Orthogonal Functions Solving Linear functional Differential EquationsUsing Chebyshev Polynomial

Abdul Khaliqe Ewaid Mizel*

Date of acceptance 26/11/2007

Abstract

: A method for Approximated evaluation of linear functional differential equations is described. where a function approximation as a linear combination of a set of orthogonal basis functions which are chebyshev functions. The coefficients of the approximation are determined by (least square and Galerkin's) methods. The property of chebyshev polynomials leads to good results, which are demonstrated with examples.

Introduction:

Functional Differential Equations are differential equations in which function appears with delay argument and which has been developed over twenty year, only in the last few years has much effort been devoted to study nonlinear functional differential equations
Of
the
form
$F\left(t, y(t), y\left(t-\tau_{1}\right), \ldots, y\left(t-\tau_{k}\right), y^{\prime}(t), y^{\prime}\left(t-\tau_{1}\right), \ldots, y^{\prime}\left(t-\tau_{k}\right)\right.$,
$\left.y^{(n)}(t), \ldots, y^{(n)}\left(t-\tau_{k}\right)\right)=0$
Where F is a given function and $\tau_{1}, \tau_{2}, \ldots, \tau_{k}$ are given and called the "time 1, 2].

The differential equation (1) is categorized into three types: -Equation (1) is called a Retarded type, if the highestorder derivative of unknown function appears for just one value of the argument. Equation (1) is called a Neutral type, if the highest- order derivative of unknown function appears both with and without difference argument. All other differential equation (1) with an advanced types. [3,4,5]

Weighted Residual Methods:

We present these methods by considering the following functional equation.

$$
\begin{equation*}
\mathrm{L}[\mathrm{y}(\mathrm{x})]=\mathrm{g}(\mathrm{x}) \mathrm{x} \in \mathrm{D} \tag{2}
\end{equation*}
$$

Where L denotes an operator which
maps a set of functions Y in to a set G such that $y \in Y, g \in G$ and D is a prescribed domain.

The epitome of the expansion method is to approximate the solution $\mathrm{y}(\mathrm{x})$ of equ.
(2) By the form $y \cong y_{N}(x)=\sum_{i=0}^{N} c_{i} \psi_{i}(x)$

Where the parameters c_{i} and the functions $\psi_{i}(x)$ are chosen in our work as:

The Choice of Basis Functions

In this work, the choice of basis functions $\psi_{i}(x)$ are:

Orthogonal polynomials:

1. Chebyshev Polynomials: [6]

The Chebyshev polynomials $\mathrm{T}_{\mathrm{n}}(\mathrm{x})$ are an important set of orthogonal function over the interval $[-1,1]$.

The general form of these polynomials is

$$
\mathrm{T}_{\mathrm{n}+1}(\mathrm{x})=2 \mathrm{x} \mathrm{~T}_{\mathrm{n}}(\mathrm{x})-\mathrm{T}_{\mathrm{n}-1}(\mathrm{x}) \quad \mathrm{n} \geq 1
$$

Where $\quad \mathrm{T}_{0}(\mathrm{x})=1 \quad$ and $\quad \mathrm{T}_{1}(\mathrm{x})=\mathrm{x}$ An approximate solution $y_{N}(x)$ given by (3), in general, satisfy equ.(2) exactly and associated with such an approximate solution is the residual defined by

$$
\begin{equation*}
\mathrm{E}(\mathrm{x})=\mathrm{L}\left[\mathrm{y}_{\mathrm{N}}(\mathrm{x})\right]-\mathrm{g}(\mathrm{x}) \tag{4}
\end{equation*}
$$

The residual $\mathrm{E}(\mathrm{x})$ depends on x as well as on the way that the parameters c_{i} are chosen.
It is obvious that when $\mathrm{E}(\mathrm{x})=0$, then the exact solution is obtained which is difficult to be achieved, therefore we shall try to minimize $\mathrm{E}(\mathrm{x})$ in some sense.
In the weighted residual method the unknown parameters c_{i} are chosen to minimize the residual $\mathrm{E}(\mathrm{x})$ by setting its weighted integral equal to zero, i.e.

$$
\begin{equation*}
\int_{D} w_{j} E(x) d x=0 \quad j=0,1, \ldots \ldots, N \tag{5}
\end{equation*}
$$

Where W_{j} is prescribed weighting function, the technique based on (5) is called weighted residual method. Different choices of w_{j} yield different methods with different approximate solutions.

The weighted residual methods that will be discussed in this work are:

1.1 Galerkin's Method
 1.2 Least Square Method

1.1 Galerkin's Method: [7]

Galerkin method is the most efficient of the weighted residual methods. This method makes the residual $\mathrm{E}(\mathrm{x})$ of equ.(4) orthogonal to ($\mathrm{N}+1$) given linearly independent function on the domain D .
The weighting function w_{j} is defined as:
$w_{j}(x)=\frac{\partial y_{N}(x)}{\partial c_{j}}$

$$
j=0,1, \ldots, N
$$

where $y_{N}(x)$ is the approximate solution of the problem, then equ.(4) becomes.
$\int_{D} \frac{\partial y_{N}(x)}{\partial c_{j}} E(x) d x=0 \quad j=0,1, \ldots, N$
...(6)
And will provide ($\mathrm{N}+1$) simultaneous equations for determination of $\mathrm{c}_{0}, \mathrm{c}_{1}, \ldots$. c_{N}.

1.2 Least Square Method: [7]

In this method weighting function w_{j} is defined as:

$$
w_{j}(x)=\frac{\partial E(x)}{\partial c_{j}} \quad j=0,1, \ldots, N
$$

And due to equ.(5) we have
$\int_{D} \frac{\partial E(x)}{\partial c_{j}} E(x) d x=0 \quad j=0,1, \ldots ., N$
then the square of the error on the domain D is

$$
J=\int_{D}[E(x)]^{2} d x
$$

Now, we compute the derivatives

$$
\begin{equation*}
\frac{\partial J}{\partial c_{j}}=2 \int_{D} E(x) \frac{\partial E(x)}{\partial c_{j}} d x \quad j=0,1, \ldots ., N . \tag{8}
\end{equation*}
$$

it implies from equ.(7),(8) that
$\frac{\partial J}{\partial c_{j}}=2 \int_{D} E(x) \frac{\partial E(x)}{\partial c_{j}} d x=0 \quad j=0,1, \ldots ., N$
Therefore J is stationary and the square of residual $\mathrm{E}(\mathrm{x})$ attains its minimum

Solution of Linear FDE s by Weighted Residual Methods:

The general form nth order nonhomogenous linear functional differential equation is
$y^{(m)}(x)+\sum_{p=0}^{n} a_{p} y^{(p)}(x)+\sum_{m=0}^{(m-1)} b_{m} y^{(m)}(x-\tau)+\sum_{t=1}^{(m)} d y^{(i)}(x-\tau)=g(x)$
where τ is a prescribed constant and a_{p}, b_{m} and d_{l} are constants with initial condition

$$
y(0)=y_{0}, \quad y^{\prime}(0)=y_{1}, \ldots, y^{(n-1)}(0)=y_{n-1}, \quad y^{n}(0)=y_{n}
$$

Using operator forms this equation can be written as
$\mathrm{L}[\mathrm{y}]=\mathrm{g}(\mathrm{x})$
Where the operator L is defined as
$L[y]=y^{(m)}(x)+\sum_{p=0}^{n} a_{p} y^{(p)}(x)+\sum_{m=0}^{n-1} b_{m} y^{(m)}(x-\tau)+\sum_{==0}^{n} d_{l} y^{(i)}(x-\tau)$
The unknown function $y(x)$ is approximated by the form

$$
\begin{equation*}
y_{N}(x)=\sum_{j=0}^{N} c_{j} \psi_{j}(x) \tag{11}
\end{equation*}
$$

Substituting equ.(11) in equ.(10) we get

$$
\mathrm{L}\left[\mathrm{y}_{\mathrm{N}}\right]=\mathrm{g}(\mathrm{x})+\mathrm{E}_{\mathrm{N}}(\mathrm{x})
$$

Where

$$
\left.L y_{N}\right]=y_{N}^{(n)}(x)+\sum_{p=0}^{n} a_{p} y_{N}^{(p)}(x)+\sum_{m=0}^{n-1} b_{m} y_{N}^{(m)}(x-\tau)+\sum_{==0}^{n} d_{l} y_{N}^{(1)}(x-\tau)
$$

Which we have the residue equation
$\mathrm{E}_{\mathrm{N}}(\mathrm{x})=\mathrm{L}\left[\mathrm{yN}_{\mathrm{N}}(\mathrm{x})\right]-\mathrm{g}(\mathrm{x})$
Substituting the equ.(11) in equ.(12), we get

$$
\begin{equation*}
E_{N}(x)=L\left[\sum_{j=0}^{N} c_{j} \psi_{j}\right]-g(x)=\sum_{j=0}^{N} c_{j} L\left[\psi_{j}(x)\right]-g(x) \tag{13}
\end{equation*}
$$

Evidently from equ.(5) that

$$
\begin{equation*}
\int_{D} w_{j} E_{N}(x)=0 \tag{14}
\end{equation*}
$$

Inserting equ.(13) in equ.(14) yields

$$
\begin{align*}
& \int_{D} w_{j}\left(\sum_{j=0}^{N} c_{j} L\left[\psi_{j}(x)\right]-g(x)\right)=0 \\
& \sum_{j=0}^{N} c_{j} \int_{D} w_{j} L\left[\psi_{j}(x)\right]=\int_{D} w_{j} g(x) \tag{15}
\end{align*}
$$

Where
$L\left(\psi_{j}(x)\right)=\psi_{j}^{(m)}(x)+\sum_{p=0}^{n} a_{p} \psi_{j}^{(p)}(x)+\sum_{m=0}^{n-1} b_{m} \psi_{j}^{(m)}(x-\tau)+\sum_{=0}^{n} d_{i} \psi_{j}^{(i)}(x-\tau)$
for $\mathrm{j}=0,1, \ldots, \mathrm{~N} \ldots(16)$
Introducing matrix k and vector h as
$k_{j i}=\int_{D} w_{j} L\left(\psi_{i}(x)\right) d x \quad i=0,1, \ldots, N$
$h_{j}=\int_{D} w_{j} g(x) d x \quad j=0,1, \ldots ., N$
We can write equ.(15) in matrix form

$$
\begin{equation*}
\mathrm{KC}=\mathrm{H}^{1} \tag{18}
\end{equation*}
$$

Where

$$
C=\left(\begin{array}{c}
c_{0} \\
c_{1} \\
\vdots \\
c_{N}
\end{array}\right)
$$

Finally, we have N+1 linear equations (18) for determing $\mathrm{N}+1$ coefficient $\mathrm{c} 0, \mathrm{c}_{1} \ldots$, c_{N}.

1. Using Galerkinós Method:

It is a simple technique for obtaining a linear approximation y_{N}, the weight function w_{j} in equ.(5) is defined as [6]
$w_{j}(x)=\frac{\partial y_{N}(x)}{\partial c_{j}} \quad i=0,1, \ldots, N$
now since
$y_{N}(x)=\sum_{i=0}^{N} c_{i} \psi_{i}$
Therefore

$$
\begin{equation*}
w_{j}(x)=\frac{\partial}{\partial c_{j}} \sum_{i=0}^{N} c_{i} \psi_{i}=\psi_{j} \quad, \quad j=0,1, \ldots ., N \tag{19}
\end{equation*}
$$

Substituting equ.(19) in equ.(15) we get

$$
\sum_{i=0}^{N} c_{j} \psi_{j} L\left(\psi_{j}\right)=\int_{D} \psi_{j} g(x), \quad j=0,1, \ldots ., N
$$

The linear system (18) becomes

... (20)
Where
$K=\left[\begin{array}{llll}\int_{D} \psi_{0} L\left(\psi_{0}\right) d x & \int_{D} \psi_{0} L\left(\psi_{1}\right) d x & \ldots . \int_{D} \psi_{0} L\left(\psi_{N}\right) d x \\ \int_{D} \psi_{1} L\left(\psi_{0}\right) d x & \int_{D} \psi_{1} L\left(\psi_{1}\right) d x & \ldots & \int_{D} \psi_{1} L\left(\psi_{N}\right) d x \\ \vdots & & & \\ \int_{D} \psi_{N} L\left(\psi_{0}\right) d x & \int \psi_{N} L\left(\psi_{1}\right) d x & \ldots . \int_{D} \psi_{N} L\left(\psi_{N}\right) d x\end{array}\right]$,
$C=\left[\begin{array}{c}c_{0} \\ c_{1} \\ \vdots \\ c_{N}\end{array}\right] \quad \& \quad H=\left[\begin{array}{c}\int_{D} \psi_{0} g d x \\ \int_{D} \psi_{1} g d x \\ \vdots \\ \int_{D} \psi_{N} g d x\end{array}\right]$
... (21)

Hence solving the system $\mathrm{KC}=\mathrm{H}$ for coefficient $\mathrm{c}_{\mathrm{j}} \delta \mathrm{s}$. Substitute the
coefficient in equ.(10) to obtain approximate solution.

Algorithm (orthogonal chebyshev

 Galerkin's OCG)This method can be summarized in the following steps
Step 1: Select ψ_{j} for $j=0,1, \ldots$, N .
Step 2: Compute $L\left(\psi_{j}\right)$ by using equ.(16) for $j=0,1, \ldots ., N$.

Step 3: Compute the matrices K and H by using equ.(21).

Step 4: Solve the system (20) for coefficients $\mathrm{c}_{\mathrm{j}} \mathrm{d} \mathrm{s}$.

Step 5:Substitute $\mathrm{c}_{\mathrm{j}} \delta \mathrm{s}$ in transforming form to obtain the approximate solution of $\mathrm{y}(\mathrm{x})$.

2. Using Least Square Method:

The standard least squares approach is to attempt to minimize the sum of the squares of the residual at each point in the domain D.

Here this minimization of [6]

$$
I(\bar{c})=\frac{1}{2} \int_{D}\left[E_{N}(x)\right]^{2} d x
$$

Where

$$
\bar{c}=\left(c_{0}, c_{1}, \ldots, c_{N}\right)
$$

This technique is to solve the $(\mathrm{N}+1)$ normal equation given by

$$
\frac{\partial I}{\partial c_{i}}=\int_{D} E_{n}(x) \frac{\partial E_{n}(x)}{\partial c_{i}} d x=0 \quad, \quad i=0,1, \ldots, N
$$

Substituting eq.(15), yields

$$
\begin{array}{r}
\int_{D} \sum_{j=0}^{N} c_{j} L\left(\psi_{i}(x)\right) L\left(\psi_{j}(x)\right) d x=\int_{D} L\left(\psi_{i}(x)\right) g(x) d x \\
i=0,1, \ldots . N
\end{array}
$$

The linear system (18) becomes

Where
$K=\left[\begin{array}{llll}\int_{D} L\left(\mu_{0}\right) L\left(\psi_{0}\right) d x & \int_{D} L\left(\psi_{0}\right) L\left(\psi_{1}\right) d x & \cdots & \int_{D} L\left(\mu_{0}\right) L\left(\mu_{n}\right) d x \\ \int_{D} L\left(\psi_{1}\right) L\left(\psi_{0}\right) d x & \int_{D} L\left(\mu_{1}\right) L\left(\psi_{1}\right) d x & \cdots & \int_{D} L\left(\mu_{1}\right) L\left(\mu_{n}\right) d x \\ \vdots & \int_{D} L\left(\mu_{n}\right) L\left(\mu_{0}\right) d x & \int L\left(\mu_{n}\right) L\left(\mu_{1}\right) d x & \cdots \\ \int_{D} L\left(\mu_{n}\right) L\left(\mu_{n}\right) d x\end{array}\right]$

... (23)
Hence the system of $\mathrm{N}+1$ linear equations with $\mathrm{N}+1$ unknown $\mathrm{N}+1$ coefficients $\mathrm{c}_{0}, \mathrm{c}_{1}$, $\ldots . ., \mathrm{c}_{\mathrm{N}}$ will construct.
By solving this system, the values of $\mathrm{c}_{\mathrm{j}} \dot{s} \mathrm{~s}$ will be found and then substituted in equ.(10) to obtain the approximate solution.

Algorithm (orthogonal chebyshev least square OCL)

This method can be summarized in the following steps
Step 1: Select ψ_{j} for $j=0,1, \ldots, N$.
Step 2: Compute $L\left(\psi_{j}\right) \& L\left(\psi_{i}\right)$ by using equ.(16) for $\mathrm{i}=0,1, \ldots, \mathrm{~N}, \mathrm{j}=0,1$,, N.

Step 3: Compute the matrices K and H by using equ.(23).

Step 4: Solve the system (22) for coefficients $c_{j o b}^{s}$.

Step 5: Substitute $\mathrm{c}_{\mathrm{j}} \mathrm{s}^{\mathrm{s}} \mathrm{s}$ in equ.(10) to obtain the approximate solution.

Transforming the Interval:

Sometimes it is necessary to take a problem state on interval [a, b], then we
can convert the variable so that the problem is reformulated on $[-1,1]$, as follows $x=\frac{(b-a) t+b+a}{2}$,

$$
\text { So that } \quad d x=\frac{(b-a)}{2} d t
$$

Then

$$
\int_{a}^{b} g(x) d x=\frac{b-a}{2} \int_{-1}^{1} g\left(\frac{(b-a) t+b+a}{2}\right) d t
$$

Conversely, transform the limits of integration from $[-1,1]$ to $[\mathrm{a}, \mathrm{b}]$ using

$$
t=2\left(\frac{x-a}{b-a}\right)-1
$$

so that

$$
d t=\frac{2}{b-a} d x
$$

Then

$$
\int_{-1}^{1} g(t) d t=\frac{2}{b-a} \int_{a}^{b} g\left(2\left(\frac{x-a}{b-a}\right)-1\right) d x
$$

Test Example:

Example (1):

Consider the following first order linear functional differential equation of retarded type:

$$
y^{\prime}(t)+y(t)-y(t-1)=t \quad t \geq 0
$$

With initial function

$$
y(t)=t \quad-1 \leq t \leq 0
$$

Which has exact solution

$$
y(t)=\frac{t}{8}+\frac{t^{2}}{4} \quad 0 \leq t \leq 1
$$

Assume the approximate solution in the form
$y_{N}(t)=\sum_{j=1}^{N} a_{j} \psi_{j}(2 x-1)$
Table (1) lists the least square errors obtained by running the programs for algorithms (OCG and OCL) with different values to find approximate solution of above equation.

Table (1) the approximated values of y (t) against the exact value for $\mathrm{N}=2$ and $\Delta_{t=10}$

t	Exact	Chybeshev polynomial	
		OCG	OCL
0.0	0	0	0
0.1	0.0150	0.0150	0.0150
0.2	0.0350	0.0350	0.0350
0.3	0.0600	0.0600	0.0600
0.4	0.0900	0.0900	0.0900
0.5	0.1250	0.1250	0.1250
0.6	0.1650	0.1650	0.1650
0.7	0.2100	0.2100	0.2100
0.8	0.2600	0.2600	0.2600
0.9	0.3150	0.3150	0.3150
1.0	0.3750	0.3750	0.3750
	L.S.E.	0	0

Example (2):

Consider the following first order delay differential equation of neutral type: $y^{\prime}(t)=1-y^{\prime}\left(t-\frac{y(t)^{2}}{4}\right)$
With initial function $y(t)=1+t \quad 0 \leq t \leq 1$
Which has exact solution

$$
y(t)=1+\frac{t}{2}+\frac{t^{2}}{4} \quad 0 \leq t \leq 1
$$

Assume the approximate solution as in the form

$$
y_{N}(t)=\sum_{j=1}^{N} a_{j} \psi_{j}(2 x-1)
$$

Table (2) lists the least square errors obtained by running the programs for algorithms (OCG, and OCL) with different values to find approximate solution of above equation.

Table (2)The approximated values of y (t) against the exact value for $\mathrm{N}=5$ and $\Delta t=10$

\mathbf{t}	Exact	Chybeshev polynomial	
		OCG	OCL
0.0	1	1	1
0.1	1.0525	1.0525	1.0526
0.2	1.1100	1.1100	1.1101
0.3	1.1725	1.1725	1.1726
0.4	1.2400	1.2400	1.2401
0.5	1.3125	1.3125	1.3126
0.6	1.3900	1.3900	1.3901
0.7	1.4725	1.4725	1.4726
0.8	1.5600	1.5600	1.5601
0.9	1.6525	1.6525	1.6526
1.0	1.7500	1.7500	1.7501
L.S.E.			

Conclusions:

The approximate solution using the basis functions orthogonal functions using chebyshev polynomial with the aid of weighted residual methods has been obtained for two examples. Good results were obtained and the following conclusion points are drawn.
In terms of the results, Galerkin's method gives more accurate solution than collocation method and least square method, see tables
The good approximation depends on: the number of the orthogonal polynomials

The number of the root $\mathrm{s}_{\mathrm{i}} \dot{s} \mathrm{~s}$ of the orthogonal polynomials, i.e. as it increases the L.S.E. approaches to zero.

References:

1. Bassim, N.A., 2004 "On the numerical solution of the Delay Differential Equations", ph.D. Thesis, college of science, Al-Mustansiriah University .
2. Baker, C.T.H., 2000"Retarded Differential Equation", http://www. mi.man. ac. uk/ nareports.
3. Cryer, C.W., 1972 "Numerical method for functional differential equations" Delay and functional differential equations, S. Schmitt (Ed.).Academic press, N.Y.
4. Davis A. J., 1974 "The finite Element Method", A First Approach, Applied Mathematics and Computing Science series, Oxford University Press.
5. Marie ,N.K.,2001,"Variational Formulation of Delay Differential Equation "M.sc.Thesis ,college of Education, Ibn Al-Haitham, Baghdad University.
6. "Orthogonal polynomials ", 2003, http://mathword.wo/fram.Com/orthogo nal.
7. "Weighted Residual methods for Solving ODE and PDE"; http://www.cs.4t.ee/Ntoo mas/linalg/ dv2/nod28.htm/2002.

*عبد الخالق عويل مزعل
*الجامعة المستنصريـة-كلية العلوم-قسم الرياضيات
الخلاصة:

من دو ال متعامدة هي دو ال جبشيف .المعاملات للنركيب الناتج تم حسابها بطريقتنين المربعات الصغرى وكـالكن .خاصية متعددات الحدود جبشيف أدت الـى نتائج جيدة تم توضيحها بأمثلّة.
