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Introduction 

The impulsive differential equations (IDE) are 

always defined as ordinary differential equations in 

addition to the impulsive condition. The differential 

equation is a powerful tool for modeling the 

continuous events and processes seen in biology, 

population dynamics, biotechnologies, industrial 

robots, etc. It can be used, for instance, to describe 

some physiological phenomenon. The phenomenon 

of oscillations is observed in biological models for 

instance hematopoiesis model. Under some 

conditions, the solutions of the delay differential 

equation would exhibit non-oscillatory or oscillatory 

properties1-3. Since those phenomena can be 

conceived of as impulses, the IDE is more suitable 

than the conventional differential equation for 

simulating those discontinuous processes brought on 

by impulses4-7. 

 Many authors looked for sufficient conditions to 

ensure oscillatory property for different differential 

equations. As a result, they established a lot of papers 

for oscillatory theory for ordinary 8-11 and delay 

differential equations 12-15 The oscillation criteria of 

various IDE, including super-half-linear IDE, half-

linear impulsive differential equations, and mixed 

nonlinear differential equations, were obtained by 

researchers Ozbekler and Zafer, who published the 

impulsive differential equations as well 16. The 

methodology for analyzing impulsive differential 

equations were supplied by Agarwal, Karakoc, and 

Zafer, who also offered a summary of various 

findings on the oscillation of IDE up to 2010 (see 7, 

17). If the effects of impulses are taken into account, 

the question is whether or not the non-oscillatory or 
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oscillatory features of delay differential equations 

remain invariant. 

The most of parameters in real-world events are not 

fixed constants; instead, they are estimated using 

specific statistical techniques, and the estimates get 

better with time. Additionally, the environment's 

variability has a significant impact on some 

ecological and biological dynamical systems. Since 

the selection pressures acting on systems in an 

oscillating environment are different from those 

acting on systems in a stable environment, the 

impacts of a periodically fluctuating environment are 

particularly crucial for evolutionary theory. 

However, some dynamical systems exhibit rapid 

changes at specific points in their evolution, which 

serves to distinguish them from others. The weather, 

the availability of resources, the use of drugs or 

radiation in the treatment of hematological illnesses, 

food supplies, pharmacological factors, mating 

behaviors, and other seasonal influences are the main 

causes of this. Figure 1 illustrates how those events 

are based on the so-called IDE 18. 

 
 Figure 1. Effects of lifestyle on hematopoiesis 19. 

 

Impulsive hematopoiesis model is an extension of 

the traditional hematopoiesis model that incorporates 

the concept of rapid bursts or "impulses" of blood 

cell production in response to certain stimuli or 

conditions. This model suggests that under specific 

circumstances such as infection, injury, or stress, 

there can be a rapid expansion of certain blood cell 

lineages to meet increased demand or replenish 

depleted populations20. This study introduces an 

impulsive hematopoiesis model that oscillates with 

both positive and negative coefficients. Our research 

for the impulsive hematopoiesis model introduced 

linear impulses that are consistent with the use of 

drugs or radiation to treat hematological illnesses 

when the necessary circumstances for its oscillation 

are present. The term "impulsive hematopoiesis 

model" refers to stem cells that temporarily halt 

producing new blood cells. We focus on researching 

fixed moment type oscillation requirements for the 

impulsive hematopoiesis model with positive and 

negative coefficients to achieve this goal. Regarding 

the suggested model, new conclusions for 

requirements for oscillatory behavior of specific 

kinds of the first order were established.  

Mathematical Tools 

The impulsive hematopoiesis model of the positive 

and negative coefficients:    

ℏ′(𝑡) + 𝛿(𝑡)ℏ(𝑡) − 𝛽(𝑡)𝑉(ℏ(𝜏(𝑡))) = 0 , 𝑡 ≠ 𝑡𝑘   
 

ℏ(𝑡𝑘
+) + 𝑏𝑘ℏ(𝑡𝑘) = 𝑎𝑘 ℏ(𝑡𝑘)                    , 𝑡 = 𝑡𝑘    

}   𝑘

= 1,2, …                                     1 

where 𝑉 (ℏ(𝜏(𝑡))) =
1

1+(ℏ(𝜏(𝑡)))
𝑛 is the flux 

function,  𝑡𝑘
+ is the impulsive moment 

points and 𝛿, 𝛽 ∈ 𝐶([𝑡0, ∞); 𝑅+ ), and 𝜏(𝑡) ∈

𝐶([𝑡0, ∞); 𝑅), lim
𝑡→∞

𝜏(𝑡) = ∞, when 𝜏 is a strictly 

increasing function. The function 𝜏−1(𝑡) is the 

inverse of the function 𝜏(𝑡). Let's introduce an 

invariant oscillation transformation based on the 

analogous procedure in 4. 

ℏ(t) = 𝐻(𝑡) − Κ,                                 2 

when 𝐾 is the unique positive equilibrium point of 

Eq 1. ℏ(𝑡) oscillates about 𝐾 if and only if 𝐻(𝑡) 

oscillates about zero. Then, Eq 1 can be reduced to  

 

𝐻′(𝑡) + 𝛿(𝑡)𝐻(𝑡) − 𝜂(𝑡)𝐺(𝐻(𝜏(𝑡))) = 0, 𝑡 ≠ 𝑡𝑘

 
𝐻(𝑡𝑘

+) + 𝑏𝑘𝐻(𝑡𝑘) = 𝑎𝑘 𝐻(𝑡𝑘)               , 𝑡 = 𝑡𝑘     
}  𝑘

= 1,2, …                      3 

 

where  𝜂(𝑡)𝐺 (𝐻(𝜏(𝑡))) = 𝐾𝛿(𝑡) +

𝛽(𝑡)𝑉(ℏ(𝜏(𝑡))). 
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To obtain the desired outcomes, the following 

lemmas are essential6. 

Lemma 1: (i) Suppose that ℊ, ℎ: [𝑡0, ∞) → 𝑅 are 

continuous functions,  ℎ(𝑡) ≥ 𝑡 and  ℎ′(𝑡) ≥

0,ℊ(𝑡) ≥ 0 eventually for   𝑡 ≥ 𝑡0. If  

lim inf
𝑡→∞

∫ ℊ(𝑠)𝑑𝑠
ℎ(𝑡)

𝑡
>

1

𝑒
 ,                4 

then the inequality   𝑥′(𝑡) − ℊ(𝑡)𝑥(ℎ(𝑡)) ≥ 0     has 

no eventually positive solutions. 

(ii). Assume that ℊ, ℎ ∈ 𝐶[𝑡0, ∞) → [0, ∞), ℊ(𝑡) ≥

0, lim
𝑡→∞

ℎ(𝑡) = ∞ and   ℎ(𝑡) ≤ 𝑡. If 

lim inf
𝑡→∞

∫ ℊ(𝑠)𝑑𝑠 >
1

𝑒

𝑡

ℎ(𝑡)

,                             5 

 then the inequality   𝑥′(𝑡) + ℊ(𝑡)𝑥(ℎ(𝑡)) ≤ 0     has 

no eventually positive solutions. 

Lemma 2: Assume that 

I.  𝑓, ℊ, 𝑦, 𝜏, 𝛾 ∈ 𝐶([𝑡0, ∞); ℝ), 𝑓(𝑡) < 0, lim
t→∞

 𝑓(𝑡) 

exist, 0 < ℊ(𝑡) ≤ 1,    

             𝑡 >  𝜏(𝑡), 𝛾(𝑡) ≥ 𝑡, 𝑡0 ≤ 𝑡, lim
t→∞

 𝜏(𝑡) = ∞ 

and 

𝑦(𝑡) ≤ 𝑓(𝑡) + ℊ(𝑡) max{𝑥(𝑠): 𝜏(𝑡) ≤ 𝑠

≤ 𝛾(𝑡)} ,   𝑡 ≥ 𝑡0           6 

then  𝑦(𝑡) cannot be nonnegative for  𝑡 ≥ 𝑡1 ≥ 𝑡0. 

II. Assume that 𝑓, ℊ, 𝑥, 𝜏, 𝛾 ∈ 𝐶[[𝑡0, ∞); ℝ], 𝑓(𝑡) >

0, lim
t→∞

 𝑓(𝑡) exist,  

    ℊ(𝑡) ≥ 1, 𝜏(𝑡) < 𝑡, 𝛾(𝑡) ≥ 𝑡, 𝑡 ≥ 𝑡0, lim
t→∞

 𝜏(𝑡) =

∞ and 

𝑦(𝑡) ≥ 𝑓(𝑡) + ℊ(𝑡) min{𝑦(𝑠): 𝜏(𝑡) ≤ 𝑠 ≤ 𝛾(𝑡)} , 𝑡

≥ 𝑡0.                            7 

then  𝑦(𝑡) cannot be nonpositive for  𝑡 ≥ 𝑡1 ≥ 𝑡0. 

Results and Discussion 

In this work, the first order impulsive hematopoiesis 

model was investigated, to obtain sufficient 

conditions for oscillation of all solutions of the 

hematopoiesis model. 

The following lemmas are proven to have the main 

results.  

Lemma 3: Suppose that  𝐻(𝑡) is an eventually 

positive solution to Eq 3 such that: 

𝑊(𝑡) = 𝐻(𝑡) − ∫ 𝛿(𝑢)𝐻(𝑢)𝑑𝑢
𝜏(𝑡)

𝑡

,                   8 

where  𝑡𝑘  < 𝑡 <  𝜏(𝑡) ≤ 𝑡𝑘+1and 𝜏(𝑡𝑘) is not an 

impulsive point, in addition to: 

H1: G(H(u)) ≥ 𝛾1H(u), 𝛾1 > 0,  

H2: [𝛾1𝜂(𝑡) − 𝛿(𝜏(𝑡))(𝜏(𝑡))
′
] ≥ 0, 𝑡 ∈ (𝑡𝑘 , 𝑡𝑘+1], 

H3: There exist two sequences of positive real 

numbers 𝑎𝑘 and 𝑏𝑘 such that (𝑎𝑘 − 𝑏𝑘) ≥ 1  , 𝑘 =

1,2, …   where 𝑎𝑘 = 𝑎𝑖 ,𝑏𝑘 = 𝑏𝑖 and  𝜏(𝑡𝑘) = 𝑡𝑖 , 𝑖 <

𝑘, 

H4: lim
t→∞

sup (∫ 𝛿(𝑢)𝑑𝑢
𝑡𝑘

𝜏(𝑡𝑘)
) ≤ 1, 𝑡 ∈ (𝑡𝑘 , 𝑡𝑘+1],

𝑘 = 1,2,3 … . Then 𝑊(𝑡) is eventually positive and 

nondecreasing function.  

Proof:  Let  𝐻(𝑡)  be an eventually positive solution 

of Eq 3 which is  𝐻(𝑡) > 0, 𝐻(𝜏(𝑡)) > 0,  𝑎𝑛𝑑, 𝑡 ≥

𝑡0. Differentiate Eq 8 for every interval (𝑡𝑘 , 𝑡𝑘+1] 
where 𝑘 = 1,2,3 … and use Eq 3, we obtain 

𝑊′(𝑡) = 𝐻′(𝑡) − 𝛿(𝜏(𝑡))(𝜏(𝑡))′𝐻(𝜏(𝑡))

+  𝛿(𝑡)𝐻(𝑡)                 

= −𝛿(𝑡)𝐻(𝑡) + 𝜂(𝑡)𝐺(𝐻(𝜏(𝑡)))

− 𝛿(𝜏(𝑡))(𝜏(𝑡))′𝐻(𝜏(𝑡))

+  𝛿(𝑡)𝐻(𝑡)   

  = 𝜂(𝑡)𝐺 (𝐻(𝜏(𝑡))) − 𝛿(𝜏(𝑡))(𝜏(𝑡))
′
𝐻(𝜏(𝑡))   

≥ 𝛾1𝜂(𝑡)𝐻(𝜏(𝑡))  − 𝛿(𝜏(𝑡))(𝜏(𝑡))
′
𝐻(𝜏(𝑡))      

  ≥ [𝛾1𝜂(𝑡) − 𝛿(𝜏(𝑡))(𝜏(𝑡))
′
]𝐻(𝜏(𝑡)).                9 

Hence, 𝑊(𝑡) is a nondecreasing function for ∈
(𝑡𝑘 , 𝑡𝑘+1 ], 𝑘 = 1,2,3 … .  

To demonstrate that 𝑊(𝑡𝑘
+) ≥ 𝑊(𝑡𝑘) for k =

1,2,3 … In view of  0 < 𝑎𝑘 − 𝑏𝑘 ≤ 1  , 

https://doi.org/10.21123/bsj.2023.8796
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𝑘 = 1,2, … , we have from Eq 8 concerning the 

condition H3 when 𝜏(𝑡𝑘) = 𝑡𝑖 , 𝑖 < 𝑘, then:  

𝑊(𝑡𝑘
+) = 𝐻(𝑡𝑘

+) − ∫ 𝛿(𝑢)𝐻((𝑢))𝑑𝑢 
𝜏(𝑡𝑘)

𝑡𝑘

              

               = (𝑎𝑘 − 𝑏𝑘)𝐻(𝑡𝑘)

− ∫ 𝛿(𝑢)𝐻((𝑢))𝑑𝑢
𝜏(𝑡𝑘)

𝑡𝑘

    

               ≥ 𝐻(𝑡𝑘)  − ∫ 𝛿(𝑢)𝐻((𝑢))𝑑𝑢
𝜏(𝑡𝑘)

𝑡𝑘
                  

= 𝑊(𝑡𝑘)                   

Therefore, 𝑊(𝑡)  is nondecreasing on [𝑡0, ∞), 

  −∞ < lim
t→∞

 𝑊(𝑡) = 𝑙 ≤ ∞.  We claim that 𝑊(𝑡) ≥

0 for 𝑡 ∈ [𝑡0, ∞), otherwise 𝑊(𝑡) < 0. Since  𝑊(𝑡)  

is nonincreasing on [𝑡0, ∞), then lim
𝑡→∞

𝑊(𝑡) = 𝑙 <

0 and  𝑊(𝑡) ≤ 𝑙 . From Eq 8, we have 

 

𝐻(𝑡) ≤ 𝑙 + ∫ 𝛿(𝑢)𝐻((𝑢))𝑑𝑢
𝜏(𝑡𝑘)

𝑡𝑘

            

            ≤ 𝑙 + max
𝑡𝑘≤𝑠≤𝜏(𝑡𝑘)

𝐻(𝑠) ∫ 𝛿(𝑢)𝑑𝑢
𝜏(𝑡𝑘)

𝑡𝑘

    

≤ 𝑙 + max
𝑡𝑘≤𝑠≤𝜏(𝑡𝑘)

𝐻(𝑠) .                10  

According to Lemma 2, the above inequality cannot 

ultimately have a positive solution. This 

contradiction shows that 𝑊(𝑡) > 0 for 𝑡 ≠ 𝑡𝑘. Since 

𝑊(𝑡)  is nonincreasing, so 𝑊(𝑡𝑘) > 𝑊(𝑡) ≥ 0 for 

𝑡 ∈ (𝑡𝑘 , 𝑡𝑘+1].To prove 𝑊(𝑡) > 0 for t=𝑡𝑘. First, we 

demonstrate, 𝑊(𝑡𝑘) > 0 for 𝑘 = 1,2, …  . If that's 

not the case, then there are some 𝑚 ≥ 0 such 

that 𝑊(𝑡𝑚) = 0, and 𝑊(𝑡𝑚
+ ) ≤ 0.   

Then 𝑊(𝑡𝑚+1) = 0, integrating Eq 9 on (𝑡𝑚 , 𝑡𝑚+1] 
yield: 

𝑊(𝑡𝑚+1) = 𝑊(𝑡𝑚
+ )   

+ ∫ [𝛾1𝜂(𝑡)

𝑡𝑚+1

𝑡𝑚

− 𝛿(𝜏(𝑡))(𝜏(𝑡))
′
]𝐻(𝜏(𝑡)) 𝑑𝑢 

                   > 𝑊(𝑡𝑚
+ ) ≥ 𝑊(𝑡𝑚) = 0 .           

This contradiction demonstrates that 𝑊(𝑡𝑘) >

0 for 𝑘 = 1,2 …, as well as 𝑊(𝑡) ≥ 𝑊(𝑡𝑘+1) > 0, 

for 𝑡 ∈ (𝑡𝑘 , 𝑡𝑘+1], 𝑘 = 1,2, … . Thus, 𝑊(𝑡) > 0 

for 𝑡 ≥ 𝑡0. And the proof is finished.  

 

Lemma 4: Suppose that 𝐻(𝑡)  is an eventually 

positive bounded solution to Eq 3 and let 

𝑊(𝑡) = 𝐻(𝑡) + ∫ 𝛿(𝑢)𝐻((𝑢))𝑑𝑢
𝑡

𝜏(𝑡)

,             11 

 where  𝑡𝑘  <  𝜏(𝑡) < 𝑡 ≤ 𝑡𝑘+1and 𝜏(𝑡𝑘) is not 

impulsive point, let H4 hold, in addition to: 

H5: G(H(u)) ≤ 𝛾1H(u), 𝛾1 > 0,  

H6: [𝛾1𝜂(𝑡) − 𝛿(𝜏(𝑡))(𝜏(𝑡))
′
] ≤ 0, 𝑡 ∈ (𝑡𝑘 , 𝑡𝑘+1], 

H7: there exist two sequences of positive real 

numbers 𝑎𝑘 and 𝑏𝑘 such that 0 < 𝑎𝑘 − 𝑏𝑘 ≤ 1  , 𝑘 =

1,2, …   where 𝑎𝑘 = 𝑎𝑖 ,𝑏𝑘 = 𝑏𝑖 and  𝜏(𝑡𝑘) = 𝑡𝑖 , 𝑖 <

𝑘. Then 𝑊(𝑡) is nonincreasing.   

Proof: Assume that 𝐻(𝑡) > 0, 𝐻(𝜏(𝑡)) > 0 , 𝑡 ∈
(𝑡𝑘 , 𝑡𝑘+1], Differentiate Eq. 11and use Eq. 3 for 

every interval (𝑡𝑘 , 𝑡𝑘+1] where 𝑘 = 1,2, … 

𝑊′(𝑡)

= 𝐻′(𝑡) + 𝛿(𝑡)𝐻(𝑡)

− 𝛿(𝜏(𝑡))(𝜏(𝑡))
′
𝐻(𝜏(𝑡))                                                              

             = 𝜂(𝑡)𝐺(𝐻(𝜏(𝑡))) − 𝛿(𝑡)𝐻(𝑡)  

+ 𝛿(𝑡)𝐻(𝑡)  

− 𝛿(𝜏(𝑡))(𝜏(𝑡))′ 𝐻(𝜏(𝑡))      

             = 𝜂(𝑡)𝐺 (𝐻(𝜏(𝑡)))

− 𝛿(𝜏(𝑡))(𝜏(𝑡))
′
𝐻(𝜏(𝑡))               

≤ 𝛾1𝜂(𝑡)𝐻(𝜏(𝑡))  

− 𝛿(𝜏(𝑡))(𝜏(𝑡))
′
𝐻(𝜏(𝑡))            

≤ [𝛾1𝜂(𝑡) − 𝛿(𝜏(𝑡))(𝜏(𝑡))
′
]𝐻(𝜏(𝑡)) ≤

 0.          12               

  Hence, 𝑊(𝑡) is nonincreasing for  𝑡𝑘 < 𝑡 ≤

𝑡𝑘+1 for 𝑘 = 1,2,3 … .To demonstrate 𝑊(𝑡𝑘
+) ≤

𝑊(𝑡𝑘)  for 𝑘 = 1,2, … , we have 0 < 𝑎𝑘 ≤ 1 ≤ 𝑏𝑘  

and 𝜏(𝑡𝑘) ≠ 𝑡𝑘 , 𝑘 = 1,2, …  then: 

𝑊(𝑡𝑘
+) = 𝐻(𝑡𝑘

+) + ∫ 𝛿(𝑢)𝐻((𝑢))𝑑𝑢
𝑡𝑘

𝜏(𝑡𝑘)
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               ≤ (𝑎𝑘 − 𝑏𝑘 )𝐻(𝑡𝑘) + ∫ 𝛿(𝑢)𝐻((𝑢))𝑑𝑢
𝑡𝑘

𝜏(𝑡𝑘)

 

               ≤ 𝐻(𝑡𝑘) + ∫ 𝛿(𝑢)𝐻((𝑢))𝑑𝑢
𝜏(𝑡𝑘)

𝑡𝑘

 

= 𝑊(𝑡𝑘). 

Thus, 𝑊(𝑡)  is nonincreasing on [𝑡0, ∞). 

Lemma 5:  Suppose that  𝐻(𝑡)  is an eventually 

positive solution to Eq 3 and  

𝑤(𝑡) = 𝐻(𝑡) − ∫ 𝜂(𝑢)𝐺(𝐻(𝜏(𝑢)))𝑑𝑢
𝑡

𝜏−1(𝑡)

,       13 

where 𝑡𝑘 < 𝜏−1(𝑡) < 𝑡 ≤ 𝑡𝑘+1, let 𝐻1 and H3 hold, 

as well as the following presumptions: 

H8: [𝛾1𝜂(𝜏−1(𝑡))(𝜏−1(𝑡))
′

− 𝛿(𝑡)] ≥ 0,

𝑡 ∈ (𝑡𝑘 , 𝑡𝑘+1], 𝑘 = 1,2, … 

𝐻9: lim
𝑡→∞

 sup [𝛾1 ∫ 𝜂(𝑢)𝑑𝑢
𝑡

𝜏−1(𝑡)
≤ 1,     

𝑤ℎ𝑒𝑟𝑒 𝑡 ∈ (𝑡𝑘 , 𝑡𝑘+1]. Then 𝑊(𝑡) is eventually 

positive and nondecreasing function.  

Proof:  Let  𝐻(𝑡)  be an eventually positive solution 

of Eq 3 that is  𝐻(𝑡) > 0, 𝐻(𝜏(𝑡)) > 0,  𝑎𝑛𝑑, 𝑡 ≥

𝑡0. Differentiate Eq 13 for every interval (𝑡𝑘 , 𝑡𝑘+1] 
where 𝑘 = 1,2, … and use Eq 13, we get 

𝑊′(𝑡)

= 𝐻′(𝑡) − 𝜂(𝑡)𝐺 (𝐻(𝜏(𝑡)))

+ 𝜂(𝜏−1(𝑡))𝐺(𝐻(𝑡))(𝜏−1(𝑡))
′
                           

= −𝛿(𝑡)𝐻(𝑡) + 𝜂(𝑡)𝐺(𝐻(𝜏(𝑡)))

− 𝜂(𝑡)𝐺(𝐻(𝜏(𝑡)))

+ 𝜂(𝜏−1(𝑡))𝐺(𝐻(𝑡))(𝜏−1(𝑡))
′
  

= −𝛿(𝑡)𝐻(𝑡)

+ 𝜂(𝜏−1(𝑡))𝐺(𝐻(𝑡))(𝜏−1(𝑡))
′
                                                                          

≥ 𝛾1𝜂(𝜏−1(𝑡))𝐻((𝑡)(𝜏−1(𝑡))
′

− 𝛿(𝑡)𝐻(𝑡)                            

≥ [𝛾1𝜂(𝜏−1(𝑡))(𝜏−1(𝑡))
′

− 𝛿(𝑡)] 𝐻(𝑡).               14  

Hence, 𝑊(𝑡) is nondecreasing function for 𝑡 ∈

(𝑡𝑘 , 𝑡𝑘+1 ], 𝑘 = 1,2,3, … .To prove that 𝑊(𝑡𝑘
+) ≥

𝑊(𝑡𝑘)  for k = 1,2, … In view of  𝑎𝑘 − 𝑏𝑘 ≥ 1, 

regarding the condition H3, and from Eq 13 

when 𝜏(𝑡𝑘) = 𝑡𝑖 , 𝑖 < 𝑘, then:  

𝑊(𝑡𝑘
+) =  𝐻(𝑡𝑘

+)  − ∫ 𝜂(𝑢)𝐺(𝐻((𝜏(𝑢)))𝑑𝑢
𝑡𝑘

𝜏−1(𝑡)

 

              =  (𝑎𝑘 − 𝑏𝑘)𝐻(𝑡𝑘)

− ∫ 𝜂(𝑢)𝐺(𝐻((𝜏(𝑢)))𝑑𝑢
𝑡𝑘

𝜏−1(𝑡𝑘)

 

             ≥ 𝐻(𝑡𝑘)  − ∫ 𝜂(𝑢)𝐺(𝐻((𝜏(𝑢)))𝑑𝑢
𝑡𝑘

𝜏−1(𝑡)

 

            = 𝑊(𝑡𝑘) 

Thus,  𝑊(𝑡)  is nonincreasing on [𝑡0, ∞), 

hence  −∞ ≤ lim
t→∞

 𝑊(𝑡) = 𝑙 < ∞.  

We claim that 𝑊(𝑡) ≥ 0 for 𝑡 ∈ [𝑡0, ∞). Otherwise 

𝑊(𝑡) < 0. Since  𝑊(𝑡)  is nonincreasing on [𝑡0, ∞), 

then lim
𝑡→∞

𝑊(𝑡) = 𝑙 < 0 and  𝑊(𝑡) ≤ 𝑙 . From Eq  

13, we get 

𝐻(𝑡) ≤ 𝑙 + ∫ 𝜂(𝑢)𝐺(𝐻((𝑢)))𝑑𝑢
𝜏(𝑡𝑘)

𝑡𝑘

   

            ≤ 𝑙 + max
𝑡𝑘≤𝑠≤𝜏(𝑡𝑘)

{𝐻(𝑠)} 𝛾1 ∫ 𝜂(𝑢)𝑑𝑢
𝜏(𝑡𝑘)

𝑡𝑘

   

≤ 𝑙 + max
𝑡𝑘≤𝑠≤𝜏(𝑡𝑘)

𝐻(𝑠) .                   15  

According to Lemma 2, the above inequality cannot 

ultimately have a positive solution. This 

contradiction shows that 𝑊(𝑡) > 0 for 𝑡 ≠ 𝑡𝑘. Since 

𝑊(𝑡)  is nonincreasing, so 𝑊(𝑡𝑘) > 𝑊(𝑡) ≥ 0 for 

𝑡 ∈ (𝑡𝑘 , 𝑡𝑘+1].To prove 𝑊(𝑡) > 0 for t=𝑡𝑘, we first 

prove that 𝑊(𝑡𝑘) > 0 for 𝑘 = 1,2,3, …  . 

If this statement is incorrect, then some 𝑚 ≥ 0 exist 

such that 𝑊(𝑡𝑚) = 0, and 𝑊(𝑡𝑚
+ ) ≤ 0. Then 

𝑊(𝑡𝑚+1) = 0, integrating Eq. 14 on (𝑡𝑚 , 𝑡𝑚+1] 
yield: 

𝑊(𝑡𝑚+1) = 𝑊(𝑡𝑚
+ )   

+ ∫ [𝛾1𝜂(𝜏−1(𝑡))(𝜏−1(𝑡))
′

𝑡𝑚+1

𝑡𝑚

− 𝛿(𝑡)]𝐻(𝑡) 𝑑𝑡 

                   > 𝑊(𝑡𝑚
+ ) ≥ 𝑊(𝑡𝑚) = 0.        

This contradiction demonstrates that 𝑊(𝑡𝑘) >

0 for 𝑘 = 1,2,3 …, as well as 𝑊(𝑡) ≥ 𝑊(𝑡𝑘+1) > 0, 
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for 𝑡 ∈ (𝑡𝑘 , 𝑡𝑘+1], 𝑘 = 1,2, … . Thus 𝑊(𝑡) > 0 

for 𝑡 ≥ 𝑡0. And that concludes the evidence. 

Theorem 1: Let 𝑊(𝑡) be specified as in Eq 8 and 

that the hypotheses H1 − H3 are satisfied, in addition 

to: 

limsup
𝑡→∞

∫ [𝛾1𝜂(𝑠) − 𝛿 ((𝜏(𝑠))) (𝜏(𝑠))
′
 ] 𝑑(𝑠)

𝜏(𝑡) 

𝑡

> 1,                              16 

where , 𝑡𝑘 < 𝑡 < 𝜏(𝑡) ≤ 𝑡𝑘+1, 𝑘 = 1,2, … . Then 

every solution of Eq 3 oscillates.  

Proof:  Suppose that 𝐻(𝑡) is the eventually positive 

solution of Eq 3, Lemma 3 demonstrates that 𝑊(𝑡) 

is a positive nonincreasing function since  𝑤(𝑡) <

𝐻(𝑡)and from Eq 9, we get   

𝑊′(𝑡) ≥ [𝛾1𝜂(𝑡) − 𝛿 ((𝜏(𝑡))) (𝜏(𝑡))
′
 ] 𝑊(𝜏(𝑡))  

≥ 0.                                                                              17 

Integrating inequality Eq 17 from 𝑡 to 𝜏(𝑡) , we get  

𝑤(𝜏(𝑡)) − 𝑤(𝑡)

≥ 𝑤(𝜏(𝑡)) ∫ [𝛾1𝜂(𝑠)
𝜏(𝑡) 

𝑡

− 𝛿 ((𝜏(𝑠))) (𝜏(𝑠))
′
 ] 𝑑(𝑠), 

𝑤(𝜏(𝑡)) ≥ 𝑤(𝜏(𝑡)) ∫ [𝛾1𝜂(𝑠) −
𝜏(𝑡) 

𝑡

𝛿 ((𝜏(𝑠))) (𝜏(𝑠))
′
 ] 𝑑(𝑠), 

∫ [𝛾1𝜂(𝑠) − 𝛿 ((𝜏(𝑠))) (𝜏(𝑠))
′
 ] 𝑑(𝑠)

𝜏(𝑡) 

𝑡

≤ 1, 

which is a contradiction with the condition Eq 16.  

Theorem 2: Let 𝑊(𝑡) be specified as in Eq 8 and 

that the hypotheses H1 − H3 are satisfied, in addition 

to: 

lim inf
𝑡→∞

 ∫ [𝛾1𝜂(𝑠) − 𝛿(𝜏(𝑠))(𝜏(𝑠))
′
 ] 𝑑(𝑠)

𝜏(𝑡)

𝑡

>
1

𝑒
,                                          18 

where , 𝑡𝑘 < 𝑡 < 𝜏(𝑡) ≤ 𝑡𝑘+1, 𝑘 = 1,2, … . Then 

every solution of Eq. 3 oscillates.  

Proof:  Suppose that 𝐻(𝑡) is eventually positive 

solution of Eq 3, Lemma 3 demonstrates that 𝑊(𝑡) 

is a positive nonincreasing function. Since 𝑊(𝑡) ≤

𝐻(𝑡),  and from Eq 9, we get    

𝑊′(𝑡) ≥ [𝛾1𝜂(𝑡) − 𝛿(𝜏(𝑡))(𝜏(𝑡))
′
 ] 𝐻 

           ≥ [𝛾1𝜂(𝑡) − 𝛿(𝜏(𝑡))(𝜏(𝑡))
′
 ] 𝑊(𝜏(𝑡)). 

So, 

            𝑊′(𝑡) − [𝛾1𝜂(𝑠) −

𝛿 ((𝜏(𝑠))) (𝜏(𝑠))
′
 ] 𝑊(𝜏(𝑡))  ≥ 0.     

The latest inequality cannot have an eventually 

positive solution, which is a contradiction, according 

to Lemma1, Lemma 3, and condition Eq 18. 

Theorem 3: Let 𝑊(𝑡) defined as in Eq 13 and the 

assumptions H1 − H3, H8, H9 hold, in addition to: 

lim inf
𝑡→∞

 ∫ [𝛾1𝜂(𝜏−1(𝑡))(𝜏−1(𝑡))
′

− 𝛿(𝑡) ] 𝑑(𝑠)
𝜏(𝑡)

𝑡

>
1

𝑒
,                                      19 

where , 𝑡𝑘 < 𝜏−1(𝑡) < 𝑡 ≤ 𝑡𝑘+1, 𝑘 = 1,2,3 … . 
Then every solution of Eq. 3 oscillates. 

Proof: Suppose that 𝐻(𝑡) is eventually positive 

solution of Eq 3, Lemma 5 demonstrates that 𝑊(𝑡) 

is a positive nonincreasing function. Since 𝑊(𝑡) ≤

𝐻(𝑡),   and from Eq 14, we get    

𝑊′(𝑡) ≥ [𝛾1𝜂(𝜏−1(𝑡))(𝜏−1(𝑡))
′

− 𝛿(𝑡)] 𝐻(𝑡)                  

             ≥ [𝛾1𝜂(𝜏−1(𝑡))(𝜏−1(𝑡))
′

− 𝛿(𝑡)] 𝑊(𝑡)      

            ≥ [𝛾1𝜂(𝜏−1(𝑡))(𝜏−1(𝑡))
′

− 𝛿(𝑡)] 𝑊(𝜏(𝑡)). 

So,   

  𝑊′(𝑡) − [𝛾1𝜂(𝜏−1(𝑡))(𝜏−1(𝑡))
′

−

𝛿(𝑡)]  𝑊(𝜏(𝑡))  ≥ 0.                           20  

The latest inequality cannot have an eventually 

positive solution, which is a contradiction, according 

to Lemma 1, Lemma 5, and condition Eq 19. 
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To discussion our results, we provide examples in 

this area to demonstrate the reliability of the findings 

from the earlier results.  

Example 1:  Consider the impulsive hematopoiesis 

equation of the form: 

ℏ(𝑡) +
1

9
 𝑒−𝑡ℏ(𝑡) −

1

9
(8−𝑒−𝑡)

1+ℏ(𝑡−2𝜋)
= 0, 𝑡 ≠           21  

ℏ(𝑡𝑘
+) =

2𝑘 + 1

𝑘
ℏ(𝑡𝑘),    𝑡 = 𝑡𝑘   and       𝑘

= 1,2, …                   

Let 𝜏(𝑡) = 𝑡 − 2𝜋, 𝜏−1(𝑡) = 𝑡 + 2𝜋,  𝛾1 =

2, 𝑤ℎ𝑒𝑟𝑒 , 𝛿(𝑡) =
1

9
 𝑒−𝑡 ,𝛽(𝑡) =

1

9
(8 − 𝑒−𝑡), 

 𝛿(𝜏(𝑡))  =
1

9
(𝑒−(𝑡−2𝜋)), ( 𝜏(𝑡))′ = 1. 

 Let's introduce an invariant oscillation 

transformation: ℏ(t) = 𝐻(𝑡) − Κ we find 

𝐻′(𝑡) +
1

9
 𝑒−𝑡𝐻(𝑡) − [𝐾

1

9
 𝑒−𝑡 +

1

9
(8−𝑒−𝑡)

1+𝐻(𝑡−2𝜋)−𝐾
] =

0, 𝑡 ≠ 𝑡𝑘                    22  

𝐻(𝑡𝑘
+) =

2𝑘+1

𝑘
𝐻(𝑡𝑘),    𝑡 = 𝑡𝑘  and       𝑘 =

1,2, …                            

Thus,  𝜂(𝑡)𝐺(𝐻(𝜏(𝑡))) = 𝐾
1

9
 𝑒−𝑡 +

1

9
(8−𝑒−𝑡)

1+𝐻(𝑡−2𝜋)−𝐾
 

To apply conditions 𝐻2 𝑎𝑛𝑑 𝐻3 

                       [𝛾1𝜂(𝑡) − 𝛿(𝜏(𝑡))(𝜏(𝑡))
′
] ≥ 0. 

Let 𝑡𝑘 = 𝑘, 𝑡 ≥ 0,  𝑎𝑘 = 2 and 𝑏𝑘 =
1

𝑘
,  we can see 

that 

   𝑎𝑘 − 𝑏𝑘 =
2𝑘 + 1

𝑘
> 1 

And the conditions 𝐻4 leads to 

lim
t→∞

sup (∫ 𝛿(𝑢)𝑑𝑢
𝑡𝑘

𝜏(𝑡𝑘)
) ≤ 1. 

   Finally, the condition of Eq 11 leads to 

(limsup
𝑡→∞

∫ [𝛾1𝜂(𝑠)
𝜏(𝑡) 

𝜏−1(𝑡)

− 𝛿 ((𝜏(𝑠))) (𝜏(𝑠))
′
 ] 𝑑(𝑠) > 1   ) 

Hence, all conditions of Theorem 2 hold, so all 

solutions are oscillatory. For instance,  

       𝐻(𝑡) = {
𝑠𝑖𝑛𝑡,     𝑡 ≠ 𝑡𝑘  

2 +
1

𝑘
,   𝑡 = 𝑡𝑘

  is such a solution. 

The solution of Eq 22 oscillates about zero we can 

see that in Fig 2, hence the solution of Eq 21 

oscillates about equilibrium 𝐾. 

 
Figure 2. The solution of (22) is oscillates. 

Example.2: Consider the impulsive hematopoiesis 

equation of the form: 

ℏ′(𝑡) + (1 − 𝑒−
𝜋
2 − 𝑒−

𝜋
2𝑒−𝑡) ℏ(𝑡)

−
𝑒−

𝜋
2𝑒−𝑡

1 + ℏ (𝑡 −
5𝜋
2

)
= 0, 𝑡

≠ 𝑘                 23 

 ℏ(𝑘+) =
2𝑘

3𝑘 + 2
ℏ(𝑘),   𝑡 = 𝑘,

𝑘 = 1,2, …  . where 𝑡

≥ 0.                     

Let 𝜏(𝑡) = 𝑡 −
5𝜋

2
, 𝜏−1(𝑡) = 𝑡 +

5𝜋

2
,  𝛾1 =

2, 𝑤ℎ𝑒𝑟𝑒 𝛽(𝑡) = 𝑒−
𝜋

2𝑒−𝑡 , 𝛿(𝑡) = (1 − 𝑒−
𝜋

2 −

𝑒−
𝜋

2𝑒−𝑡) , 𝛽(𝜏−1(𝑡))  = 𝑒−
𝜋

2𝑒−(𝑡+
5𝜋

2
), ( 𝜏(𝑡))′ = 1. 

Let's introduce an invariant oscillation 

transformation: ℏ(t) = 𝐻(𝑡) − Κ,we find 
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𝐻′(𝑡) + (1 − 𝑒−
𝜋
2 − 𝑒−

𝜋
2𝑒−𝑡) 𝐻(𝑡)

− [𝐾 (1 − 𝑒−
𝜋
2 − 𝑒−

𝜋
2𝑒−𝑡)

+
𝑒−

𝜋
2𝑒−𝑡

1 + 𝐻 (𝑡 −
5𝜋
2

) − 𝐾
] = 0,

𝑡 ≠ 𝑘,  

 𝐻(𝑘+) =
2𝑘

3𝑘+2
𝐻(𝑘),   𝑡 = 𝑘, 𝑘 =

1,2, …  , where 𝑡 ≥ 0.                            24      

Thus,  𝜂(𝑡)𝐺(𝐻(𝜏(𝑡))) = 𝐾 (1 − 𝑒−
𝜋

2 − 𝑒−
𝜋

2𝑒−𝑡) +

𝑒
−

𝜋
2 𝑒−𝑡

1+𝐻(𝑡−
5𝜋

2
)−𝐾

 

To apply conditions 𝐻3 𝑎𝑛𝑑 𝐻8:   

𝑎𝑘 =
2𝑘+1

3𝑘+2
 , 𝑏𝑘 =

𝑘+1

3𝑘+2
, thus   𝑎𝑘 − 𝑏𝑘 =

2𝑘+1

3𝑘+2
−

𝑘+1

3𝑘+2
=

2𝑘

3𝑘+2
> 1 

And  [𝛾1𝜂(𝜏−1(𝑡))(𝜏−1(𝑡))
′

− 𝛿(𝑡)] ≥ 0, 𝑡 ∈

(𝑡𝑘 , 𝑡𝑘+1], 𝑘 = 1,2, …  . 

Apply condition H9:  lim
𝑡→∞

 sup [𝛾1 ∫ 𝜂(𝑢)𝑑𝑢
𝑡

𝜏−1(𝑡)
≤

1.   

Therefore, all conditions of Theorem 3 hold, and all 

solutions of Eq 24 are oscillatory about zero so all 

solutions of Eq 23 are oscillatory about equilibrium 

𝐾. 

Conclusion 

The blood maintains homeostasis, which is a 

relatively constant internal state of physical and 

chemical circumstances that is managed by living 

systems through a self-regulating mechanism despite 

the alterations required for existence. Negative 

feedback loops are a part of this process, which helps 

us adapt to changes and maintain life. Homeostasis 

can be defined mathematically as the constancy of an 

equilibrium or oscillation state. An a priori objective 

is to identify sufficient conditions for the oscillation 

of a positive solution for the impulsive 

hematopoiesis model Eq. 1 with positive and 

negative coefficients. So, we study the linear 

impulses-added impulsive hematopoiesis model Eq. 

1, which is consistent with the administration of 

drugs or radiation in the management of 

hematological illnesses. Its oscillation is ensured by 

sufficient conditions, which is a new finding for the 

proposed model's oscillatory behavior and an 

improvement over several findings in the nonlinear 

case in literature. We concluded that the impulse 

conditions play an essential role in taking into 

account the qualitative features of solutions for the 

hematopoiesis model after creating the necessary 

impulsive requirements. 
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 ةالخلاص

ذات المعاملات الموجبة والسالبة. هناك العديد من العمليات  نبضيفي هذا البحث تم بحث مشكلة الحلول المتذبذبة لنموذج تكون الدم ال

التطورية ، والتي كثيرًا ما تواجه تحولات دراماتيكية في أوقات محددة وتكون حساسة للاضطرابات قصيرة المدى. نتيجة لذلك ، نقوم 

حية تائج الحديثة في الأدبيات. نقدم أيضًا أمثلة توضيببناء العديد من معايير التذبذب التي تكون إما جديدة تمامًا أو تعزز العديد من الن

  على الحلول المتذبذبة لنموذج تكوين الدم. نبضاتلكيفية تأثير ال

 الشروط الكافية. ، النبضات ، التذبذب ، نموذج تكوين الدم ، المعادلات التفاضلية التباطؤية الكلمات المفتاحية:

https://doi.org/10.21123/bsj.2023.8796

