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Introduction 

Many scientists have been interested in the study of 

prime numbers because of their use and applications 

in many fields of science such as mathematics and 

computer science. Prime numbers are used to form 

private keys in many public key cryptosystems, 

including the RSA cryptosystem, the ElGamal 

cryptosystem, the Elliptic curve cryptosystem, and 

others. In fact, it is known that there are an infinite 

number of prime numbers with numerous well-

known forms. For example, Edmund Landau 1 

conjectured that there are an infinite number of 

primes of the form 𝑝 = 𝑥2 + 1. Furthermore, 

Shanks 2, 3 conjectured that for some integer 𝑥, there 

are infinite prime numbers of the form 𝑝 = 𝑥4 +

1 and 𝑝 =
1

2
(𝑥2 + 1). Fermat also conjectured that 

any prime 𝑝 = 4𝑘 + 1can be written as 𝑝 = 𝑥2 +
𝑦2, see e.g. 4. Euler 5 provided proof of this 

conjecture in 1749. Furthermore, Dirichlet proved 

that there are an infinite number of primes of the 

form 𝑝 = 𝑎𝑘 + 𝑏 if 𝑔𝑐𝑑(𝑎, 𝑏) = 1, where 𝑎 and 𝑏 

are integers, see e.g. 6. Indeed, this latter result 

demonstrates that there are an infinite number of 

primes of the form 𝑝 = 𝑥2 + 𝑦2. Friedlander and 

Iwaniec 7 proved that there are an infinite number of 

primes of the form 𝑝 = 𝑥2 + 𝑦4 as a generalization 

of Fermat's result.     

On the other hand, it is known that certain types of 

linear recurrence sequences contain an infinite 

number of primes. For example, it is conjectured 

that the Fibonacci and Lucas number sequences 

have an infinite number of primes, where these 

sequences are defined by 

𝐹0 = 0, 𝐹1 = 1, 𝐹𝑛 = 𝐹𝑛−1 +  𝐹𝑛−2 for 𝑛 ≥ 2      1 

and 
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𝐿0 = 2, 𝐿1 = 1, 𝐿𝑛 = 𝐿𝑛−1 + 𝐿𝑛−2 for 𝑛 ≥ 2.        2 

For more details, see for instance 8, 9. Thereafter, 

Lawrence and Michal 10 expanded this latter 

conjecture to more general sequences, referred to as 

the Lucas sequences of the first kind 

{𝑈𝑛(𝑃, 𝑄)} (𝑠𝑖𝑚𝑝𝑙𝑦 {𝑈𝑛)}) or the second kind 

{𝑉𝑛(𝑃, 𝑄)} (𝑠𝑖𝑚𝑝𝑙𝑦 {𝑉𝑛}), which are defined by the 

relations: 

𝑈0(𝑃, 𝑄) = 0, 𝑈1(𝑃, 𝑄) = 1, 𝑈𝑛(𝑃, 𝑄) =
𝑃𝑈𝑛−1(𝑃, 𝑄) − 𝑄𝑈𝑛−2(𝑃, 𝑄) for 𝑛 ≥ 2,                 3 

  𝑉0(𝑃, 𝑄) = 2, 𝑉1(𝑃, 𝑄) = 𝑃, 𝑉𝑛(𝑃, 𝑄) =
𝑃𝑉𝑛−1(𝑃, 𝑄) − 𝑄𝑉𝑛−2(𝑃, 𝑄)  for 𝑛 ≥ 2,                 4 

where P and Q are nonzero integers satisfying 

𝑔𝑐𝑑(𝑃, 𝑄) = 1. Furthermore, it is well known that 

the first and second kinds of Lucas sequences are 

connected in the identity 

𝑉𝑛
2(𝑃, 𝑄) = 𝐷𝑈𝑛

2(𝑃, 𝑄) + 4𝑄𝑛 ,               5 

where 𝐷 = 𝑃2 − 4𝑄, as in 11. The characteristic 

polynomial of these sequences is defined by 

𝑋2 − 𝑃𝑋 + 𝑄 =  0, 

where 

𝛼 =
𝑃+√𝐷

2
  and  𝛽 =

𝑃−√𝐷

2
 

are the latter polynomial’s roots. Hence, these 

sequences can be respectively written by the 

following formulas which are known as Binet’s 

formulas:    

𝑈𝑛(𝑃, 𝑄) =
𝛼𝑛−𝛽𝑛

𝛼−𝛽 
 for 𝑛 ≥ 0.                         6 

and 

𝑉𝑛(𝑃, 𝑄) = 𝛼𝑛 + 𝛽𝑛 for 𝑛 ≥ 0,            7 

where α is called the golden ratio and 𝛽 =
−1

𝛼
 . 

Thus, if 𝛼/𝛽 is not a root of unity then these 

sequences are said to be nondegenerate and 

degenerate otherwise. As a result, they are 

degenerate only with (𝑃, 𝑄) ∈ {(±1, 1), (±2, 1)}, 

for more details see e.g. 11. Note that the terms of 

these sequences are called by the generalized Lucas 

numbers. Moreover, such results concerning primes 

in the Lucas sequences, see e.g. 12.   

Regarding these sequences, when (𝑃, 𝑄) = (1, −1), 

the Fibonacci and Lucas sequences are obtained. If 

(𝑃, 𝑄) = (2, −1), the sequences known as Pell and 

Pell-Lucas are obtained, which are defined as 

follows: 

𝑃0 = 0, 𝑃1 = 1, 𝑃𝑛 = 2𝑃𝑛−1 + 𝑃𝑛−2  for 𝑛 ≥ 2.      8 

and 

 𝑄0 = 2, 𝑄1 = 2, 𝑄𝑛 = 2𝑄𝑛−1 + 𝑄𝑛−2 for 𝑛 ≥ 2.   9 

Note that Binet’s formulas for the sequences 

{𝐹𝑛}, {𝐿𝑛}, {𝑃𝑛} and {𝑄𝑛} are defined as follows: 

𝐹𝑛 =
𝛼1

𝑛−𝛽1
𝑛

√5
, 𝐿𝑛 = 𝛼1

𝑛 + 𝛽1
𝑛 ,                                 10 

𝑃𝑛 =
𝛼2

𝑛−𝛽2
𝑛

√5
, 𝑄𝑛 = 𝛼2

𝑛 + 𝛽2
𝑛 ,                                 11 

where (𝛼1, 𝛽1) = (
1+√5

2
,

1−√5

2
) and (𝛼2, 𝛽2) = (1 +

√2, 1 − √2).  

In general, the study of these sequences and other 

types of sequences connected to other areas of 

Mathematics has been recent of interest to many 

authors, see e.g. 13, 14. 

     As these sequences have infinitely many primes, 

the most interesting question one could ask is: are 

their infinity or finitely many primes of the above-

mentioned forms, namely 𝑝 =  𝑥2 + 1, 𝑥4 +

1,
1

2
(𝑥2 + 1), 𝑥2 + 𝑦2, and 𝑥2 + 𝑦4, where 𝑝, 𝑥 and 

𝑦 represent terms in {𝑈𝑛(𝑃, 𝑄)} 𝑜𝑟 {𝑉𝑛(𝑃, 𝑄)}?  

     In 15, 16 the above question is answered by 

studying such solutions to the equations: 𝑝 = 𝑥2 +

1, 𝑝 =  𝑥4 + 1 and 𝑝 =
1

2
(𝑥2 + 1). In fact, it turned 

out that the above equations have a finite number of 

solutions.  

     The aim of this paper is to finish answering the 

above question for the remaining forms, i.e. 

 𝑝 = 𝑥2 + 𝑦2,                                                         12 

and 

https://doi.org/10.21123/bsj.2023.8786
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𝑝 = 𝑥2 + 𝑦4,                                                          13 

where (𝑥, 𝑦, 𝑝)∈ {(𝑈𝑖(𝑃, 𝑄), 𝑈𝑗(𝑃, 𝑄), 

𝑈𝑘(𝑃, 𝑄)),(𝑉𝑖 (𝑃, 𝑄), 𝑉𝑗 (𝑃, 𝑄), 𝑉𝑘(𝑃, 𝑄))} with 

𝑖, 𝑗, 𝑘 ≥ 1 and P and Q are certain parameters. To be 

more precise, our argument is applied to study such 

special solutions in the case of −2 ≤ 𝑃 ≤ 3 and 

𝑄 = ±1.   

Auxiliary Results 

In this section, some results regarding the sequences 

of Fibonacci numbers, Lucas numbers, Pell 

numbers, and Pell-Lucas numbers are presented. 

These sequences satisfy the following inequalities 

that are utilized later in the proofs of the main 

results:   

𝛼1
𝑛−2 ≤ 𝐹𝑛 ≤ 𝛼1

𝑛−1 for 𝑛 ≥ 1,                               14 

𝛼1
𝑛−1 ≤ 𝐿𝑛 ≤ 𝛼1

𝑛+1 for 𝑛 ≥ 1,                               15 

𝛼2
𝑛−2 ≤ 𝑃𝑛 ≤ 𝛼2

𝑛−1 for 𝑛 ≥ 1,                               16 

𝛼2
𝑛−1 ≤ 𝑄𝑛 ≤ 𝛼2

𝑛+1 for 𝑛 ≥ 1.                              17 

Furthermore, Hashim, Szalay, and Tengely 11 

proved that if 𝑃 ≥ 2 and −𝑃 − 1 ≤ 𝑄 ≤ 𝑃 − 1 then 

the Lucas sequences of the first and second kind 

satisfy the following inequalities: 

𝛼𝑛−2 ≤ 𝑈𝑛 ≤ 𝛼2𝑛 for 𝑛 ≥ 1,                                18 

2𝛼𝑛−1 ≤ 𝑉𝑛 ≤  𝛼2𝑛 for 𝑛 ≥ 1.                              19 

Main Approach 

This section presents a procedure for investigating 

the solutions (𝑥, 𝑦, 𝑝) = (𝑅𝑖 , 𝑅𝑗 , 𝑅𝑘)with 𝑖, 𝑗, 𝑘 ≥ 1 

of Eqs. 12 and 13, where 𝑅𝑖 denotes a generalized 

Lucas number of the first or second kind, namely 

𝑅𝑖 = 𝑈𝑖 or 𝑉𝑖. Indeed, the technique of this 

procedure is applied in case of −2 ≤ 𝑃 ≤ 3 and 

𝑄 = ±1, where {𝑈𝑛} and {𝑉𝑛} are nondegenerate 

sequences. For simplicity, the Lucas sequences with 
(𝑃, 𝑄) ∈ {(3, 1), (3, −1)} are denoted by the 

following: 𝑈𝑛(3, 1) = 𝑀𝑛, 𝑉𝑛(3, 1) = 𝑁𝑛, 

𝑈𝑛(3, −1) = 𝐷𝑛, and 𝑉𝑛(3, −1) = 𝐸𝑛. 

It is clear that Eqs. 12 and 13 have such special 

solutions only 𝑖 < 𝑘 and 𝑗 < 𝑘. Hence, in order to 

find all the solutions (𝑥, 𝑦, 𝑝) = (𝑅𝑖 , 𝑅𝑗 , 𝑅𝑘) with 

𝑖, 𝑗, 𝑘 ≥ 1, the condition that 𝑖 ≤ 𝑗 < 𝑘 is fixed. The 

first two components of the obtained solutions are 

permuted. The following presents a summary of the 

general steps involved in finding the solutions 

(𝑥, 𝑦, 𝑝) = (𝑅𝑖 , 𝑅𝑗 , 𝑅𝑘) of either Eq. 12 or 13, 

subject to the condition 1 ≤ 𝑖 ≤ 𝑗 < 𝑘. Let’s 

consider the procedure with the equation 

𝑅𝑘 = 𝑅𝑖
2 + 𝑅𝑗

2,                                                       20 

with 1 ≤ 𝑖 ≤ 𝑗 < 𝑘 and (𝑅𝑖 , 𝑅𝑗 , 𝑅𝑘) = (𝑈𝑖 , 𝑈𝑗 , 𝑈𝑘) 

or (𝑉𝑖, 𝑉𝑗 , 𝑉𝑘). The idea goes similarly in the case of 

the other equation. 

Step 1: To obtain an upper bound for i, the process 

involves dividing Eq.20 by 𝑅𝑗, utilizing Binet's 

formulas presented by 6 or 7 and incorporating with 

the inequalities presented by 14, 15, 16, 17, 18, and 

19. After some simplifications, the resulting upper 

bound is denoted as 𝑖 ≤ 𝐿. 

Step 2: For 𝑖 = 1, 2, . . . , 𝐿, a specific 𝑖 is inserted 

into Eq.20 to obtain 

𝑅𝑘 = 𝑅𝑗
2 + 𝑐 for 𝑐 = 𝑅𝑖

2 .                                       21 

Step 3: Then substitute Eq. 21 in the identity 

relationship between Lucas numbers of the first and 

second kind presented by 5 gives the elliptic curves 

of the form 

𝑦1
2 = 𝐴1𝑥1

4 + 𝐵1𝑥1
2 + 𝐶1,                                       22 

where (𝑥1 = 𝑈𝑗 or 𝑉𝑗). Note that Eq. 22 can be 

written in the form 

𝑌2 = 𝑋3 + 𝐵1𝑋2 + 𝐴1𝐶1𝑋,                                   23 

where 𝑌 = 𝐴1𝑥1𝑦1 and 𝑋 = 𝐴1𝑥1
2. 

Step 4: The values of 𝑋 (𝑤𝑖𝑡ℎ 𝑋 = 𝐴1𝑥1
2) in curve 

23 can be found using the SageMath 17 function 

integral_points(). 

Step 5: The values of 𝑗 are calculated using the 

obtained value of 𝑥𝑖 . 

Step 6: Plugging the obtained value of 𝑗 in Eq. 21 to 

get the values of 𝑘. Hence, all the values of (𝑖, 𝑗, 𝑘) 

in which Eq. 20 is satisfied are obtained. 

Step 7: After obtaining all the possible solutions 

(𝑖, 𝑗, 𝑘) of Eq. 20 under the condition 1 ≤ 𝑖 ≤ 𝑗 <
𝑘, it remains to permute the components 𝑖 and 𝑗 in 

https://doi.org/10.21123/bsj.2023.8786
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(𝑖, 𝑗, 𝑘) in order to have all the possible solutions of Eq. 20 (or Eq. 12)) with 𝑖, 𝑗, 𝑘 ≥ 1

Results and Discussion 

Theorem 1: If (𝑥, 𝑦, 𝑝) = (𝐹𝑖 , 𝐹𝑗 , 𝐹𝑘) with 𝑖, 𝑗, 𝑘 ≥

1, then the solutions of Eq.12 are given by 

(𝑥, 𝑦, 𝑝)∈{(1, 1, 2), (1, 2, 5), (2, 1, 5), (2, 3, 13),

 (3,2, 13)}. 

Theorem 2: Assume that 𝑥 = 𝐿𝑖, 𝑦 = 𝐿𝑗 and 𝑝 =

𝐿𝑘 such that 𝑖, 𝑗, 𝑘 ≥ 1, then Eq. 12 has no solution 

in the integers 𝑥, 𝑦 and 𝑝. 

Theorem 3: Suppose that (𝑥, 𝑦, 𝑝) = (𝑃𝑖, 𝑃𝑗  , 𝑃𝑘) 

with 𝑖, 𝑗, 𝑘 ≥ 1, then the complete set of solutions to 

Eq. 12 is as follows:  

(𝑥, 𝑦, 𝑝)∈{(1,1,2),(1,2,5),(2, 1, 5), (2, 3, 5),
(3,2,5)}. 

Theorem 4: Eq. 12 has no solution of the form 

(𝑥, 𝑦, 𝑝) = (𝑄𝑖 , 𝑄𝑗 , 𝑄𝑘) with 𝑖, 𝑗, 𝑘 ≥ 1 such that 

𝑥 = 𝑄𝑖 , 𝑦 = 𝑄𝑗 and 𝑝 = 𝑄𝑘. 

Theorem 5: Suppose that 𝑥 = 𝑀𝑖 , 𝑦 = 𝑀𝑗 and 𝑝 =

𝑀𝑘 with 𝑖, 𝑗, 𝑘 ≥ 1, then Eq. 12 has no solution of 

the form (𝑥, 𝑦, 𝑝) = (𝑀𝑖, 𝑀𝑗 , 𝑀𝑘). 

Theorem 6: Eq. 12 has no solution in 𝑥 = 𝑁𝑖 , 𝑦 =
𝑁𝑗 and 𝑝 = 𝑁𝑘, where 𝑖, 𝑗, 𝑘 ≥ 1. 

Theorem 7: The set of solutions to Eq.12 with 

𝑖, 𝑗, 𝑘 ≥ 1 and (𝑥, 𝑦, 𝑝) = (𝐷𝑖, 𝐷𝑗 , 𝐷𝑘)  is as 

follows: 

(𝑥, 𝑦, 𝑝)∈{(3, 10, 109), (10, 3, 109),
(10,33,1189), (33, 10, 1189)}. 

Theorem 8: Assume that 𝑥 = 𝐸𝑖 , 𝑦 = 𝐸𝑗 and 𝑝 =

𝐸𝑘 with 𝑖, 𝑗, 𝑘 ≥ 1, then Eq. 12 has no solutions of 

the form (𝑥, 𝑦, 𝑝) = (𝐸𝑖 , 𝐸𝑗  , 𝐸𝑘). 

Proposition 1: If (𝑥, 𝑦, 𝑝) = (𝐹𝑖, 𝐹𝑗 , 𝐹𝑘) with 

𝑖, 𝑗, 𝑘 ≥ 1, then the solutions to Eq. 13 are only 

given by (𝑥, 𝑦, 𝑝) = (1, 1, 2) and (2, 1, 5). 

Proposition 2: If (𝑥, 𝑦, 𝑝) = (𝐿𝑖, 𝐿𝑗 , 𝐿𝑘) with 

𝑖, 𝑗, 𝑘 ≥ 1 represents the solution to Eq. 13, then it 

has no such solutions. 

Proposition 3: If (𝑥, 𝑦, 𝑝) = (𝑃𝑖, 𝑃𝑗  , 𝑃𝑘) where 

𝑖, 𝑗, 𝑘 ≥ 1, then the solutions to Eq. 13 are given by 

(𝑥, 𝑦, 𝑝) ∈ {(1, 1, 2), (2, 1, 5)}. 

Proposition 4: Eq. 13 has no solution in 𝑥 =
𝑄𝑖 , 𝑦 = 𝑄𝑗 and 𝑝 = 𝑄𝑘, where 𝑖, 𝑗, 𝑘 ≥ 1. 

Proposition 5: Assume that 𝑥 = 𝑀𝑖, 𝑦 = 𝑀𝑗 and 

𝑝 = 𝑀𝑘 with 𝑖, 𝑗, 𝑘 ≥ 1, then Eq. 13 has no solution 

in 𝑥, 𝑦, and p. 

Proposition 6: If 𝑥 = 𝑁𝑖 , 𝑦 = 𝑁𝑗 and 𝑝 = 𝑁𝑘 with 

𝑖, 𝑗, 𝑘 ≥ 1 are the components of the solution 

(𝑥, 𝑦, 𝑝) to Eq. 13, then it has no such solution. 

Proposition 7: Eq. 13 has no solution of the form 

(𝑥, 𝑦, 𝑝) = (𝐷𝑖, 𝐷𝑗, 𝐷𝑘) with 𝑖, 𝑗, 𝑘 ≥ 1. 

Proposition 8: Eq. 13 is not solvable in the integers 

𝑥 = 𝐸𝑖 , 𝑦 = 𝐸𝑗 and 𝑝 = 𝐸𝑘 with 𝑖, 𝑗, 𝑘 ≥ 1. 

Proofs  

Proof of Theorem 1: From the main approach 

section presented in Section 3, the first step is to 

obtain an upper bound for 𝑖 in the equation 

𝐹𝑘 = 𝐹𝑖
2 + 𝐹𝑗

2,                                                      24                                        

for 𝑖, 𝑗, 𝑘 ≥ 2, since 𝐹1 = 𝐹2 = 1 so 𝑖 ≥ 2 is 

assumed. The following summarizes the steps for 

obtaining this bound under the condition that 𝑖 ≤
𝑗 < 𝑘: 

 Dividing Eq. 24 by 𝐹𝑗 gives 

𝐹𝑘

𝐹𝑗
=

𝐹𝑖
2

𝐹𝑗
+ 𝐹𝑗 . 

 Since 𝑖 ≤ 𝑗; that is, 𝐹𝑖 ≤ 𝐹𝑗 , so 

𝐹𝑘

𝐹𝑗
≤ 𝐹𝑖 + 𝐹𝑗.                                              25                             

 Substituting inequality 14 and (identity 6 or 10 with 

(𝛼1, 𝛽1) = ((1 + √5)/2, (1 − √5)/2)) in 

inequality 25 gives that 

https://doi.org/10.21123/bsj.2023.8786
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𝛼1
𝑘 − 𝛽1

𝑘 ≤ (𝛼1
𝑗

− 𝛽1
𝑗
)(𝛼1

𝑖−1 + 𝛼1
𝑗−1

)

≤ 𝛼1
𝑖+𝑗−1

+ 𝛼1
2𝑗−1

− 𝛽1
𝑗
𝛼1

𝑖−1

− 𝛽1
𝑗
𝛼1

𝑗−1
 . 

 From the fact that 𝛽1 =
−1

𝛼1
  and the 

ssumption of 𝑖 ≤ 𝑗 < 𝑘, the latter inequality leads to 

𝛼1
𝑘 ≤ 4𝛼1

2𝑗−1
±

1

𝛼1
𝑖 .                                              26                                                          

 Now, let’s take the absolute value of 

inequality 26 gives 

|𝛼1
𝑘| ≤ |4𝛼1

2𝑗−1
| + |

1

𝛼1
𝑖

|. 

Hence, 

𝛼1
𝑘 ≤

1

𝛼1
𝑖 (5𝛼1

2𝑗+𝑖−1
 ) .                               27 

as 1 < 𝛼1
2𝑗+𝑖−1

. 

 Dividing inequality 27 by 𝛼1
2𝑗+𝑖−1

 gives 

𝛼1
𝑘−2𝑗−𝑖+1

≤
5

𝛼1
𝑖
, 

which can be written as 

                                                               |𝛼1
𝑖 | ≤

|
5

𝛼1
𝐼 −2.5

|,                                        28 

where 𝐼 = 𝑘 − 2𝑗 − 𝑖 + 1. 

 Suppose that 

𝐵 = min
𝐼∈𝑍

 |𝛼1
𝐼 − 2.5|. 

–  If 𝐼 = 0, then 

𝐵 = 1.5. 

– If 𝐼 ≥ 1, then 𝛼1
𝐼 ≥ 𝛼1

1 > 1.618. This 

implies that 

𝐵 > 0.882. 

– Similarly, if 𝐼 ≤ −1 then 

𝐵 > 1.882. 

This gives that 𝐵 ≥ 0.882. Therefore, inequality 28 

gives that 

𝛼1
𝑖 <

5

𝐵
<

5

0.882
<  5.669,  

which implies that 

𝑖 ≤
𝑙𝑛(5.669)

𝑙𝑛(𝛼1)
<

𝑙𝑛(5.669)

𝑙𝑛(1.618)
< 3.606.  

Hence, 𝑖 ≤ 3. 

According to the second step in our main approach, 

substituting each of the values of 𝑖 such that 2 ≤
𝑖 ≤ 3 in Eq. 24 is performed to change it with 

respect to 𝑗 and 𝑘. This can be summarized in the 

following steps: 

− For 𝑖 = 2, the following Eq.  is obtained 

𝐹𝑘 = 𝐹𝑗
2 + 1.                                        29  

− For 𝑖 = 3, then 

𝐹𝑘 = 𝐹𝑗
2 + 4.                                          30                                           

Finally, the values of 𝑗 and 𝑘 corresponding to each 

value of 𝑖 ∈ {2, 3} must be obtained. 

 The substitution of Eq. 29 in identity 5 is applied to 

get the elliptic curves 

𝑌2 = 𝑋3 + 10𝑋2 + 45𝑋 and 𝑌2 = 𝑋3 + 10𝑋2 +
5𝑋, 

where 𝑋 = 5𝑥1
2 such that 𝑥1 = 𝐹𝑗 . By the 

SageMath function integral points (), the following 

points are obtained 

(𝑋, 𝑌 )∈{(−9, 6), (−5, 10), (−1, 2), 

(0,0),(1, 4), (5, 20), (20, 110)}. 

Since the positive values of 𝑋 are needed, then only 

the values of  𝑋 ∈ {1, 5, 20} are considered. 

– For 1 = 𝑋 = 5𝑥1
2 = 5𝐹𝑗

2; that is impossible. 

– If 5 = 5𝐹𝑗
2, then 𝐹𝑗

2 = 1. Therefore, 𝑗 = 2. By 

substituting 𝑗 = 2 in Eq. 29, then 𝐹𝑘 = 𝐹2
2 + 1 = 2 
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which gives 𝑘 = 3. Hence, the corresponding 

solution of Eq. 12 for (𝑖, 𝑗, 𝑘) = (2, 2, 3), with 𝑖 ≤
𝑗 < 𝑘 is (𝑥, 𝑦, 𝑝) = (𝐹2, 𝐹2, 𝐹3) = (1, 1, 2). 

– Finally, if 𝑋 = 20, then 𝐹𝑗
2 = 4. This leads 

to 𝑗 = 3. Similarly, the corresponding solution is 

(𝑥, 𝑦, 𝑝) = (1, 2, 5). 

 Secondly, combining Eq. 30 with identity 5 

gives the elliptic curves 

𝑌2 = 𝑋3 + 20𝑋2 + 420𝑋 and 𝑌2 = 𝑋3 + 20𝑋2 +
380𝑋, 

where 𝑋 = 5𝑥1
2 such that 𝑥1 = 𝐹𝑗 . Similarly, the 

following Sage Math function: integral points () 

gives that 

𝑋 ∈ {5, 20, 21, 45, 76, 1520}. 

As done in the previous case, the solutions 𝑋 ∈

{5, 20, 45} are gotten for 𝑋 = 5𝐹𝑗
2. 

– For 5 = 5𝐹𝑗
2 , then 𝐹𝑗

2 = 1. Hence, 𝑗 = 2, 

and this must be eliminated since gives 𝑖 = 3 with 

the assumption that 𝑖 ≤ 𝑗 <  𝑘. 

– For 𝑋 = 20, then 𝐹𝑗 = 2. Thus, 𝑗 = 3. 

Again, substituting 𝑗 = 3 in Eq. 30 gives 𝐹𝑘 = 8, 

which gives no solution. 

– Finally, for 𝑋 = 45 then 𝑗 = 4 which 

implies that 𝐹𝑘 = 13. Thus, 𝑘 = 7. The 

corresponding solution to Eq. 12 under the 

condition 𝑖 ≤ 𝑗 < 𝑘 is (𝑥, 𝑦, 𝑝) = (2, 3, 13). 

According to the last step in the main approach, the 

permutation of the first two components in the 

following solutions is applied 

(𝑥, 𝑦, 𝑝) ∈ {(1, 1, 2), (1, 2, 5), (2, 3, 13)} 

to obtain the complete set of solutions to Eq. 12 

with 𝑖, 𝑗, 𝑘 ≥ 2, which is given by 

(𝑥, 𝑦, 𝑝)∈{(1, 1, 2), (1, 2, 5), 

(2, 1, 5), (2, 3, 13), (3,2, 13)}. 

Hence, the proof of Theorem 1 is achieved. 

Proof of Theorem 2: To begin the proof, it is 

necessary to find an upper bound for 𝑖 in the 

equation 

𝐿𝑘 = 𝐿𝑗
2 + 𝐿𝑖

2,                                                         31 

where 𝑖, 𝑗, 𝑘 ≥ 1 under the the condition that 𝑖 ≤
𝑗 < 𝑘. First, Eq.31 is divided by 𝐿𝑗 to obtain 

𝐿𝑘

𝐿𝑗
=

𝐿𝑖
2

𝐿𝑗
+ 𝐿𝑗. 

Hence,  

 
𝐿𝑘

𝐿𝑗
≤  𝐿𝑖 +  𝐿𝑗.                                                        32                             

since 𝑖 ≤ 𝑗. Subsequently, it can be determined that 

𝛼1
𝑘 + 𝛽1

𝑘 ≤ (𝛼1
𝑗

+ 𝛽1
𝑗
)(𝛼1

𝑖+1 + 𝛼1
𝑗+1

 ) ≤ 𝛼1
𝑖+𝑗+1

 

+𝛼1
2𝑗+1

+ 𝛽1
𝑗
𝛼1

𝑖+1 + 𝛽1
𝑗
𝛼1

𝑗+1
 , 

by substituting inequality 15 and (identity 7 or 10 in 

the case of Lucas sequence) in inequality 32. By 

using the condition that 𝑖 ≤ 𝑗 < 𝑘 with the fact 

𝛽1 =
−1

𝛼1
 in the latter inequality, it can be deduced 

that 

|𝛼1
𝑘| ≤ |4𝛼1

2𝑗+1
| + |

1

𝛼1
𝑖

|. 

It follows that 

𝛼1
𝑘 ≤

1

𝛼1
𝑖

(5𝛼1
2𝑗+𝑖+1

 ). 

Dividing the last inequality by 𝛼1
2𝑗+𝑖+1

 , the result 

shows that 

𝛼1
𝐼 ≤

5

𝛼1
𝑖 ,  

where 𝐼 = 𝑘 − 2𝑗 − 𝑖 − 1 ∈ 𝑍. By following the 

same approach in the proof of Theorem 1, it is 

indeed obtained that 𝑖 ≤ 3. The values of 𝑖 ∈
{1, 2, 3} are substituted into Eq. 31 in the following: 

 If 𝑖 = 1, then   

𝐿𝑘 = 𝐿𝑗
2 + 1.                                              33 
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 If 𝑖 = 2, that gives                                     

𝐿𝑘 = 𝐿𝑗
2 + 9.                                             34 

 Finally, if 𝑖 = 3, then 

𝐿𝑘 = 𝐿𝑗
2 + 16.                                           35 

The values of  𝑗 and 𝑘 that correspond to each value 

of 𝑖 need to be determined. 

∆ The combination of Eq. 33 with identity 5 

yields the elliptic curves 

𝑌2 = 𝑋3 + 10𝑋2 + 125𝑋 and 𝑌2 = 𝑋3 + 10𝑋2 −
75𝑋, 

where 𝑋 = 5𝑥1
2 such that 𝑥1 = 𝐿𝑗 . The points for 

(𝑋, 𝑌 ) ∈ {(−15, 0), (0, 0),    (5, 0)} are obtained 

using the SageMath function integral_points(). In 

the search for the positive of 𝑋, the value of 𝑋 = 5 

is selected. Since 5 = 𝑋 = 5𝑥1
2 = 𝐿𝑗

2, then 𝐿𝑗 = 1. 

So, 𝑗 = 1. By substituting 𝑗 = 1 in Eq. 33, then 

𝐿𝑘 = 𝐿1
2 + 1 = 2 which gives 𝑘 = 0. Since 𝑖 < 𝑗, 

this solution is excluded. 

∆ Next, substituting Eq. 34 in identity 5 gives 

the elliptic curves 

𝑌2 = 𝑋3 + 90𝑋2 + 2125𝑋 and 𝑌2 = 𝑋3 + 90𝑋2 +
1925𝑋, 

such that 𝑋 = 5𝑥1
2 and 𝑥1 = 𝐿𝑗 . Similarity, the 

SageMath function integral_points(), leads to 𝑋 ∈
{45, 27720, 145968900}. As done in the previous 

case, 45 = 𝑋 = 𝐿𝑗
2 since it implies a solution. 

Hence, 𝐿𝑗 = 3. Thus, 𝑗 = 2. Substituting 𝑗 = 2 in 

Eq. 34 implies that 𝐿𝑘 = 18, which offers no 

solution. 

∆ Again, the combination of  Eq. 34 and 

identity 5 generates the elliptic curves 

𝑌2 = 𝑋3 + 160𝑋2 + 6500𝑋 and 𝑌2 = 𝑋3 +
160𝑋2 + 6300𝑋, 

where 𝑋 = 5𝑥1
2 such that 𝑥1 = 𝐿𝑗 . Then 𝑋 = 30 

and 210, and these clearly give no solution. 

As a result, Eq. 12 with 𝑖, 𝑗, 𝑘 ≥ 1 has no solution, 

and the proof of Theorem 2 is completed. 

Proof of Theorem 3: An upper bound for 𝑖 in the 

equation 

𝑃𝑘 = 𝑃𝑗
2 + 𝑃𝑖

2                                                         36 

with 𝑖, 𝑗, 𝑘 ≥ 1, is determined first. Using the same 

approach used in the proofs of Theorems 1 and 2 

with the assumption of 1 ≤ 𝑖 ≤ 𝑗 < 𝑘 gives that 

|𝛼2
𝑖 | ≤ |

5

𝛼2
𝐼 −2.5

|.                                                     37 

Assume that 

𝐵 = min
𝐼∈𝑍

|𝛼2
𝐼 − 2.5|. 

− If 𝐼 = 0, that gives 𝐵 = 1.5. 

− If 𝐼 ≥ 1, then 𝛼2
𝐼 ≥ 𝛼2

1 > 2.414. This means that 

𝐵 > 0.086. 

− Similarly, if 𝐼 ≤ −1 then 𝐵 > 2.086. 

As a result, 𝐵 = 0.086 can be obtained. Thus, 

inequality 37 indicates that 𝛼2
𝑖 < 58.139, and it 

means that 

𝑖 ≤
𝑙𝑛(58.139)

𝑙𝑛(𝛼2)
<

𝑙𝑛(58.139)

𝑙𝑛(2.414)
< 4.61.  

Therefore, 𝑖 ≤ 4. Next, the values of 𝑗 and 𝑘 

corresponding to the values of 1 ≤ 𝑖 ≤ 4 in Eq. 36 

with 𝑖, 𝑗, 𝑘 ≥ 1 are determined. The first step is 

determining the values of 𝑋 derived from the 

integral points (𝑋, 𝑌) of the curves presented by 23. 

Details of the calculations for the solutions 

(𝑥, 𝑦, 𝑝) = (𝑃𝑖 , 𝑃𝑗 , 𝑃𝑘) of Eq. 12 under the 

assumption that 𝑖 ≤ 𝑗 < 𝑘 are given in (Table 1), 

with an emphasis on the triples [1, 𝐵1, 𝐴1𝐶1] 
representing the coefficients of elliptic curves of 

form 23 such that the values 𝑋 = 𝐴1𝑥1
2 with 𝑥1 =

𝑃𝑗 (Note that the third column contains only the 

positive values of 𝑋 for which 𝑋 = 𝐴1𝑥1
2 = 𝐴1𝑃𝑗

2  

provides an integer value for 𝑥1 that represents a 

Pell-Lucas number). 
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Table 1. Detail of computations of the solutions 

(𝑷𝒊, 𝑷𝒋 , 𝑷𝒌) of Eq.12. 

i [𝟏, 𝑩𝟏, 𝑨𝟏𝑪𝟏] x (𝑿𝟏, 𝒋) K {(𝒙, 𝒚, 𝒑)} 

1 [1, 16, 96] 

[1, 16, 32] 

8 

32 

(1, 1) 

(2, 2) 

2 

3 

{(1, 1, 2)} 

{(1, 2, 5)} 

2 [1, 64, 1056] 

[1, 64, 992] 

- 

8 

200 

- 

(1, 1) 

(5, 3) 

- 

2 

5 

{} 

{(1, 1, 2)} 

{(2, 5, 29)} 

3 [1, 400, 

40032] 

[1, 400, 

39968] 

- 

32 

1152 

- 

(2, 2) 

(12, 4) 

- 

5 

7 

{} 

{ignored} 

{ignored} 

4 [1, 2304, 

1327168 

[1, 2304, 

1327072] 

- 

200 

6728 

- 

(5, 3) 

(29, 5) 

- 

7 

9 

{} 

{ignored} 

{ignored} 

Finally, the following set of solutions of Eq. 12, 

with 𝑖, 𝑗, 𝑘 ≥ 1, are obtained by permuting the first 

two components in the solutions (𝑥, 𝑦, 𝑝) =

(𝑃𝑖 , 𝑃𝑗, 𝑃𝑘):  

(𝑥, 𝑦, 𝑝) = (𝑃𝑖 , 𝑃𝑗, 𝑃𝑘) ∈ {(1, 1, 2) 

,(1, 2, 5), (2, 1, 5), (2, 3, 5), (3, 2, 5)}. 

So, the proof of Theorem 3 is totally completed. 

Proof of Theorem 4: The proof begins by 

determining an upper bound for 𝑖 in the equation 

𝑄𝑘 = 𝑄𝑗
2 + 𝑄𝑖

2,                                                       38 

such that 𝑖, 𝑗, 𝑘 ≥ 1 and 𝑖 ≤ 𝑗 < 𝑘. By following the 

argument applied in the proofs of the previous 

theorems, the solutions of Eq. 38 are first found 

under the condition that 1 ≤ 𝑖 ≤ 𝑗 < 𝑘. Dividing 

the latter equation by 𝑄𝑗 with using the fact of 

inequality 17 and Binet’s formula of Pell-Lucas 

sequence presented in (7 or 11) imply that 

 𝛼2
𝑘 + 𝛽2

𝑘 ≤ (𝛼2
𝑗

+ 𝛽2
𝑗
)(𝛼2

𝑖+1 + 𝛼2
𝑗+1

 )≤ 𝛼2
𝑖+𝑗+1

+

𝛼2
2𝑗+1

+ 𝛽2
𝑗
𝛼2

𝑖+1 + 𝛽2
𝑗
𝛼2

𝑗+1
 . 

It follows that 

|𝛼2
𝑘| ≤ |4𝛼2

2𝑗+1
| + |

1

𝛼2
𝑖 |.  

Therefore, 

𝛼2
𝑘−2𝑗−𝑖−1

≤
5

𝛼2
𝑖  .  

Thus, it can be concluded that 

|𝛼2
𝑖 | ≤

5

𝐵
 , 

where 𝐵 = min
𝐼∈𝑍

|𝛼2
𝐼 − 2|  such that 𝐼 = 𝑘 − 2𝑗 −

𝑖 − 1. In fact, 𝐵 ≥ 0.414 is obtained. So, the last 

inequality gives that 

𝑖 ≤
𝑙𝑛(12.077)

𝑙𝑛(2.414)
< 2.826.  

This shows 𝑖 ≤ 2. The values of 𝑗 and 𝑘 

corresponding to 𝑖 ∈ {1, 2} can be found by 

plugging the values of 𝑖 in Eq. 38.  

 If 𝑖 = 1, that gives 

𝑄𝑘 =  𝑄𝑗
2 + 4. 

The substitution of the last equation in identity 5 is 

applied to get the elliptic curves  

𝑌2 = 𝑋3 + 64𝑋2 + 800𝑋 and 𝑌2 = 𝑋3 + 64𝑋2 +
480𝑋, 

with 𝑋 = 8𝑥1
2 and 𝑥1 = 𝑄𝑗 . Using the SageMath 

function integral_points() gives 𝑋 ∈ {25, 32}. For 

𝑋 = 8𝑄𝑗
2 = 25 or 32, no solution exists. 

 If 𝑖 = 2, then 

𝑄𝑘 = 𝑄𝑗
2 + 36. 

Now, the combination of the latter equation and 

identity 5 generates the elliptic curves 

𝑌2 = 𝑋3 + 576𝑋2 + 83200𝑋 and 𝑌2 = 𝑋3 +
576𝑋2 + 82688𝑋, 
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where 𝑋 = 8𝑥1
2 such that 𝑥1 = 𝑄𝑗 . Thus, 𝑋 = 260 

and 320; this gives no solution. 

Hence, Eq. 12 with 𝑖, 𝑗, 𝑘 ≥ 1 has no solutions, and 

this proves Theorem 4. 

Proof of Theorem 5: To start the proof, an upper 

bound for 𝑖 in the Eq.  

𝑀𝑘 = 𝑀𝑗
2 + 𝑀𝑖

2                                                      39 

Must be obtained, where 𝑖, 𝑗, 𝑘 ≥ 1, and 𝑖 ≤ 𝑗 < 𝑘. 

Using 𝑖 ≤ 𝑗  and dividing Eq. 39 by 𝑀𝑗, it can be 

found that  

𝑀𝑘

𝑀𝑗
≤ 𝑀𝑖 + 𝑀𝑗.                                                        40 

Thus, it follows that 

𝛼𝑘 − 𝛽𝑘 ≤ (𝛼𝑗 − 𝛽𝑗)(2𝛼𝑖 + 2𝛼𝑗) ≤ 2𝛼𝑖+𝑗 +
2𝛼2𝑗 − 2𝛽𝑗𝛼𝑖 − 2𝛽𝑗𝛼𝑗, 

which can be obtained by combining inequality 18 

with (identity 6 with (𝛼, 𝛽) = ((3 + √5)/2, (3 −

√5)/2)) in inequality 40. Substituting the 

assumption 𝑖 ≤ 𝑗 < 𝑘 with the fact 𝛽 =
−1

𝛼
 in the 

later inequality gives that 

|𝛼𝑘| ≤ |8𝛼2𝑗| + |
1

𝛼𝑖
|. 

Hence, 

𝛼𝑘 ≤
1

𝛼𝑖 (9𝛼2𝑗+𝑖).  

So, dividing the last inequality by 𝛼2𝑗+𝑖 gives 

𝛼𝑘−2𝑗−𝑖 ≤
9

𝛼𝑖
. 

This can be written as 

|𝛼𝑖| ≤ |
9

𝛼𝐼−2
|                                                          41 

such that 𝐼 = 𝑘 − 2𝑗 − 𝑖. 

Now, let 

𝐵 = min
𝐼∈𝑍 

|𝛼𝐼 − 2|.  

− If 𝐼 = 0, then 𝐵 = 1. 

− If 𝐼 ≥ 1, then 𝛼𝐼 ≥ 𝛼1 > 2.618. Thus, 𝐵 > 0.618. 

− Similarly, if 𝐼 ≤ −1 then 𝐵 > 2.118. This gives 

that 𝐵 ≥ 0.618. Thus, inequality 41 gives that 

𝑖 <
𝑙𝑛(14.563)

𝑙𝑛(2.618)
< 2.783. 

Therefore, 𝑖 ≤ 2. The next step is substituting the 

values of 𝑖 in Eq. 39 to determine the values of j and 

k corresponding to 𝑖 = 1 and 2. 

∆ If 𝑖 = 1, the following Eq. is obtained 

𝑀𝑘 = 𝑀𝑗
2 + 1. 

The latter equation is then substituted in identity 5, 

resulting in the elliptic curve 

𝑌2 = 𝑋3 + 10𝑋2 + 45𝑋 

with 𝑋 = 5𝑥1
2 and 𝑥1 = 𝑀𝑗 . By using the Sage 

Math function integral points (), it leads to (𝑋, 𝑌 ) =
(0, 0). Therefore, no has solution. 

∆ If 𝑖 = 2, then 

𝑀𝑘 = 𝑀𝑗
2 + 9. 

Finally, the last equation is combined with identity 

5 to obtain the equation 

𝑌2 = 𝑋3 + 90𝑋2 + 2045𝑋, 

where 𝑋 = 5𝑥1
2 such that 𝑥1 = 𝑀𝑗 . The result is 

𝑋 = 0, but once again there is no solution. 

As a consequence, Eq. 12 with 𝑖, 𝑗, 𝑘 ≥ 1 has no 

solution, and the proof of Theorem 5 is 

accomplished. 

Proof of Theorem 6: Once more, the proof begins 

with determining the upper bound of 𝑖 in the 

equation 

𝑁𝑘 = 𝑁𝑗
2 + 𝑁𝑖

2,                                                      42 

for 𝑖, 𝑗, 𝑘 ≥ 1. Following the same strategy used in 

the proofs of the previous theorems with the 

assumption of 1 ≤ 𝑖 ≤ 𝑗 < 𝑘 gives that 
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𝛼𝑖 ≤
9

𝐵
,                                                              43 

where 𝐵 = min
I∈Z

|𝛼𝐼 − 2.5| such that 𝛼 = (3 +

√5)/2. 

− If I = 0, this means that B = 1.5. 

− If 𝐼 ≥ 1 then 𝛼𝐼 ≥ 𝛼1 > 2.618. It follows that 𝐵 >
0.118. 

− Similarly, if 𝐼 ≤ −1 then 𝐵 > 2.118. 

Therefore, 𝐵 > 0.118. As a result, inequality 43 

shows that 𝛼𝑖 < 76.271, which implies that 

𝑖 ≤
𝑙𝑛(76.271)

𝑙𝑛(𝛼)
<

𝑙𝑛(76.271)

𝑙𝑛(2.618)
< 4.503.  

Hence, 𝑖 ≤ 4. The next step is finding the values of 

𝑗 and 𝑘 that correspond to the values of 𝑖 ∈
{1, 2, 3, 4} with 𝑖, 𝑗, 𝑘 ≥ 1. Now, the values of 𝑋 are 

determined from the integral points (𝑋, 𝑌) of the 

curves shown in 23. The specifics of calculations 

for the solutions (𝑥, 𝑦, 𝑝) = (𝑁𝑖 , 𝑁𝑗 , 𝑁𝑘) of Eq. 12 

under the assumption of 1 ≤ 𝑖 ≤ 𝑗 < 𝑘 are given in 

(Table 2), emphasizing that the triples [1, 𝐵1, 𝐴1𝐶1] 
representing the coefficients of elliptic curves of 

form 23 such that the values of 𝑋 = 𝐴1𝑥1
2  with 

𝑥1 = 𝑁𝑗.  

Table 2. Detail of computations of the solutions 

(𝑵𝒊, 𝑵𝒋, 𝑵𝒌) of Eq.12. 

i [𝟏, 𝑩𝟏, 𝑨𝟏𝑪𝟏] X (𝒙𝟏, 𝒋) k {(𝒙, 𝒚, 𝒑)} 

1 [1, 90, 2125] 0 - - {} 

2 [1, 490, 

60125] 

0 - - {} 

3 [1, 3240, 

2624500] 

0 

45125 

- 

- 

- 

- 

{} 

{} 

4 [1, 22090, 

121992125] 

0 - - {} 

So, Eq. 12 with 𝑖, 𝑗, 𝑘 ≥ 1 has no solution, and 

Theorem 6 has been proved. 

Proof of Theorem 7: Similarly, an upper bound is 

obtained for 𝑖 (with 1 ≤ 𝑖 ≤ 𝑗 < 𝑘) in the Eq. 

𝐷𝑘 = 𝐷𝑗
2 + 𝐷𝑖

2.                                                       44 

Here is a summary of the steps required to obtain 

this bound: 

 First, Eq. 44 is divided by 𝐷𝑗 to get 

𝐷𝑘

𝐷𝑗
=

𝐷𝑖
2

𝐷𝑗
+ 𝐷𝑗. 

As 𝑖 ≤ 𝑗, it can be concluded that 

𝐷𝑘

𝐷𝑗
≤ 𝐷𝑖 + 𝐷𝑗.                                      45 

 By substituting inequality 18 and identity 6 into 

inequality 45 (with (𝛼, 𝛽) = ((3 +  √13)/2, (3 −

√13)/2)) gives that 

𝛼𝑘 − 𝛽𝑘 ≤ (𝛼𝑗 − 𝛽𝑗)(2𝛼𝑖 + 2𝛼𝑗)≤2𝛼𝑖+𝑗 +

2𝛼2𝑗 − 2𝛽𝑗𝛼𝑖 − 2𝛽𝑗𝛼𝑗 . 

 From the assumption of 𝑖 ≤ 𝑗 < 𝑘 with 𝛽1 =
−1

𝛼1
, the 

latter inequality leads to 

𝛼𝑘 ≤ 8𝛼2𝑗 ±
1

𝛼𝑖
 . 

 Now, let’s apply the absolute value to the latter 

inequality to get 

|𝛼𝑘| ≤ |8𝛼2𝑗| + |
1

𝛼𝑖
|. 

Therefore, 

𝛼𝑘 ≤
1

𝛼𝑖 (9𝛼2𝑗+𝑖)                                       46 

as 1 < 𝛼2𝑗+𝑖. 

 Dividing inequality 46 by 𝛼2𝑗+𝑖 gives 

𝛼𝑘−2𝑗−𝑖 ≤
9

𝛼𝑖 . 

After simplifying, it can be deduced that 𝛼𝑖 <
45.455, resulting in 𝑖 < 3.195. 
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Thus, 𝑖 ≤ 3. According to the second step of the 

main approach, each value of 𝑖 such that 𝑖 ∈
{1, 2, 3} in Eq.44 must be replaced; namely, 

− For 𝑖 = 1, the following Eq. is obtained 

𝐷𝑘 = 𝐷𝑗
2 + 1.                                      47 

− For 𝑖 = 2, then 

𝐷𝑘 = 𝐷𝑗
2 + 9.                                      48 

 Finally, if 𝑖 = 3 then 

𝐷𝑘 = 𝐷𝑗
2 + 100.                                 49 

The values of 𝑗 and 𝑘 that correspond 𝑖 = 1, 2, and 

3 are then determined. 

∆ Firstly, Eq. 47 is combined with identity 5 

to obtain the elliptic curves 

𝑌2 = 𝑋3 + 26𝑋2 + 221𝑋 and 𝑌2 = 𝑋3 + 26𝑋2 +
117𝑋, 

where 𝑋 = 13𝑥1
2 such that 𝑥1 = 𝐷𝑗 . Using the Sage 

Math function integral points () gives that 

(𝑋, 𝑌)∈{(−13, 26), (−9, 18), (0, 0), (1, 12),

 (117, 1704)}. 

𝑋 = 1 and 117 are chosen since only positive 

values of 𝑋 are being searched for. 

– For 𝑋 = 1 and = 13𝑥1
2 = 13𝐷𝑗

2 ; that is 

impossible. 

– If 117 = 13𝐷𝑗
2 , then 𝐷𝑗

2 = 9. Hence, 𝑗 =

2. Substituting 𝑗 = 2 in Eq.47 results in 𝐷𝑘 = 𝐷2
2 +

1 = 10, which yields no solution. 

∆ Next, substituting Eq. 48 in identity 5 gives 

the elliptic curves 

𝑌2 = 𝑋3 + 234𝑋2 + 13741𝑋 and 𝑌2 = 𝑋3 +
234𝑋2 + 13637𝑋, 

such that 𝑋 = 13𝑥1
2 and 𝑥1 = 𝐷𝑗 . Similarly, using 

Sage Math software gives that 

𝑋 ∈ {13, 1049, 1300, 122733}. 

Solutions for 𝑋 = 13𝐷𝑗
2 are obtained only when 

𝑋 = 13 and 1300. Thus, 

– If 𝑋 = 13, then 𝐷𝑗 = 1. Thus, 𝑗 = 1. 

Substituting 𝑗 = 1 in Eq. 48 results in 𝐷𝑘 = 10, and 

this has no solution. 

– Similarly, for 𝑋 = 1300, 𝑗 = 3 is obtained, 

implying that 𝐷𝑘 = 109. Hence, 𝑘 = 5. The 

corresponding solution to Eq. 12 with 𝑖 ≤ 𝑗 < 𝑘 is 

(𝑥, 𝑦, 𝑝) = (3, 10, 109). 

∆ Finally, combining Eq. 49 with identity 5 generates 

the elliptic curves 

𝑌2 = 𝑋3 + 2600𝑋2 + 1690052𝑋 and 𝑌2 = 𝑋3 +
2600𝑋2 + 1689948𝑋, 

where 𝑋 = 13𝐷𝑗
2. Here, it is obtained that 

𝑋∈{117, 1472, 3925, 14157,

 14444, 23552, 168994800}. 

Similarly, 𝑋 = 117 and 1472 are the only choices. 

– If 117 = 𝑋 = 13𝐷𝑗
2 , then 𝐷𝑗 = 3 and 𝑗 = 2. In this 

case, 𝑖 = 3, and it was assumed that 𝑖 ≤ 𝑗 < 𝑘, 

hence this solution is excluded. 

– For 𝑋 = 14157, then 𝐷𝑗 = 33. This leads to 𝑗 = 4 

and 𝑘 = 7. So, the corresponding solution is 

(𝑥, 𝑦, 𝑝) = (10, 33, 1189). 

The complete set of solutions to Eq. 12 with 

𝑖, 𝑗, 𝑘 ≥ 1 is obtained by permuting the first two 

components in the obtained solutions (𝑥, 𝑦, 𝑝) =

(𝐷𝑖, 𝐷𝑗, 𝐷𝑘) with 𝑖 ≤ 𝑗 < 𝑘, and it indeed is as 

follows: 

(𝑥, 𝑦, 𝑝) = (𝐷𝑖, 𝐷𝑗, 𝐷𝑘) ∈

{(3, 10, 109), (10, 3, 109),(10, 33, 1189),

 (33, 10, 1189)}. 

Thus, the proof of Theorem 7 is completed. 

Proof of Theorem 8: To start, an upper bound for 𝑖 
is determined in the equation 

𝐸𝑘 = 𝐸𝑗
2 + 𝐸𝑖

2,                                                       50 
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where 𝑖, 𝑗, 𝑘 ≥ 1 and 𝑖 ≤ 𝑗 < 𝑘. Again, dividing the 

latter equation by 𝐸𝑗 , using the fact of inequality 19 

and Binet's formula stated in 7 (with (𝛼, 𝛽) =

((3 + √13)/2, (3 − √13)/2)), leads to the 

conclusion that 

𝛼𝑘 + 𝛽𝑘 ≤ (𝛼𝑗 + 𝛽𝑗)(2𝛼𝑖 + 2𝛼𝑗) ≤ 2𝛼𝑖+𝑗 +

2𝛼2𝑗 + 2𝛽𝑗𝛼𝑖 + 2𝛽𝑗𝛼𝑗. 

Consequently, after some simplification, it is 

determined that 𝑖 ≤ 2. 

In order to determine the values of 𝑗 and 𝑘 

corresponding to the values of 𝑖 ∈ {1, 2}, the values 

of 𝑖 are substituted into Eq. 50 as follows: 

 If 𝑖 = 1, the following equation is obtained: 

𝐸𝑘 = 𝐸𝑗
2 + 9. 

Combining the above equation with identity 5 

yields the elliptic curves 

𝑌2 = 𝑋3 + 234𝑋2 + 14365𝑋 and 𝑌2 = 𝑋3 +
234𝑋2 + 13013𝑋, 

where 𝑋 = 13𝑥1
2 such that 𝑥1 = 𝐸𝑗 . Using the 

SageMath function integral_points() gives 𝑋 ∈
{−143, −91, 0}. Since only positive solutions are 

being sought, it is concluded that this equation is 

unsolvable. 

 If 𝑖 = 2, then 

𝐸𝑘 = 𝐸𝑗
2 + 121. 

Now, substituting this equation in identity 5 gives 

the equations 

𝑌2 = 𝑋3 + 33696𝑋2 + 283855780𝑋 and 𝑌2 =
𝑋3 + 33696𝑋2 + 283854428𝑋, 

with = 13𝐸𝑗
2 . 𝑋 ∈ {−1599, −1547,0} is obtained, 

and once again, no solution is found. 

Thus, Eq. 12 has no solutions of the form 

(𝑥, 𝑦, 𝑝) = (𝐸𝑖 , 𝐸𝑗 , 𝐸𝑘) with 𝑖, 𝑗, 𝑘 ≥ 1. Hence, 

Theorem 8 is proved. 

Proof of Proposition 1: According to the result of 

Theorem 1, the set of solutions to Eq. 12 is given by 

(assuming that 𝑖, 𝑗, 𝑘 ≥ 2). 

(𝑥, 𝑦, 𝑝) = (𝐹𝑖 , 𝐹𝑗, 𝐹𝑘) ∈ {(1, 1, 2), 

 (1, 2, 5), (2, 1, 5), (2, 3, 13), (3, 2, 13)}. 

To consider the set of solutions of Eq.13 where 

𝑖, 𝑗, 𝑘 ≥ 2, Eq. 13 can be rewritten as equation Eq. 

12, namely 𝑝 = 𝑥2 + 𝑌2 with 𝑌 = 𝑦2. Therefore, 

the solutions of Eq. 13 can be obtained from the 

above set of solutions to Eq. 12 with which the 

component 𝑦 can be square rooted. Hence, the 

solution to Eq. 13 gives by 

(𝑥, 𝑦, 𝑝) ∈ {(1, 1, 2), (2, 1, 5)}. 

As a result, Proposition 1 is completely proven. 

Proof of Proposition 3: The proof of this 

proposition can be followed from the result of 

Theorem 3, which presents the set of solutions to 

Eq.12 as 

(𝑥, 𝑦, 𝑝) = (𝑃𝑖 , 𝑃𝑗, 𝑃𝑘) ∈ {(1,1,2), 

(1,2,5),(2,1,5),(2,3,5), (3,2,5)}, 

where 𝑖, 𝑗, 𝑘 ≥ 1. To find the set of solutions to Eq. 

13 where (𝑥, 𝑦, 𝑝) = (𝑃𝑖, 𝑃𝑗 , 𝑃𝑘) and 𝑖, 𝑗, 𝑘 ≥ 1, this 

Eq. is rewritten as 𝑝 = 𝑥2 + 𝑌2 where 𝑌 = 𝑦2. 

Consequently, the solutions of Eq. 13 may be found 

from the above set of solutions (𝑥, 𝑦, 𝑝) of Eq. 12 

such that 𝑦 can be square rooted. Thus, the solutions 

to Eq. 13 are (𝑥, 𝑦, 𝑝) = (1, 1, 2) and (2, 1, 5). So, 

the proof of Proposition 3 is achieved. 

Proof of Proposition 7: Similarly, Eq. 13 can be 

rewritten as 𝑝 = 𝑥2 + 𝑌2 with 𝑌 = 𝑦2. According 

to the result of Theorem 7, the solutions (𝑥, 𝑦, 𝑝) =

(𝐷𝑖, 𝐷𝑗, 𝐷𝑘) with 𝑖, 𝑗, 𝑘 ≥ 1 of the equation 𝑝 =

𝑥2 + 𝑦2 are given by the set 

{(3, 10, 109), (10, 3, 109), 

(10, 33, 1189), (33, 10, 1189)}. 

Therefore, the triple (𝐷𝑖, 𝐷𝑗, 𝐷𝑘) (with 𝑖, 𝑗, 𝑘 ≥ 1) 

that satisfy Eq.13 can be obtained from the above 

set of solutions where the component 𝑦 can be 

square rooted. It is clear that there are no such 

solutions. So, Proposition 7 is completely proven. 
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Proof of Propositions 2,4,5,6 and 8: The proofs of 

these propositions can be obtained from the results 

of Theorems 2, 4, 5, 6, and 8, respectively. As there 

are no solutions for Eq. 12 where 

(𝑥, 𝑦, 𝑝)∈{(𝐿𝑖, 𝐿𝑗, 𝐿𝑘),(𝑄𝑖, 𝑄𝑗 , 𝑄𝑘  ), (𝑀𝑖, 𝑀𝑗, 𝑀𝑘),

 (𝑁𝑖 , 𝑁𝑗 , 𝑁𝑘), (𝐸𝑖 , 𝐸𝑗 , 𝐸𝑘  )}, 

it can be easily concluded that Eq. 13 does not have 

such solutions. Hence, the proofs for these 

propositions are obtained. 
 

Conclusion 

The equations  𝑝 = 𝑥2 + 𝑦2 and 𝑝 = 𝑥2 + 𝑦4, 

which have an infinite number of solutions over 

rational integers, have only a finite number of 

solutions (𝑥, 𝑦, 𝑝), where 𝑥, 𝑦, and 𝑝 are Lucas 

numbers of the first or second kind. 
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 حلول معادلة مربعي فيرما وتعميمها في متواليات لوكاس

 هاشم رحيم حيدر،  علي صحن عذاب

 قسم الرياضيات، كلية علوم الحاسوب والرياضيات، جامعة الكوفة، النجف، العراق.

 

 ةالخلاص

pفي أشكال خاصة مثل شكل مربع فيرما من المعروف أن هناك عدد غير منتهي من الأعداد الأولية  = x2 + 𝑦2 أو تعميمها الذي ،

pيحتوي على الشكل  = 𝑥2 + 𝑦4 حيث تمثل المتغيرات ،y , x  وp  بعض الأعداد الصحيحة. الهدف الرئيسي من هذه الورقة هو

ما تكون هذه المتغيرات مشتقة من متواليات تحتوي التحقق مما إذا كانت الاشكال أعلاه لا تزال تحتوي على العديد من الحلول أم لا عند

بتعبير أدق ، تركز هذه الورقة على التحقيق في حلول هذه الأشكال عندما تمثل هذه  على عدد غير منتهي من الأعداد الأولية.
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