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Introduction

Currently, polymeric materials and composites based 

on them are increasingly used in construction and 

other industries. As with traditional building 

materials such as wood and concrete, polymeric 

materials are characterized by a pronounced creep 

phenomenon. Solving the problem of polymer 

mechanics is impossible without determining their 

rheological properties. The rheological behavior of 
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polymeric materials can be described by linear1 and 

nonlinear models2-5. Nonlinear models are more 

complex, but at the same time provide better 

agreement with experimental data. One of the 

simplest linear models is the Maxwell-Thompson 

model, in which the body is represented as a 

combination of viscous and elastic elements. 

Introduction to this model by G.I. Gurevich, the 

dependence of the relaxation viscosity of the 

polymer on stress made it possible to obtain good 

agreement with experiment for many polymers6–9. In 

the case of a uniaxial stress state, the basic Eq. of the 

Maxwell-Gurevich model has the form10: 

𝜕𝜀∗

𝜕𝑡
=

𝑓∗

𝜂∗
                                1 

𝑓∗ = 𝜎 − 𝐸∞𝜀∗                      2 

1

𝜂∗
=

1

𝜂0
∗ exp (

|𝑓∗|

𝑚∗ )                3 

In Eq.  1-3 𝜀∗ is the creep strain, 𝑓∗ is the stress 

function, σ is the stress, 𝐸∞ is the high elasticity 

modulus, 𝜂0
∗ is the initial relaxation viscosity 

(hereinafter simply “viscosity”), 𝑚∗ is the velocity 

modulus. 

The modulus of high elasticity is a relaxation 

constant that establishes a relationship between the 

ultimate creep strain at (𝑡 → ∞)  and the applied 

stress 𝐸∞ = 𝜎∞ 𝜀∞
∗⁄ . The determination of this value 

is carried out from experiments on creep or stress 

relaxation and is not difficult if the experimental 

curve reaches a horizontal asymptote. Finding the 

quantities 𝑚∗ and 𝜂0
∗ at the same time is associated 

with certain difficulties, since the theoretical creep 

and relaxation curves using the Maxwell-Gurevich 

equation cannot be described by analytical functions. 

Some algorithms for determining these quantities are 

presented in papers 11-13. The disadvantage of these 

algorithms is the high quality requirements for 

experimental curves. 

Artificial intelligence methods have great prospects 

in the problems of determining the properties of 

materials, including polymers. The paper14 was the 

first to present a technique for processing polymer 

relaxation curves using artificial neural networks 

(ANNs). In addition to ANN, efficient machine 

learning algorithms include the CatBoost Regressor 

(Adaptive Boosting) algorithm. Adaptive Boosting 

(AdaBoost) is a high-level metaheuristic belonging 

to the class of combined optimization methods that 

organizes a direct random search for probable 

solutions that are optimal or close to optimal 

solutions until a given condition is met or a given 

number of iterations is reached. Combinatorial 

optimization algorithms allow solving a large 

number of practical problems, such as, for example, 

the traveling salesman problem, assignment 

problems, scheduling problems, building decision 

trees, the dimension of which can reach exponential. 

The authors of the articles15-17 offer an overview of 

the main directions of metaheuristic approaches 

(local search, evolutionary algorithms) to solving 

combinatorial optimization problems. Metaheuristic 

algorithms in optimal content search problems have 

a wide range of tasks, including tasks related to 

model training, are an alternative solution for deep 

learning of a neural network, and solve the problems 

of model retraining16. 

When choosing families of algorithms for solving a 

regression problem in CatBoost Regressor, the 

choice is often left in favor of decision trees, 

although these may be linear algorithms or some 

others. 

Frequently occurring patterns in the training sample, 

which cannot but be present in the test sample, can 

negatively affect the test sample or the entire sample 

of the training space, which leads the model to 

overfitting. In other words, such regularities have the 

character of coincidence. The more degrees of 

freedom our model has, the more risks there are in 

overfitting. 

So, for example, in models built on decision tree 

algorithms, retraining occurs quite quickly on simple 

models, when building a decision tree with a large 

depth, retraining can be avoided and the ideal quality 

of the model can be achieved, only because each 

element of the training sample will have its own leaf 

in the decision tree. 

Further, a very clear example is the k-nearest 

neighbors algorithm, which adjusts to the training 

sample, since, among the k-nearest neighbors of the 

object under consideration, there may be an outlier 

or conditionally local noise that will lead to an error 

in the entire algorithm. 

Linear algorithms are prone to overfitting, because 

for them it is necessary to take into account the 

dimension of features, if the dimension of features 

from the number of features is much larger, then 

retraining is inevitable, because there will be too 

many degrees of freedom for a small sample size. 

Of course, overfitting models is a common practice 

when testing them, when there is at least some 

decision condition in the context of incomplete or 

sparse data, however, in practice, in the context of 

machine learning, overfitting is understood as a 
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significant deviation in the quality of the training set 

model from the test set. 

The purpose of this article is to build a model for 

predicting the rheological parameters of a polymer 

from stress relaxation curves based on the Adaptive 

Boosting algorithm. 

 

Materials and Methods 

The technique for processing stress relaxation curves 

was tested on the example of the epoxy binder EDT-

10, which acts as a polymer matrix in glass-

reinforced plastics. To train the model, three data sets 

were generated according to the method given in14, 

with different dataset dimensions. The datasets 

contain 5 input parameters:  

1. The strain value ε at which the stress relaxation 

experiment is carried out; 

2. The stress at the initial time σ0; 

3. The stress at the end of the relaxation process (at 

t → ꝏ);  

4. The relaxation time; 

5. The conditional end time of the process (the time 

when the difference between the current stress 

and the stress at t → ꝏ does not exceed 5%).  

Based on five input parameters taken from the 

experimental stress relaxation curve, the model 

should predict the velocity modulus and relaxation 

viscosity. Tables 1 - 3 partially present the analyzed 

data arrays. The total number of numerical 

experiments was: n1 = 102900; n2 = 107520; n3 = 

180000. Fragments of initial data for the model 

training are shown in Tables 1-3. 

Table 1. Table of initial data for model training (n1) 

No Strain, 

% 

Stress at 

the initial 

moment, 

MPa 

Stress at the end 

of the process, 

MPa 

Relaxation 

time, hours 

Conditional 

end time of the 

process, hours 

Velocity 

module, 

MPa 

Viscosity, 

106 MPa∙s 

1 1 20 6.666666667 0.00259842 0.273543249 2 5 

2 2 40 13.33333333 3.60E-05 0.110365845 2 5 

3 3 60 20 6.30E-07 0.051685264 2 5 

4 1 20 6.666666667 0.08131234 8.559969561 2 156.4646 

5 2 40 13.33333333 0.00112781 3.453670584 2 156.4646 

6 3 60 20 1.97E-05 1.617383311 2 156.4646 

7 1 20 6.666666667 0.00259842 0.273543249 2 5 

… 

102897 3 120 60 0.000701874 46.05477107 4 14848.53 

102898 1 40 20 2.923228748 307.7361555 4 15000 

102899 2 80 40 0.040545747 124.1615756 4 15000 

102900 3 120 60 0.000709034 46.52455947 4 15000 

Table 2. Table of initial data for model training (n2) 

No Strain, 

% 

Stress at the 

initial 

moment, 

MPa 

Stress at the 

end of the 

process, MPa 

Relaxation 

time, 

hours 

Conditional 

end time of the 

process, hours 

Velocity 

module, 

MPa 

Viscosity, 

106 MPa∙s 

1 1 20 6.666666667 0.00259842 0.273543249 2 5 

2 2 40 13.33333333 3.60E-05 0.110365845 2 5 

3 3 60 20 6.30E-07 0.051685264 2 5 

4 1 20 6.666666667 0.11553579 12.16276361 2 222.3188406 

5 2 40 13.33333333 0.00160250 4.90728134 2 222.3188406 

6 3 60 20 2.80E-05 2.298121593 2 222.3188406 

7 1 20 6.666666667 0.00259842 0.273543249 2 5 

… 

107517 3 120 60 0.00069876 45.85051525 4 14782.68116 

107518 1 40 20 2.92322874 307.7361555 4 15000 

107519 2 80 40 0.04054574 124.1615756 4 15000 

107520 3 120 60 0.00070903 46.52455947 4 15000 
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Table 3. Table of initial data for model training (n3) 

No Strain, 

% 

Stress at the 

initial 

moment, 

MPa 

Stress at the 

end of the 

process, MPa 

Relaxation 

time, hours 

Conditional 

end time of 

the process, 

hours 

Velocity 

module, 

MPa 

Viscosity, 

106 MPa∙s 

1 1 20 6.666666667 0.002598426 0.273543249 2 5 

2 2 40 13.33333333 3.60E-05 0.110365845 2 5 

3 3 60 20 6.30E-07 0.051685264 2 5 

4 1 20 6.666666667 0.134677718 14.1778857 2 259.15254 

5 2 40 13.33333333 0.001868006 5.720317864 2 259.15254 

6 3 60 20 3.27E-05 2.678873513 2 259.15254 

7 1 20 6.666666667 0.002598426 0.273543249 2 5 

… 

179997 3 120 60 0.00069702 45.73627046 4 14745.847 

179998 1 40 20 2.923228748 307.7361555 4 15000 

179999 2 80 40 0.040545747 124.1615756 4 15000 

180000 3 120 60 0.000709034 46.52455947 4 15000 

 

Tables 4 - 6 present the statistical characteristics of 

the initial data sets by samples n1, n2, n3 respectively. 

Table 4. Statistical characteristics of the original data set (n1) 
Parameter Strain Stress at 

the 

beginning 

of the 

process 

Stress at 

the end of 

the 

process 

Relaxation 

time 

Conditional 

end time of 

the process 

Velocity 

modulus 

Viscosity 

Units % MPa MPa hours hours MPa 106 MPa∙s 

count 102900.00 102900.00 102900.00 102900.00 102900.00 102900.00 102900.00 

mean 2.00 60.0 25.40 1.92 144.38 3.00 7502.50 

std 0.82 28.42 12.58 6.07 175.42 0.67 4372.21 

min 1.00 20.00 6.67 0.00 0.00 2.00 5.00 

max 3.00 120.0 60.00 83.66 1504.03 4.00 15000.00 

 

Table 5. Statistical characteristics of the original data set (n2) 

Parameter Strain Stress at 

the 

beginning 

of the 

process 

Stress at 

the end of 

the 

process 

Relaxation 

time 

Conditional 

end time of 

the process 

Velocity 

modulus 

Viscosity 

Units % MPa MPa hours hours MPa 106 MPa∙s 

count 107520.00 107520.00 107520.00 107520.00 107520.00 107520.00 107520.00 

mean 2.00 60.00 25.41 1.87 140.67 3.00 7502.50 

std 0.82 28.28 12.51 5.87 171.28 0.65 4390.99 

min 1.00 20.00 6.67 0.00 0.00 2.00 5.00 

max 3.00 120.00 60.00 83.66 1504.03 4.00 15000.00 

Table 6. Statistical characteristics of the original data set (n3) 

Parameter Strain Stress at the 

beginning of the 

process 

Stress at the 

end of the 

process 

Relaxation 

time 

Conditional 

end time of 

the process 

Velocity 

modulus 

Viscosity 

Units % MPa MPa hours hours MPa 106 MPa∙s 

count 180000.00 180000.00 180000.00 180000.00 180000.00 180000.00 180000.00 

mean 2.00 60.00 25.42 1.80 139.77 3.00 7502.50 

std 0.82 28.11 12.42 5.60 167.00 0.64 4401.45 
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min 1.00 20.00 6.67 0.00 0.00 2.00 5.00 

max 3.00 120.00 60.00 83.66 1504.03 4.00 15000.00 

One of the ways to deal with overfitting of the model 

is the regularization of the loss function, due to the 

regularization coefficients that specify the 

redistribution of weights in the model, the loss 

function takes a minimum value. This method 

provides improved model accuracy and reduces 

unnecessary deviations. 

Regularization through the loss function in deep 

learning implies the use of the weight decay method 

(Weight Decay), in which the regularization 

coefficients λ(i) avoid the entropy of the distribution 

of neural network predictions. Regularization is 

performed according to Eq.  4: 

𝐿𝑟(𝑖 + 1) = 𝐿𝑟(𝑖) + 𝜆(𝑖)𝑊(𝑖)           4 

where i is the serial number of the current iteration; 

𝑊(𝑖) is the norm of the weight vector; 𝐿𝑟(𝑖 + 1) is 

the regularization function. 

Each neural network weight is updated 

proportionally according to the gradient of the loss 

function. This method was combined with the Adam 

gradient descent method, as a result of a combination 

of the optimization method and the regularization 

technique through the loss function, the AdamW 

method appeared17. 

Another option to combat model overfitting is cross-

validation. In this method, the model is trained k 

times, instead of once, as provided in the loss 

function regularization method. The idea is as 

follows, according to the scheme in Fig. 1: on each 

experiment, the k-th window (validation block) is 

selected from k elements; on the rest k-1 windows, 

training takes place and then the quality of the model 

is checked. Thus, patterns formed earlier are 

destroyed and new, better ones are formed, until the 

model error becomes digestible. This method has 

already been used by authors in paper18 and observed 

in the works of other scientists19. 

 
Figure 1. Splitting data into k-block cross-

validation 

The third way to regularize a neural network is to 

change the data. Data augmentation implies the 

addition of data, for example, with dispersion noise, 

by increasing the size of the training sample, new 

data can improve the quality of the model, increase 

its sensitivity and robustness. Having received 

additional data, the neural network understands 

which transformations over them are valid. Most 

often, data augmentation is used in the field of 

computer vision. 

In this paper, the focus will be made on the second 

method of data regularization, namely, related to 

changing the network structure.  

When building a predictive model, it is important to 

determine the function that evaluates the quality of 

this model. To assess the quality of the functioning 

of a neural network when solving a regression 

problem, it is enough to use two functions RMSE and 

MAPE, in contrast to classification tasks, where 

functions such as MSE and MAE are additionally 

used. In our work, the predictive capabilities of the 

built models will be evaluated on different samples 

and compared with the results obtained for models 

built with different parameters. Table 7 presents the 

metrics used in the work and shows their advantages 

and disadvantages. The coefficient of determination 

(R2) is calculated by the Eq. 5: 

𝑅2 =
(∑ (𝑦𝑡 − �̅�𝑡)(�̂�𝑡 − �̅̂�𝑡))𝑇

𝑡=1
2

∑ (𝑦𝑡 − �̅�𝑡)2𝑇
𝑡=1 ∑ (�̂�𝑡 − �̂��̅�)

2𝑇
𝑡=1

               5 
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Table 7. Quality Metrics for Analyzing Regression Models 
Quality Metric Formula Advantages Disadvantages 

Mean Absolute Error 

(MAE) 𝑀𝐴𝐸 =
1

𝑇
∑ |𝑦𝑡 − �̂�𝑡|

𝑇

𝑡=1

 

 

More robust model 

estimation than RMSE. 

Unaffected by emissions. 

Almost corresponds to the 

median. 

Difficult to interpret. 

It is possible to 

compare estimates for 

only one data set. 

Mean Squared Error 

(MSE) 𝑀𝑆𝐸 =
1

𝑇
∑(𝑦𝑡 − �̂�𝑡)2

𝑛

𝑡=1

 
It is possible to compare 

models on different samples. 

Affected by outliers. 

Root-Mean-Square 

Error (RMSE) 
𝑅𝑀𝑆𝐸 = √

1

𝑇
∑(𝑦𝑡 − �̂�𝑡)2

𝑇

𝑡=1

 

It is used both in predicting 

positive and negative values. 

Unsteady estimate, 

uses average values. 

Mean Absolute 

Percentage Error 

(MAPE) 

𝑀𝐴𝑃𝐸 =
1

𝑇
∑ |

𝑦𝑡 − �̂�𝑡

�̂�𝑡

| 100

𝑇

𝑖=1

 

It is an effective criterion for 

evaluating the coefficients of 

models. 

It is possible to 

compare estimates for 

only one data set. 

Results and discussion 

In this section, we will present the prediction results 

based on three datasets. Training of CatBoost 

Regressor (XGBRegressor) models was carried out 

according to the following scheme. The depth of the 

tree was adjusted according to the values: {4,6,8,10}; 

learning rate: {0.01, 0.03, 0.05, 0.07, 0.08, 0.09} 

number of iterations: {500, 800, 1000, 1500}; 

coefficient in Eq. 4 𝜆(𝑖) = 3 to achieve the smallest 

prediction error. Table 8 shows the sets of the best 

values of the parameters of the CatBoost Regressor 

models by samples 1 2 3;  ; n n n  for the parameters: 

“Viscosity” (𝜂0
∗ : 𝜂01

∗ ; 𝜂02
∗ ;  𝜂03

∗ ); “Velocity module” 

(𝑚∗: 𝑚1
∗;  𝑚2

∗ ;  𝑚3
∗) respectively. 

Table 8. Best Parameter Values for CatBoost 

Regressor Models 
Parameter Tree 

depth 

Learning 

rate 

Number of 

iterations 

𝜂01
∗  6 0.08 1000 

𝑚1
∗ 6 0.08 800 

𝜂02
∗  6 0.08 1000 

𝑚2
∗  6 0.08 800 

𝜂03
∗  6 0.08 1000 

𝑚3
∗  6 0.08 800 

 

According to Table. 8, frequent coincidences of the 

best values of the parameters on different samples 

can be observed. This is due to the fact that the 

statistical characteristics of the original data sets 

described earlier in some cases coincide, or vary in 

the range from 
110  to 

310 . In particular, the same 

values of model training parameters for three data 

sets are because each of them describes processes 

that are identical in nature. 

The loss function and the forecast accuracy of the 

model are stabilized in the mode of 800 iterations for 

the parameter 𝑚∗, and 1000 iterations for the 

parameter 𝜂0
∗ for all models at the training stage. 

Qualitative estimation of model parameters is as 

follows. For the parameter 𝜂0
∗: 𝜂01

∗  – RMSE = 0.08; 

R2 = 0.993; 𝜂02
∗  – RMSE = 0.08; R2 = 0.994; 𝜂03

∗  – 

RMSE = 0.10; R2 = 0.989. For the parameter 𝑚∗: 𝑚1
∗ 

– RMSE = 0.05; R2 = 0.998; 𝑚2
∗  – RMSE = 0.05; R2 

= 0.997; 𝑚3
∗  – RMSE = 0.06; R2 = 0.997. 

The disadvantage of this method is that it incurs a 

considerable amount of time, since the algorithm for 

finding the optimal parameters over the grid is very 

slow due to the potentially large number of 

combinations being tested. Given all combinations of 

model parameter values, each model was trained for 

at least 480 epochs. To obtain the resulting model, 

the early stopping method was applied. The AdamW 

method was used as an optimization method. The 

performance metrics of the algorithm are given in 

Table 9. 
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Table 9. Algorithm Performance Metrics 
Parameter MAE MSE RMSE MAPE 

(%) 

R2train R2test 

 𝜂01
∗  0.06 0.01 0.08 0.43 0.99386 0.99344 

 𝑚1
∗ 0.03 0.001 0.05 0.08 0.99751 0.99713 

 𝜂02
∗  0.06 1.01 0.08 0.20 0.99448 0.99413 

 𝑚2
∗  0.04 0.001 0.05 0.08 0.99765 0.99725 

 𝜂03
∗  0.08 0.01 0.10 0.86 0.98965 0.98917 

 𝑚3
∗  0.04 0.001 0.06 0.11 0.99670 0.99650 

 

Fig. 2 - 4 show the prediction graphs for training 

samples (dotted line), test samples (solid line) of 

final models with the best parameters according to 

Table 8, for 𝜂0
∗ (a);  𝑚∗ (b) by samples 𝑛1; 𝑛2; 𝑛3 

according to designations. 

 
Figure 2. Forecast plots on the sample (n1) by 

parameters 

 
Figure 3. Forecast plots on the sample (n2) by 

parameters 

 
Figure 3. Forecast plots on the sample (n3) by 

parameters 

The relationship between actual and predicted values 

for parameters: 𝜂0
∗ (a); 𝑚∗ (b) are shown in Fig. 5 – 

7 by samples 𝑛1; 𝑛2; 𝑛3 according to designations.  

Figure 4. Plots of forecast errors (n1) 

 
Figure 5. Plots of forecast errors (n2) 

 
Figure 6. Plots of forecast errors (n3) 
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The forecast error plots show the actual values from 

the dataset versus the predicted values generated by 

our model. This visualization method allows one to 

see how large the variance is in the model. 
 

Conclusion 

Artificial intelligence methods are successfully 

applied in various industries, for example, in the 

construction process at all stages, including quality 

control in the production of building materials, 

including polymeric materials and composites based 

on them. Intelligent models built on the basis of 

CatBoost were implemented in the Jupyter Notebook 

environment in Python. The training involved the 

generated data sets obtained by constructing 

theoretical stress relaxation curves using the Euler 

method on the example of the EDT-10 epoxy binder. 

For the developed intelligent models of the 

rheological parameters of polymers (initial 

relaxation viscosity, velocity modulus), the quality 

of the models was assessed, prediction graphs were 

plotted for trainees and test samples, including error 

prediction graphs for the final models with the best 

parameters. 

Taking into account the fact that the developed 

machine learning algorithms were applied on a large 

amount of data depending on a large number of 

parameters, there is always a data error that is within 

10%. In our case, the value of the MAPE metric 

obtained when testing the developed machine 

learning models is acceptable and represents the 

range of 0.08 - 0.86. Thus, models can be verified 

and accepted for use in determining the rheological 

parameters of polymers. 

In the future, further research is planned to expand 

the range of tools and methods of machine learning, 

such as k-nearest neighbors, support vector 

regression (SVR). 
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 بطرق التعلم الآلي اتمعالجة منحنيات استرخاء الإجهاد للبوليمر

 1 إبراهيم الوالي، 2 تاتيانا كوندراتيفا، 1أنطون تشيبورنينكو

 1قسم مقاومة المواد، جامعة الدون التقنية الحكومية، روستوف نا دونو، روسيا.

 2قسم الرياضيات وعلوم الكمبيوتر، جامعة دون التقنية الحكومية، روستوف نا دونو، روسيا.

 

 ةالخلاص

لي لآحالياً، أحد المجالات الموضوعية لتطبيق طرق التعلم الآلي هو التنبؤ بالخصائص المادية. الهدف من هذا العمل هو تطوير نماذج التعلم ا

لتحديد الخصائص الريولوجية للبوليمرات من منحنيات استرخاء الإجهاد التجريبية. تقدم الورقة لمحة عامة عن الاتجاهات الرئيسية للنهج 

لميتاهويرية )البحث المحلي، والخوارزميات التطورية( لحل مشاكل التحسين التوافقي. يتم وصف الخوارزميات الميتاهورية لحل بعض ا

مشاكل تحسين التوافقية المهمة، مع التركيز بشكل خاص على بناء أشجار القرار. تم إجراء تحليل مقارن للخوارزميات لحل مشكلة الانحدار 

الهدف من الدراسة هو مجموعات البيانات المتولدة التي تم الحصول عليها على أساس منحنيات استرخاء .  .CatBoost Regressor في

 .الإجهاد النظرية. وترد جداول البيانات الأولية لنماذج التدريب لجميع العينات، ويجري تحليل إحصائي لخصائص مجموعات البيانات الأولية

للذكاء  CatBoost اختلافاً. عند تطوير النماذج، تم استخدام طرق 346020ب العددية لجميع العينات كان العدد الإجمالي للتجار

-Z الاصطناعي، وتم استخدام طرق التسوية )تحلل الوزن، وتسوية الوزن المفصول، وزيادة( لتحسين دقة النموذج، وتم استخدام طريقة

Score  نماذج ذكية لتحديد المعلمات الريولوجية للبوليمرات المدرجة في معادلة ماكسويللتطبيع البيانات. نتيجة للدراسة، تم تطوير-

-EDT غوريفيتش غير الخطية المعممة )لزوجة الاسترخاء الأولية، وحدة السرعة( باستخدام مجموعات البيانات المولدة لرابط الإيبوكسي

 اذج، ورسم رسوم بيانية للتنبؤات للمتدربين وعينات الاختبار، ورسوم بيانيةكمثال. بناءً على نتائج اختبار النماذج، تم تقييم جودة النم 10

ويتم تنفيذها في بيئة دفتر المشتري في بايثون. اجتازت النماذج المشيدة تقييم  CatBoost لأخطاء التنبؤ. تستند النماذج الذكية إلى خوارزمية

، MAPE لمقياس 0.86كانت القيمة القصوى لتنبؤات خطأ النموذج  .MAPE و RMSE و MSE و MAE :الجودة وفقاً للمقاييس التالية

 .MSE                                                                                  لمقياس.     0.001والقيمة الدنيا لتنبؤات خطأ النموذج كانت 

 .الاختبارتقديرات أداء النموذج التي تم الحصول عليها أثناء 

 .الريولوجيا الانحدار، التسوية، البوليمرات، ميتاهوريستيكش، الآلي، التعلم ، CatBoost الاصطناعي، الذكاء : الكلمات المفتاحية

https://dx.doi.org/10.21123/bsj.2023.8819

