝐿
 29.126 𝑏2

𝐿
 33.520 

𝑏3
𝐿
 38.835 𝑏3

𝐿
 22.346 

𝑓
2

1𝐿
 19.142 𝑓

1

2𝐿
 27.933 

𝐵2
1𝐿

 49.9998 𝐵1
2𝐿

 50.0001 

𝐵
𝐿
 50 
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Optimal System Design 

𝑥2
1𝑈

 18.3099 𝑥1
2𝑈

 22.807 

𝑏1
𝑈

 45.775 𝑏1
𝑈

 68.421 

𝑏2
𝑈

 54.929 𝑏2
𝑈

 57.018 

𝑏3
𝑈

 64.085 𝑏3
𝑈

 34.211 

𝑓
2

1𝑈
 64.085 𝑓

1

2𝑈
 91.228 

𝐵2
1𝑈

 65 𝐵1
2𝑈

 64.99995 

𝐵
𝑈

  65 
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From Table 10, it is clear from the results obtained 

that it gives one optimal system design for each 

bound. In spite of get an optimal result, little 

alternative was found to provide to the DM. these 

results are in agreement with the results obtained by 

Zeleny approach16. 

Step 6: After getting the results from solving 

problem 20, find the 1st bound of lower rough 

interval (𝑓1
𝐿 = 12.5, 𝑓2

𝐿 = 16.552) with budget 40, 

Meta-optimum solution can be easily found 

depending on problem 5 to solve problem 20 as 

follows: 

𝑀𝑖𝑛 𝐵𝐿 = 7.5 𝑥1 +  8 𝑥2 

s.t 2.5 𝑥1 +  2.5 𝑥2 ≥ 12.5  

3 𝑥1 +  3.5 𝑥2 ≥ 16.5516, 𝑥1, 𝑥2 ≥ 0                                                                                                    

25 

using computer software POM- QM Windows V5 to 

solve the problem 10b, the results are as follows: 

 𝑥∗𝐿 = (6.6206,0), 𝑓∗𝐿 =(16.552, 12.5), 𝑏∗𝐿 =

(33.103,26.482, 16.552) , 𝐵∗𝐿 = 47.99935 , 

where, the value limits the minimum budget to 

realize 𝑓∗𝐿 through solutions 𝑥∗𝐿 and 𝑏∗𝐿. The given 

budget level 𝐵𝐿 = 40 ≤ 𝐵∗𝐿 = 47.99935.  

The optimum-path ratio for implementing the best 

achievement for given budget 𝐵𝐿 is defined as in 

Table 1, the optimum-path ratio 𝑟𝐿 =
𝛼𝑖𝐵𝑖
𝐵𝐿

 with 0 ≤

 𝛼𝑖 ≤ 1 , ∑𝛼𝑖 = 1, where represented 𝛼1 = 𝛼2 =
0.5 respectively. the 𝑟𝐿 = 

(𝛼1𝐵2
1+𝛼2𝐵1

2=39.99985)/47.99935)) = 59.99%. so 

that can be found the values of Table 1. 

Step 7: To find Synthetic optimum solution (𝑥∗∗𝐿 is 

solved for jth single criterion DNP and obtain solution 

{𝑋𝒊
𝟏, 𝑋𝒊

𝟐, 𝑋𝒊
𝟑, … . } form optimum solution system 

design, get the values as follows: 

 𝑥∗∗𝐿 = (5.517,5), take the values and substitute in 

constraints of problem 20 get the values of  resources 

according to the formula 𝑏∗∗𝐿 = 𝐴𝑥∗∗𝐿 =

(47.586,42.069,38.793), so that substitute in 

objectives of problem 14 obtain to  𝑓∗∗𝐿 = 𝐶𝑥∗∗𝐿 =

(26.293,34.052) , and then, take the budget 

constraint 24 and substitute the values 𝑥∗∗𝐿 by the 

value of budget is  𝐵∗∗𝐿 = 𝑉𝑥∗∗𝐿 = 79.9997, 

applying to the rest of problems 21,22,23.  

 

Step 8: According to the Theorem’s Shi, that means 

𝑥𝑖
𝑘𝐿 is feasible solutions for problem 14, where the 

results in the above Table 7. refer to 𝐵𝐿 ≥ 𝐵𝑖
𝑘𝐿 =

40, 𝑉𝑥𝑖
𝑘𝐿 ≤ 𝐵𝐿, this implies 𝐵𝑖

𝑘𝐿 ≤ 𝐵𝐿 = 40 for 

problem 20, so 𝐵∗𝐿 = 47.99935 ≥ 𝐵𝐿 = 40, that 

refer to the Meta-optimum solution  𝑥∗𝐿 is feasible 

for problem 20. Finally, 𝐵∗∗𝐿 = 79.9997 ≥ 𝐵∗𝐿 =

47.99935 that’s mean both solutions 𝑥∗𝐿 =

(6.621, 0)and 𝑥∗∗𝐿 =(5.517, 5) are feasible for 

problem 11 and so on for the rest of the problems. 

Step 9: Test bounds of rough interval for objectives 

f and resources b for problem 20,21,22,23, the 

results as shown in Table 9.  

𝑓1
𝐿 = 12.5 ,               𝑓2

𝐿 = 16.552  

𝑓1
𝑈 = 82.243,         𝑓2

𝑈 = 76.744  

𝑓1
𝐿
= 19.142,          𝑓2

𝐿
= 27.933     

𝑓1
1𝑈
= 64.085,       𝑓2

𝑈
= 91.228 

(𝑓1
𝐿, 𝑓1

𝑈) = (12.5,   82.243),  it is surely optimal 

range. 

(𝑓1
𝐿
, 𝑓1

1𝑈
) = ( 19.142,   64.085), it is possibly 

optimal range. 

 [(𝑓1
𝐿, 𝑓1

𝑈), (𝑓1
𝐿
, 𝑓1
1𝑈
)] = [( (12.5,

82.243), ( 19.142, 64.085)]  is the rough optimal 

range. 

 (𝑓2
𝐿, 𝑓2

𝑈) = (16.155, 76.744) it is surely optimal 

range. 

 (𝑓2
𝐿
, 𝑓2
𝑈
) = (27.933,   91.228) it is possibly 

optimal range.  

 [𝑓2
𝐿, 𝑓2

𝑈), (𝑓2
𝐿
, 𝑓2
𝑈
)] = [ (16.155,

76.744), (27.933, 91.228)] is the rough optimal 

range. 

(𝑏1
𝐿 =20, 𝑏1

𝑈 =41.1216), it is surely optimal range. 

(𝑏1
𝐿
 =29.126, 𝑏1

𝑈
 =45.775,) , it is possibly optimal 

range. 

[(𝑏1
𝐿 =20, 𝑏1

𝑈 =41.122), (𝑏1
𝐿
 =29.1261, 𝑏1

𝑈
 

=45.775)], is the rough optimal range. 

(𝑏2
𝐿 =20,  𝑏2

𝑈 =30.8412), it is surely optimal range. 

(𝑏2
𝐿
 =29.126, 𝑏2

𝑈
 =54.929), it is possibly optimal 

range. 
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[(𝑏2
𝐿 =20,  𝑏2

𝑈 =30.841), (𝑏2
𝐿
 =29.126, 𝑏2

𝑈
 =54.929)], 

is the rough optimal range. 

(𝑏3
𝐿 =25,  𝑏3

𝑈 =61.682), it is surely optimal range. 

(𝑏3
𝐿
 =38.835, 𝑏3

𝑈
 =64.085), it is possibly optimal 

range. 

[(𝑏3
𝐿 =25,  𝑏3

𝑈 =61.682), (𝑏3
𝐿
 =38.835, 𝑏3

𝑈
 =64.085)], 

is the rough optimal range. 

         It is clear that the results of problems are an 

optimal solution because of the achieved properties 

of rough interval of proposed model, that means the 

proposed model to RIMODNP is able to solve 

problems under uncertainty conditions. 

Step 10: The six types optimal path-ratios are 

calculated to find the optimum system design using 

the following formulas of Table 1. Table 11 explains 

the results of three ratios for each problem as shown 

below: 

 

Table 11. Results of Optimum-path ratios for problems 20,21,22,23. 

Bounds of rough interval 

for objectives problem 

Ratios 

1st Bound of Lower 

Rough Interval-Problem 

20 

𝑟1𝐿 =
𝐵∗𝐿

𝐵∗∗𝐿
= 59.99% 𝑟2𝐿 =

𝐵𝐿

𝐵∗∗𝐿
= 50.00019% 𝑟3𝐿 =

∑ 𝛼𝑖𝐵𝑖
𝑗𝐿

𝑖

𝐵∗∗𝐿
=50% 

 

2nd Bound of Lower 

Rough Interval-Problem 

21 
𝑟
1𝐿
=
𝐵
∗𝐿

𝐵
∗∗𝐿 = 57.54% 𝑟

2𝐿
=

𝐵
𝐿

𝐵
∗∗𝐿 = 50.001% 𝑟

3𝐿
=
∑ 𝛼𝑖𝐵𝑖

𝑗𝐿

𝑖

𝐵
∗∗𝐿 = 50.0006% 

1st Bound of Upper 

Rough Interval-Problem 

22 

𝑟1𝑈 =
𝐵∗𝑈

𝐵∗∗𝑈
= 61.48% 𝑟2𝑈

𝐵𝑈

𝐵∗∗𝑈
= 49.99% 𝑟3𝑈 =

∑ 𝛼𝑖𝐵𝑖
𝑗𝑈

𝑖

𝐵∗∗𝑈
= 50% 

2nd Bound of Upper 

Rough Interval-Problem 

23 
𝑟
1𝑈
=
𝐵
∗𝑈

𝐵
∗∗𝑈 = 71.14% 𝑟

2𝑈
=

𝐵
𝑈

𝐵
∗∗𝑈 = 50% 𝑟

3𝑈
=
∑ 𝛼𝑖𝐵𝑖

𝑗𝑈

𝑖

𝐵
∗∗𝑈 = 49.99% 

 

The optimum system design is calculated for 

problems 20,21,22,23 using equations 8,9,10, the 

results summarized in Table 12. 

 

Table 12. The results of optimum system design for problems 20,21,22,23 for ratio 1. 

 

Design under ratio1 1st Bound of Lower Rough 

Interval-Problem 20, After obtaining the values of 

ratios as shown in the Table 12, the first ratio is taken 

𝑟1𝐿 =
𝐵∗𝐿

𝐵∗∗𝐿
   = 59.99% represent the optimal path 

ratio for achieving the synthetic optimal performance 

𝑓∗∗1𝐿 = (26.293, 34.052) related to a given meta-

optimal budget level 𝐵∗𝐿= 47.99935, optimal system 

design under Ratio1 is as follows: optimal solutions 

for (product1 and product2) are (3.310, 2.999) 
respectively, 𝑏1𝐿 resources of raw materials are 

(28.547, 25.237, 23.272) respectively, also the 

optimal values of maximization (profit and quality) 

are (15.773, 20.428), all results of 1st Bound of 

d
es

ig
n

s Optimal values & 

Optimal solution of 

problem 20 

Optimal values & Optimal 

solution of problem 21 

Optimal values & 

Optimal solution of 

problem 22 

Optimal values & 

Optimal solution of 

problem 23 

D
es

ig
n

1
.f

o
r 

R
at

io
 1

 𝑥1𝐿 = (3.309, 2.995)                     

𝑏1𝐿 = (28.547, 25.237, 

23.272) 

𝑓∗∗1𝐿  = (15.773, 20.428)       

𝑟1𝐿 = 59.99% with using 

𝐵∗𝐿 =47.99935, out of  

𝐵∗∗𝐿=79.9997 

𝑥1𝑈 = (15.727, 12.641)   

𝑏1𝑈 = (64.600, 50.416, 

53.650)  

𝑓1𝑈 = (85.105, 89.882)      

𝑟1𝑈= 61.48%with using 

𝐵∗𝑈=67.628, out of  

𝐵∗∗𝑈=110.00015 

𝑥
1𝐿
= (6.429, 5.586)       

𝑏
1𝐿

= (39.261, 36.046, 

35.204) 

𝑓
1𝐿

 = (20.8164, 32.8318)      

𝑟
1𝐿

= 57.54% with using 

𝐵
∗𝐿

=57.542, out of  

𝐵
∗∗𝐿

=99.99875 

𝑥
1𝑈
= (16.225, 13.026)     

𝑏
∗𝑈

= (81.239, 79.639, 

69.927) 

𝑓
2

1𝑈
 = (102.377, 130.028)     

𝑟
1𝑈

= 71.14% with using 

𝐵
∗𝑈

=92.483, out of  

𝐵
∗∗𝑈

=130 
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Lower Rough Interval-Problem 20 under budget 

𝐵𝐿 = 40 . 

And so on for problem 21 under same ratio the design 

is as follows:  

For the second bound of lower rough interval 

the first ratio is taken 𝑟1𝑈= 61.48%, optimal system 

design under Ratio1 equal 57.54% is as follows: 

optimal solutions for (product1 and product2) are 

(15.727, 12.641) respectively, 𝑏1𝑈 resources of raw 

materials are (64.600, 50.416, 53.649) respectively, 

also the optimal values of maximization (profit and 

quality) are (85.105, 89.882), all results of 2nd Bound 

of Lower Rough Interval-Problem 20 under budget 

𝐵𝑈 = 55 . 
 So is the problem 22 Optimal system design under 

Ratio1 equal 𝑟
1𝐿

= 57.54% is as follows: optimal 

solutions for (product1 and product2) are 

(6.429, 5.586)   respectively, 𝑏
1𝐿

 resources of raw 

materials are (39.2609, 36.046, 35.204) respectively, 

also the optimal values of maximization (profit and 

quality) are (20.816, 32.832), all results of 1st Bound 

of Upper Rough Interval-Problem 22 under budget 

𝐵
𝐿
= 50 . 

Design for Ratio1 2nd Bound of Upper Rough 

Interval-Problem 23, Optimal system design under 

Ratio1 equal 𝑟
1𝑈

= 71.14% is as follows: optimal 

solutions for (product1 and product2) are 

(16.225, 13.026) respectively, 𝑏
1𝑈

 resources of raw 

materials are (81.239, 79.639, 69.927) respectively, 

also the optimal values of maximization (profit and 

quality) are (102.377, 130.028), all results of 2nd 

Bound of Upper Rough Interval-Problem 23 under 

budget 

𝐵
𝑈
= 65 . 

The results of ratios (2,3) can be summarized as in 

the Table 13. 

 

Table 13. The results of optimum system design for problems 20,21,22,23 for ratios (2,3). 

 

From Table 13 , it is found that all solutions under 

each ratio gives an optimal system design, meaning 

that this method is the most efficient method when 

compared with other methods, because it gives more 

flexibility for DM by choosing suitable alternative, it 

gives twelve alternatives while the other methods 

give four alternatives for each one. These results are 

confirmed by23. 

 

After obtaining the results from each method can be 

described separately, as shown in Table 14.  

 

 

D
es

i

g
n

s 

Optimal values & 

Optimal solution of 

problem 20 

Optimal values & Optimal 

solution of problem 21 

Optimal values & 

Optimal solution of 

problem 22 

Optimal values & 

Optimal solution of 

problem 23 

D
es

ig
n

2
. 

F
o

r 
R

at
io

 2
 𝑥2𝐿 = (2.759, 2.5)                           

𝑏2𝐿 = (23.793, 21.034, 

19.397) 

𝑓∗∗2𝐿 = (13.147, 17.026)                   

𝑟2𝐿 = 50.00019%with 

using 𝐵𝐿 =40, out of  

𝐵∗∗𝐿=79.9997 

𝑥2𝑈 = (12.788, 10.278)    

𝑏2𝑈 = (52.527, 40.994, 

43.623) 

𝑓2𝑈 = (69.199, 73.084)       

𝑟2𝑈= 49.99%with using 

𝐵𝑈=55, out of  

𝐵∗∗𝑈=110.00015 

𝑥
2𝐿
= (5.587, 4.855)       

𝑏
2𝐿

= (34.117, 31.324, 

30.591) 

𝑓
2𝐿

 = (18.0889, 28.5301)      

𝑟
2𝐿

= 50.001% with using 

𝐵
𝐿
=50, out of  

𝐵
∗∗𝐿

=99.99875 

𝑥
2𝑈
= (11.4035, 9.155)        

𝑏
2𝑈

= (57.098, 55.974, 

49.148) 

𝑓
2𝑈

 = (71.955, 91.389)      

𝑟
2𝑈

   = 50% with using 

𝐵
𝑈

=65, out of  𝐵
∗∗𝑈

=130 

D
es

ig
n

3
. 

F
o

r 
R

at
io

 3
 

𝑥3𝐿 = (2.759, 2.5)                           

𝑏3𝐿 = (23.793, 21.034, 

19.397) 

𝑓∗∗3𝐿 = (13.147, 17.026)   

𝑟3𝐿 = 50% with using 

𝛼1𝐵1
1𝐿+𝛼2𝐵2

2𝐿=39.99985

, out of  𝐵∗∗𝐿=79.9997 

𝑥3𝑈 = (12.791, 10.281)  

𝑏3𝑈 = (52.5375, 41.002, 

43.6319) 

𝑓3𝑈 = (69.213, 73.098)       

𝑟3𝑈= 50%with using 

𝛼1𝐵1
1𝑈+𝛼2𝐵2

2𝑈=55.000075

, out of  𝐵∗∗𝑈=110.00015 

𝑥
3𝐿
= (5.587, 4.854)     

𝑏
3𝐿

= (34.117, 31.323, 

30.591) 

𝑓
3𝐿

 = (18.089, 28.529)      

𝑟
3𝐿

= 50.0006% with 

using 

𝛼1𝐵1
1𝐿

+𝛼2𝐵2
2𝐿

=49.99993

5 out of  𝐵
∗∗𝐿

=99.99875 

𝑥
3𝑈
= (11.403, 9.154)        

𝑏
3𝑈

= (57.0968, 55.9725, 

49.147) 

𝑓
3𝑈

 = (71.953, 91.387)         

𝑟
3𝑈

= 49.99% with using 

𝛼1𝐵1
1𝑈

+𝛼2𝐵2
2𝑈

=64.99997

5 out of  𝐵∗∗𝑈=130 
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Table 14. Described of methods for solving proposed model. 
Method Right hand of constraints 

𝒃𝒊 
 Model usability  Results The number of optimal 

system designs 

WSM 𝑏𝑖: resources right hand 

side of constraints are 

Known and fixed.  

Before formulation 

proposed model 

RIMOP. 

Select one solution 

from the set of 

feasible solutions. 

Four optimal solutions, 

but not         re-designable 

system. 

Zeleny’s 

approach  
𝑏𝑖: resources hand side of 

constraints are unknown 

and variable. 

after formulation 

proposed model 

RIMODNP. 

All solutions are 

optimal. 

Four optimal solutions, 

but         re-designable 

system. 

Optimal 

path-ratios  
𝑏𝑖: resources hand side of 

constraints are unknown 

and variable. 

after formulation 

proposed model 

RIMODNP. 

All solutions are 

optimal. 

Twelve optimal designs 

for the three ratios used, 

and the system can be 

redesigned.  

 

From the results, we concluded that WSM is useless 

to use, especially when the conditions are 

uncertainty, because it is not possible to control re-

allocation resources or improve the current system. 

And also, it’s noted that the optimal path-ratios 

method is more efficient, than other methods, 

because it gives more alternatives to the DM, and it 

is also possible to re-improve system design without 

returning to create new system design. 

 

Conclusion 

In this paper, an ideal resource allocation system 

under conditions of uncertainty is designed using the 

proposed model to reconfigure the possible 

combination to obtain the optimal combination of 

resources that produce a system with no or minimal 

waste. The optimal system design of the proposed 

model is obtained by solving in three ways: WSM, 

Zeleny approach and optimal path -ratios method. 

The first method (WSM) gives one result among a 

set of feasible solutions (ideal system design) under 

each level of problem can’t improve RIMOP, the 

second method (Zeleny’s approach) gives one 

optimal system design under each level which can be 

improved by redesigning, while the third method 

(optimal path-ratios) gives three optimum system 

designs for each sub-model (levels), from this 

method twelve designs are obtained for RIMODNP 

problem. According to the results obtained from our 

propose model, we found that the third, method 

(optimal path-ratios) is more efficient compared with 

the other methods, it gives more alternative solutions 

(12 solutions) which represents the optimal system 

design, thus, the results of the proposed model 

conform to the conditions and theorems, in spite of 

the high efficiency of our model it faces difficulties 

when applied on large scales because it needs special 

computer program designs. 
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 و متعددة الأهدافڨدي نولبرمجة  التقريبيتصميم نظام أمثل باستخدام الفاصل 

  2د رشديبة السيه ،2نجلاء رجاء سعيد  ،2حجازي زاهر، 1افتخار علي حسين

 الكلية التقنية الهندسية، الجامعة التقنية الوسطى، بغداد، العراق. 1
 مصر. ،الجيزة ،بحوث العمليات، كلية الدراسات العليا للبحوث الإحصائية، جامعة القاهرة قسم 2

 

 ةالخلاص

و متعددة الأهداف، أداة فعالة تتعامل مع تصميم نظام أمثل، وذلك من خلال تحديد المستوى الأمثل لتخصيص ڤتعُد برمجة دي نو

حث هذه البفي  .وتحسين قيمة دوال الهدف وفقاً لسعر الموارد )هذا فيما لو كانت الظروف طبيعية ولا يوجد تقلب في الاسعار(الموارد، 

هو  الأول أنموذج مركب يتضمن نوعين من البرمجة:باستخدام وذلك  لمشكلة برمجة دي نوفو، اليقيننهجاً جديداً لحل مشكلة عدم  رح  قت  اُ 

ً بأن معاملات متغيرات القرار لدالة (DNP)وڤدي نوبرمجة الثاني: و ،(RIMOP)صل التقريبي امتعددة الأهداف ذات الفبرمجة  ، علما

المقترح وإيجاد تصميم نظام أمثل، الطريقة الاولى  الانموذجلحل  ائقطرثلاث  ناماستخدا وقد .RICالهدف والقيود عبارة عن فاصل تقريبي 

)وكانت الموارد معروفة(، وقد وجد ان  RIMOPقبل اعادة صياغة النموذج المقترح  والتي تسُتخدم WSM المجموع الموزون هي طريقة

كن وبالتالي يم، تعطي حلاً واحداً )حل وسط قريب من المثالية( من بين الحلول المقبولة تحت كل حد من حدود المشكلة WSMنتائج طريقة 

 المقترح الانموذجبعد صياغة فقد استخدمت طريقة نسب المسار الأمثل . اما منهجية زيلني و(DM) تقديم أربع حلول )بدائل( لصانع القرار

(RIMODNP) واحداً لكل حد من  للطرف الأيمن للقيود ليست معروفة(.  وجد ان منهجية زيلني تعطي تصميم نظام أمثل )وكانت الموارد

 ةحدود المشكلة، في حين ان طريقة المسار الأمثل طبقت بعد ان تم التأكد من حدود النموذج المقترح وفقاً النظرية شاي فقد استخدمنا ثلاث

ح من وقد اتض ،تحت كل حد للمشكلةتصاميم انظمة مثلى فقد وجد ان هذه  الطريقة تعطي ثلاث تحت كل مشكلة فرعية، من النسب أنواع 

خلال النتائج ان طريقة نسب المسار الامثل هي أكثر كفاءة من غيرها بعد تطبيقها على النموذج المقترح، لأنها اعطت اثنا عشر بديلاً 

اخيراً،  ،نموذج المقترح مناسباً جداً لظروف عدم اليقينالا دع. يُ RICظريات لوحظ ان الانموذج المقترح يتوافق مع شروط ون ،(DM)لـ

 . نموذج المقترحالاعلى مثال رقمي طبق 

ريبية برمجة الفاصل التق الأمثل،، تصميم النظام برمجة دي نوفو، البرمجة الخطية متعددة الاهداف، نسب المسار الأمثل الكلمات المفتاحية:

 .الخطية
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