https://doi.org/10.21123/bsj.2024.8832 P-ISSN: 2078-8665 - E-ISSN: 2411-7986



# Single Nucleotide Polymorphism (SNP) rs2229569 with L Selectin Gene Expression in Iraqi Female during *in vitro* Fertilization Program.

Raghad Hameed Rashid 🔍 Asmaa M. Salih Almohaidi\* 🔍 Alia Hussain Ali

Department of Biology, College of Science for Women, University of Baghdad, Baghdad, Iraq. \*Corresponding Author.

Received 31/03/2023, Revised 14/08/2023, Accepted 16/08/2023, Published Online First 20/02/2024, Published 01/09/2024

© 2022 The Author(s). Published by College of Science for Women, University of Baghdad.

This is an open-access article distributed under the terms of the <u>Creative Commons Attribution 4.0 International License</u>, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

#### **Abstract**

Infertility is recognized as one of the leading reproductive health problems in various regions of the world. In vitro fertilization (IVF) is one of the most effective treatments for infertility. In the current research, the role of the selectin -L (SELL) gene, especially the rs2229569 polymorphism, has been determined in terms of implantation and expression level. This work involved 67 females who underwent an in vitro fertilization cycle, divided into two major groups: the implantation failure female group and the implantation success female group. Blood samples were collected from the females. After DNA extraction from blood sample then amplification by polymerase chain reaction, samples were sent for sequence analyses. The SNP rs2229569 was detected and that recorded three genotypes. The failure group had a deviation from H.W.E., and the success group was in agreement with H.W.E. law according to Chi square values (X2 = 11.60, 1.58). Significant differences in the failure group refers to the effects of infertility in the study population. Odds ratio of rs2229569 showed that the T allele was (2.09), so T allele may be considered a risk allele for the failure implantation. Finally, the SELL gene expression had a downregulation in female with failed implantation compared to female in successful implantation groups.

**Keywords:** Gene expression, Gene polymorphism rs2229569, Infertility, In vitro Fertilization, Selectin L.

#### Introduction

Infertility is a common problem and unique medical condition with important psychologic, economic, demographic, and medical implications <sup>1</sup>. It involves a couple rather than a single individual. Infertility is defined as the inability to achieve a clinical pregnancy after trying for 12 months with regular, unprotected sexual activity <sup>2</sup>. Primary infertility affects women who have never had a baby, while secondary infertility affects women who have already given birth at least once<sup>3</sup>. Recent research has found that 15% of married couples around the world are at increased risk of poor

reproductive health and mental health due to infertility and invasive treatments <sup>4</sup>.

Many factors, including hormones, prostaglandins, and adhesion molecules, work together to regulate the intricate crosstalk between the endometrium and the blastocyst necessary for successful implantation.<sup>5, 6</sup>. Adhesion molecules are a class of membrane-associated glycoproteins found on the surface of cells that play key roles in cellular processes such as recognition, adhesion, migration, and differentiation<sup>7</sup>. Different structural and

functional properties categorize them into four groups: cadherins, integrins, selectins, immunoglobulin (Ig)-like proteins <sup>8</sup>. In various inflammatory factors the level of soluble platelet selectin, as one of the cell adhesion molecules, is increased<sup>9</sup>. When the endometrium is most receptive to embryo implantation, it is called the "window of implantation," and it occurs during the mid-luteal phase in humans. 10, 11. In vitro fertilization (IVF) is a way to help women get pregnant when their fallopian tubes are damaged or blocked<sup>12</sup>. During the window of implantation, the endometrium expresses several genes that enable the process of implantation to occur, such as selectins<sup>13</sup>.

The selectins, which include P-selectin, L-selectin, and E-selectin <sup>14</sup>, are a family of cell adhesion

#### **Materials and Methods**

#### **Study Design**

The study consisted of 67 women under IVF cycle divided into two major groups including 41 implantation failure female group and 26 implantation success females group. Their age range was 18-44 years, from Rooh ALhayat Center for IVF, AL Farah Center for IVF and AL Nada Center for IVF in Baghdad, Iraq.

#### **Collection of Blood Samples:**

Following an hour after embryo transfer, the blood samples were drawn from each female (success 26 and failure 41 females) as two ml of blood was added directly into an EDTA containing tube for genotyping study. 250  $\mu$ L added to 750  $\mu$ L of GENEzol for gene expression.

#### **Genomic DNA Extraction and Genotyping:**

DNA was isolated using 2 mL of whole blood collected in tubes of EDTA using a purification kit for the genomic DNA (Geneaid). The amplification of DNA represented in fragment of exon 5 region of SELL gene (forward and reverse). Then the polymorphism of the *SELL* gene was detected using the PCR-sequencing method. PCR amplifications were detected in a total volume of 25  $\mu$ L consisted of 5  $\mu$ L genomic DNA (30 to 53.3  $\mu$ g/mL), 13  $\mu$ L D.W., 5 $\mu$ L master mix [1 U DNA polymerase, 1000  $\mu$ M dNTP , Reaction Buffer with 1.5 mM Mgcl2(1 x)] and 1  $\mu$ L of each primer as follow L selectin

molecules. The SELL gene that encodes the Lselectin protein in humans is located in a tandem arrangement with other members of the family on the long arm of chromosome 1 (1g24.2). L-selectin consists of nine exons and eight introns (https://www.ncbi.nlm.nih.gov/) 15. The surface of vascular endothelial cells express molecules, enabling leukocytes in adhering to other tissues in that region<sup>16</sup>. The binding of SELL, expressed by the trophoblast, to oligosaccharide based ligands expressed by the endometrium<sup>17</sup> is critical for the initial attachment of an embryo to the endometrium. Thus, L-selectin-ligand interactions in the uterus may serve as a link in the chain leading to the essential first attachment for implantation<sup>18</sup>. According to previous information, the present study has been designed to evaluate the relation between SELL gene and IVF outcome.

pmole 5'forward (10) μl) were TTTGAATCCTAGCCCTGCCAC-3'; and reverse μl) 5'-(10) pmole were AAGCCCCAGAGTAATGCTTGA -3' both primers were designed by second author used primer designing tool in NCBI. The program of PCR were shown in Table1. The 832bp PCR fragment was confirmed to be present after separation on a 1% agarose gel with ethidium bromide staining. The sequencing technique was used to identify the SELL gene polymorphism.

Table 1. The PCR program of SELL

| Table | i. The real  | program or 5.        | CLL    |       |
|-------|--------------|----------------------|--------|-------|
| No    | Step         | Temperature          | Time   | No of |
|       |              | $^{\circ}\mathrm{C}$ |        | cycle |
| 1     | Initial      | 94                   | 5 min  | 1     |
|       | denaturation |                      |        |       |
| 2     | Denaturation | 94                   | 45 sec |       |
|       |              |                      |        |       |
| 3     | Annealing    | 58                   | 45 sec | 35    |
|       | -            | <b>7</b> 0           |        |       |
| 4     | Extension    | 72                   | 2 min  |       |
| 5     | Final        | 72                   | 5 min  | 1     |
| J     | extension    | 12                   | JIIIII | 1     |
|       | CATCHSION    |                      |        |       |

#### **DNA Sequencin**

After amplification, the PCR products were analyzed of exon 5 region for *SELL* gene (forward and reverse) of all failure and success implantation group. The 61 samples (35 failure group and 26 success group) were sent to Macrogen Corporation

Korea for sequencing by using automated DNA sequence Macrogen.

#### Real Time -PCR (RT-PCR)

250 µL of blood was added to 750 µL of GENEzol and used for gene expression. RNA was isolated using the GENzolTM TriRNA Pure Kit, and then RNA was converted to complementary DNA (cDNA) using the Accu **PowerRRT** RocketScriptTM PreMix Kit from Bioneer, Korea, and Oligo dT20 as primer. SELL gene expression was detected by real-time PCR (RT-PCR). This technique was carried out by a dye that used the real-time fluorescence of a cDNA binding dye (SYBR Green) to measure cDNA amplification. Lselectin Primer for Real time PCR was forward TGA TTC AGT GTG AGC CTT TG and reverse CTT GAC AGG TTG GTT CTG <sup>19</sup>. The required volume of each component was 25 µL: (5 µL SYPER Green), 13 µL nuclease-free water, 1 µL of each forward and reverse primer, and 5  $\mu$ L cDNA. The absolute target quantities were calculated using the human reference gene (junctional cadherin complex regulator) (JHY). The primer of reference gene was forward GTCCAGGGTATTACAGGCAA and reverse TCAGGAATCAGCCCAAGACG were designed by present study . The threshold cycle was used to quantitatively measure the levels of gene expression  $^{20}$ 

#### **Statistical Analysis**

The results of genomic DNA amplification were analyzed using BioEdit software. Online Hardy-Weinberg equilibrium H.W.E. Calculator to test whether the observed genotype was applied with H.W.E. WINPEPI software was used to calculate the significance and odds ratios of genotyping and allele frequencies of the studied genes.

#### Results

The present study examined the SELL gene polymorphism by sequencing method in infertile female who underwent IVF programs, including failure and success implantation groups. Sanger's sequencing was performed on the samples of amplified PCR-products for exon5 on SELL gene. The sequences were blast to a reference sequence of National Center SELL gene in the for Biotechnology Information (NCBI) (www.ncbi.nlm.nih.gov ) as shown in Fig. 1 and Fig. 2, and the samples analyzed by BIO Edit as

| shown in     | 1 <b>Fig. 3</b> . |                     |                      |             |
|--------------|-------------------|---------------------|----------------------|-------------|
|              |                   | , ,,                | SeqGene on chromos   | ome 1       |
| Sequence ID: | NG_016132.1 L     | engtn: <b>28038</b> | Number of Matches: 1 |             |
| Range 1: 119 | 92 to 12135 GenB  | ank Graphics        |                      | ▼ Next Mate |
| Score        | Evnect            | Identities          | Gans                 | Strand      |

| Score   |         | Expect         | Identities        | Gaps                | Strand       |
|---------|---------|----------------|-------------------|---------------------|--------------|
| 259 bit | ts(140) | 8e-67          | 143/144(99%)      | 1/144(0%)           | Plus/Plus    |
| Query   | 12      | TGGACTGTACTCAC | CCCTTTGGG-AACTTCA | GCTTCAGCTCACAGTGTGC | CCTTCAGCTGCT |
| Sbjct   | 11992   | TGGACTGTACTCAC | CCTTTGGGAAACTTCA  | GCTTCAGCTCACAGTGTG  | CTTCAGCTGCT  |
| Query   | 71      | CTGAAGGAACAAA  | CTTAACTGGGATTGAAG | AAACCACCTGTGGACCATT | TGGAAACTGGT  |
| Sbjct   | 12052   | CTGAAGGAACAAA  | CTTAACTGGGATTGAAG | AAACCACCTGTGGACCAT  | TGGAAACTGGT  |
| Query   | 131     | CATCTCCAGAACCA | AACCTGTCAAG 154   |                     |              |
| Sbjct   | 12112   | CATCTCCAGAACCA | ACCTGTCAAG 1213   | 5                   |              |

Figure 1. A representative sequence alignment of *SELL* at exon 5 amplification results with NCBI Blast. Arrow is for normal homozygous genotype rs2229569.

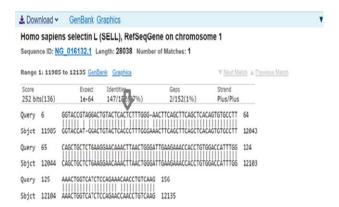
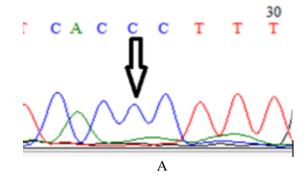




Figure 2. A representative sequence alignment of *SELL* at exon 5 amplification results with NCBI Blast. Arrow is for heterozygote genotype of rs2229569.





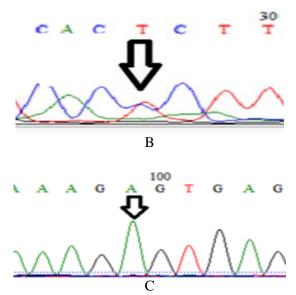



Figure 3. A and B and C shows the sequence of DNA samples of the rs2229569 analyzed by BIO Edit software. In A, the normal homozygote genotype  $C\setminus C$ . B, the heterozygote  $C\setminus T$  and C, the mutant homozygote TT genotype.

The frequency of genotypes and alleles of the SNP of SELL T>C rs2229569 using H.W. E were shown in Table 2. The results in Table 2. Showed significantly higher (P>0.05)of genotypes frequency for failure implantation group but showed non-significant in success group. This indicates that the failure group had deviation from H.W.E while success group agreed with H.W.E. The Expected frequencies: CC homozygous genotype recorded 21.61vs.20.35, while the heterozygous genotype CT had expected frequency 11.79vs 5.31and TT

genotype had 1.61vs. 0.35 as expected frequency among two study groups at receptively. Homozygote genotype CC was more frequent in both groups failure and Success group (25+21=46) which made it common genotype in Iraqi female population.

Comparison of the frequencies of allele and Genotype of SELL gene polymorphism (rs2229569 T>C) between failure and success groups was shown in Table 3. The present data in Table3 showed that the genotypes (CC, CT, TT) recorded between Frequency different groups. homozygous genotype CC in success group (80.77%) was higher than in failure group (71.42%), while the heterozygous genotype CT was (15.38%) in success group and (14.29%) in failure group. Homozygous TT genotype was higher in failure group (14.29%) than in success groups (3.85%). According to odds ratio TT recorded 4.17 therefore TT genotype may be considered an etiological fraction with positive association with failure of IVF while other genotype CC and CT may be protective genotype with odds ratio 0.6 and 0.9. The frequency of C allele was (78.57%)in the failure group, while in the success group was (88.46%). The frequency of T allele was (21.43%) in the failure group while in the success group was (11.54%). Moreover, T allele could have recorded odds ratio 2.09 which make it risky factor with positive association with failure implantation while C allele was protective 0.48 with negative association with the failure implantation.

Table 2. Frequencies of genotypes and allele of the SNP of SELL T>C rs2229569 in exon 5 using HWE

|                       |                 |          | п. ۷۷.   | יי     |      |      |          |         |
|-----------------------|-----------------|----------|----------|--------|------|------|----------|---------|
| SELL SALES            |                 | CC       | CT       | TT     | С    | T    | $\chi^2$ | P-value |
| rs2229569T>C          |                 |          |          |        |      |      |          |         |
| Genotype              |                 |          |          |        |      |      |          |         |
| Failure               | Observed        | 25       | 5        | 5      | 0.78 | 0.22 |          |         |
| implantation          | no(%)           | 71.42%   | 14.29%   | 14.29% |      |      | 11.60    | 0.003** |
| Female (35)           | Expected no(%). | 21.61    | 11.79    | 1.61   |      |      |          |         |
|                       | 110(70).        | 61.73%   | 33.67%   | 4.6%   |      |      |          |         |
| Success               | Observed        | 21       | 4        | 1      | 0.88 | 0.12 |          |         |
| implantation          | no(%)           | 80.77%   | 15.38%   | 3.85%  |      |      | 1.58     | 0.50NS  |
| Female(26)            | Expected        | 20.35    | 5.31     | 0.35   |      |      |          |         |
|                       | no(%)           | 78.26%   | 20.41%   | 1.33%  |      |      |          |         |
| <b>Total Observed</b> |                 | 46       | 9        | 6      |      |      |          |         |
| (%)                   |                 | 75.40%   | 14.76%   | 9.84%  |      |      |          |         |
| P value               |                 | 0.555 NS | 0.738 NS | 0.102  |      |      |          |         |
|                       |                 |          |          | NS     |      |      |          |         |

<sup>\* (</sup>P\u20.01) significant, \*\* (P\u20.01) highly significant, NS: Non-Significant.

Table 3. Comparison of the genotype and allele frequencies of L-selectin gene polymorphism (rs2229569 T>C) between failure and success groups

| SELL         | Frequencies (%) |       |           | Odds       | Etiological or | Fisher's   | CI 95%      |              |
|--------------|-----------------|-------|-----------|------------|----------------|------------|-------------|--------------|
| polymorphism | failure         | group | success   | group      | Ratio          | Preventive | exact       |              |
| rs2229569T>C | (n=35)          |       | (n=26)    |            |                | Fraction%  | probability |              |
| CC           | 25 (71.429      | %)    | 21 (80.77 | 7%)        | 0.6            | 40.05      | 0.5         | 0.16to 2.03  |
| CT           | 5 (14.29%       | )     | 4(15.38%  | (ó)        | 0.92           | 8.3        | 0.8         | 0.21to 4.25  |
| TT           | 5(14.29%)       | )     | 1 (3.85 % | (ó)        | 4.17           | 76.0       | 0.1         | 0.52to 80.82 |
|              |                 |       | Alleles D | istributio | on             |            |             |              |
| $\mathbf{C}$ | 55(78.57%       | (ó)   | 46 (88.46 | 5%)        | 0.48           | 52.2       | 0.2         | 0.16to 1.32  |
| T            | 15 (21.439      | %)    | 6(11.54%  | (b)        | 2.09           | 52.2       | 0.1         | 0.76to 6.26  |

**CI:** confidence intervals

#### Results of Real Time PCR of SELL

Sixty-one 61 female underwent IVF included 35 failure group implantation,26 success group selected for L selectin gene expression. Quantitative real- time PCR was validated and performed. *SELL* gene expression was quantified into two groups: the failure group and the success group with used the reference gene (*JHY*). As shown in **Table 4**, the mean ct of selectin L gene for the failure, and

success group were respectively (18.62, and 18.11), while the means of Ct for (JHY) gene expression for the failure, and success were respectively (26.37and 26.71). The present study result shows that the fold change in *SELL* was down regulation in the failure group (0.56  $\pm$ 0.17) while upregulation in the success group was (1.00  $\pm$ 0.00) and significant difference in the fold gene expression between these two groups.

Table 4. Comparison between Failure and Success folding of SELL gene

| Study<br>Group | Mean of<br>ct of<br>SELL | Mean of<br>ct of JHY | Mean<br>Δ ct | Mean Δ ct of calibrato r | ΔΔ ct  | 2- Δ<br>Δct | Experimental group\success group | Fold of gene expression mean±Std |
|----------------|--------------------------|----------------------|--------------|--------------------------|--------|-------------|----------------------------------|----------------------------------|
| Failure        | 18.62                    | 26.37                | -7.75        | 7.2                      | -14.95 | 31651.      | 31651.8\                         | 0.56 ±0.17*                      |
| group          |                          |                      |              |                          |        | 8           | 57052.4                          |                                  |
| Success        | 18.11                    | 26.71                | -8.6         | 7.2                      | -15.8  | 57052.      | 57052.4\5705                     | $1.00 \pm 0.00$                  |
| group          |                          |                      |              |                          |        | 4           | 2.4                              |                                  |

#### Discussion

This analyzed the L selectin gene polymorphism with expression level during an in vitro fertilization program for rs2229569 in exon five of the SELL gene. The failure implantation group showed deviations from H.W.E. in all genotypes. Significant differences in the failure group refer to the effects of infertility in the study population, in which infertility in the failure group leads to a deviate from HWE, and SELL gene polymorphism may be considered a factor related to infertility. Other Iraqi studies have emphasized that the SELL gene may play a role in type 2 diabetes mellitus in the Iraqi population<sup>21</sup>. Therefore, it is possible that SELL defects contribute implantation failures and infertility.

The present study found that the genotypes of *SELL* gene non- significantly varied between failure and

success group.TT genotype which could be considered an etiological genotype, while CC could be a protective allele related to success of implantation according to odds ratio. The rs2229569 T allele was most common among the failure group. This allele was present in about 21.43 % in failure group, but only 11.54% in the success group, according to Fisher's probability (2.09) may be consider etiological allele and could be related with the failure of implantation. This observation may highlight the role of the SELL polymorphism in IVF outcome. A different studies emphasize that different genes are associated with infertility and endometriosis one of them is SELL <sup>22-24</sup>. The present study agrees with study in Iran that showed E-Selectin mutant genotype frequency significantly higher in Coronary Patients

https://doi.org/10.21123/bsj.2024.8832 P-ISSN: 2078-8665 - E-ISSN: 2411-7986



pathogenesis <sup>25</sup>. The polymorphism of *SELL* in present study results from transition amino acid proline to serine, this genetic variant determines synthesis of protein with other amino acid serine; this leads to a change in the effectiveness of protein domain 1.

The results of the present study showed that *SELL* gene expression was downregulated in the failure groups (0.56) compared with the success groups (1.00) according to fold gene value. These findings demonstrate that downregulation of *SELL* gene expression may be associated with failure of embryo implantation. The present study agrees with other studies about Iraqi females showing that downregulation of Integrin Beta3 gene expression was associated with implantation failure <sup>26,27</sup>. Another study demonstrated that the level of 1-

selectin ligand was significantly more available in pregnant female<sup>28</sup>. Another local study shows that gene probability is associated with development of breast cancer <sup>29</sup>. It is well known that selectins play crucial roles during implantation as the primary adhesion molecules at the maternalfetal interface<sup>30, 31</sup>. Higher rates of embryo implantation and successful pregnancies have been linked to higher levels of L-selectin ligand in the secretory endometrium, suggesting a role for Lselectin ligand in facilitating endometrial receptivity and mediating the maternal-fetal interface 32-35. All these studies goes with the present study also emphasized a finding that there are many factors effect on IVF outcome and L selectin could be one of them. In order to improve this conclusion another studies with large sample requires.

#### **Conclusion**

In conclusion, this study demonstrates that the TT genotype and T allele of rs2229569 may be associated with the failure of implantation therefore it may be considering as the risky allele in female

under IVF program. In addition, the present study shows that downregulation of SELL gene expression may be associated with the failure of embryo implantation.

#### Acknowledgment

We appreciate the kind assistance and cooperation of the medical staff at Nuclear Medicine Hospital, Medical City in Baghdad.

#### **Authors' Declaration**

- Conflicts of Interest: None.
- We hereby confirm that all the Figures and Tables in the manuscript are ours. Furthermore, any Figures and images, that are not ours, have been included with the necessary permission for re-publication, which is attached to the manuscript.
- Authors sign on ethical consideration's approval. The study included human participants and was approved by the ethics committees of the intended hospitals. Participants gave their free, informed consent to take part in this research.
- Ethical Clearance: The project was approved by the local ethical committee at University of Baghdad.

#### **Authors' Contribution Statement**

A. M. S. A designed the whole project and primers following the research work, analyzed data and wrote the manuscript. R. H. R. collected the

samples and writing the draft of the manuscript. A. H. A. read the physiological part. All authors read and approved the final manuscript.

#### **Journal Declaration:**

Dr. Asmaa M. Salih Almohaidi is an Editor for the journal but did not participate in the peer review

process other than as an author. The authors declare no other conflict of interest.

https://doi.org/10.21123/bsj.2024.8832 P-ISSN: 2078-8665 - E-ISSN: 2411-7986



#### References

- Namdar A, Naghizadeh MM, Zamani M, Yaghmaei F, Sameni MH. Quality of life and general health of infertile women. healthcare. 2017; 15(1): 1-7. https://doi.org/10.1186/s12955-017-0712-y.
- Sirait BI, Reviani N, Udjung GI. Factors Affecting Infertility in Women of Reproductive Age in the IVF Programme. *Int. J. Trop. Dis. Health.* 2023; 44(1): 65-75. <a href="https://doi.org/10.9734/ijtdh%2F2023%2Fv44i1138">https://doi.org/10.9734/ijtdh%2F2023%2Fv44i1138</a>
- 3. Greil AL, Slauson-Blevins K, McQuillan J. The experience of infertility: a review of recent literature *Sociol Health Illn*. 2010; 32(1): 140-62. https://doi.org/10.1111/j.1467-9566.2009.01213.x.
- 4. Zaami S, Driul L, Sansone M, Scatena E, Andersson KL, Marinelli E. ART innovations: fostering women's psychophysical health between bioethics precepts and human rights. In *Healthcare*. 2021; 9 (11) :1486. https://doi.org/10.3390/healthcare9111486.
- Su RW, Fazleabas AT. Regulation of Implantation and Establishment of Pregnancy in Mammals. 6th ed. USA: Springer Cham, 2015. Chapter 10, Implantation and establishment of pregnancy in human and nonhuman primates; p.189-213. https://doi.org/10.1007/978-3-319-15856-3\_10.
- 6. Massimiani M, Lacconi V, La Civita F, Ticconi C, Rago R, Campagnolo L. Molecular signaling regulating endometrium–blastocyst crosstalk. Int J Mol Sci. 2019; 21(1): 23. <a href="https://doi.org/10.3390/ijms21010023">https://doi.org/10.3390/ijms21010023</a>.
- Darvishi B, Boroumandieh S, Majidzadeh-A K, Salehi M, Jafari F, Farahmand L. The role of activated leukocyte cell adhesion molecule (ALCAM) in cancer progression, invasion, metastasis and recurrence: A novel cancer stem cell marker and tumor-specific prognosticmarker. Exp.J.Mol.Pathol.2020; 115:104443. https://doi.org/10.1016/j.yexmp.2020.104443
- 8. Homrich M, Gotthard I, Wobst H, Diestel S. Cell adhesion molecules and ubiquitination—functions and significance. Biology. 2015; 5(1): 1. <a href="https://doi.org/10.3390/biology5010001">https://doi.org/10.3390/biology5010001</a>.
- AL-Maini EH, Ali SI. The correlation between serum levels of soluble platelet-selectin in preeclampsia with & without intrauterine growth retardation versus normal pregnancy. J .Fac Med Baghdad. 2017; 59(1): 36-41. <a href="https://doi.org/10.32007/jfacmedbagdad.591156">https://doi.org/10.32007/jfacmedbagdad.591156</a>.
- Sehring J, Beltsos A, Jeelani R. Human implantation: The complex interplay between endometrial receptivity, inflammation, and the microbiome. Placenta. 2022; 117: 179-86. <a href="https://doi.org/10.1016/j.placenta.2021.12.015">https://doi.org/10.1016/j.placenta.2021.12.015</a>.

- 11. .Ashary N, Tiwari A, Modi D. Embryo implantation: war in times of love. Gen. Comp. J Endocrinol. 2018; 159(2): 1188-98. https://doi.org/10.1210/en.2017-03082.
- 12. Dai W, Ma L, Cao Y, Wu D, Yu T, Zhai J. In vitro fertilization outcome in women with endometrial tuberculosis and tubal tuberculosis. Gynecol Endocrinol. 2020; 36(9): 819-23. https://doi.org/10.1080/09513590.2019.1702639.
- Ochoa-Bernal MA, Fazleabas AT. Physiologic events of embryo implantation and decidualization in human and non-human primates. Int J Mol Sci. 2020; 21(6): 1973. https://doi.org/10.3390/ijms21061973.
- 14. Zhong M, Huang J, Wu Z, Chan KG, Wang L, Li J, et al. Potential Roles of Selectins in Periodontal Diseases and Associated Systemic Diseases: Could They Be Targets for Immunotherapy? Int J Mol. 2022; 23(22): 14280. <a href="https://doi.org/10.3390/ijms232214280">https://doi.org/10.3390/ijms232214280</a>.
- 15. National Center for Biotechnology Information(https://www.ncbi.nlm.nih.gov/).
- Almohaidi AMS, Salman IN, Kaduhm RM. Study ABO/Rh system with Endothelial Inflammatory Factors in Iraqi Arab Female with Diabetes Mellitus Type II. Baghdad Sci J. 2014; 11(1): 93-102. <a href="https://doi.org/10.21123/bsj.2014.11.1.93-102">https://doi.org/10.21123/bsj.2014.11.1.93-102</a>.
- 17. Lai TH, Chang FW, Lin JJ, Ling QD. Gene expression of human endometrial L-selectin ligand in relation to the phases of the natural menstrual cycle. Sci Rep. 2018; 8(1): 1443. https://doi.org/10.1038/s41598-018-19911-z.
- Foulk RA, Zdravkovic T, Genbacev O, Prakobphol A. Expression of L-selectin ligand MECA-79 as a predictive marker of human uterine receptivity. J Assist Reprod Genet. 2007 Jul; 24: 316-21. https://doi.org/10.1007/s10815-007-9151-8
- Jozefczuk J, Adjaye J. Quantitative real-time PCR-based analysis of gene expression. Methods Enzymol. 2011; 500: 99-109. Academic Press. <a href="https://doi.org/10.1016/B978-0-12-385118-5.00006-2">https://doi.org/10.1016/B978-0-12-385118-5.00006-2</a>.
- Wei YS, Lan Y, Meng LQ, Nong LG. The association of L-selectin polymorphisms with L-selectin serum levels and risk of ischemic stroke. J Thromb. 2011; 32: 110-5. <a href="https://doi.org/10.1007/s11239-011-0587-4">https://doi.org/10.1007/s11239-011-0587-4</a>.
- 21. Al KA, Almohaidi AMS. Polymorphism variation of l-selectin the pro213ser (rs2229569) in Iraqi Arab patient with type2 diabetes mellitus (T2DM). *Iraqi journal of biotechnology*. 2017; 16(3):1-8. <a href="https://doi.org/10.25258/ijpqa.v9i01.11358">https://doi.org/10.25258/ijpqa.v9i01.11358</a>.
- 22. Zakariya BF, Almohaidi AMS, Şimşek SA, Kamal AM, Al-Dabbagh WH, Al-Waysi SA. The whole wheat effect and refined with E-selectin

https://doi.org/10.21123/bsj.2024.8832 P-ISSN: 2078-8665 - E-ISSN: 2411-7986



- polymorphism on breast cancer. *Analytical Science* & *Technology*. 2022; 35(4): 161-8. https://doi.org/10.5806/AST.2022.35.4.161.
- Alzubadiy MW, Almohaidi AMS, Sultan AA, Abdulhameed LQ. Evaluation of E-selectin rs 5367 C/T Polymorphism in Iraqi Diabetic Foot patients. In *Journal of Physics*: Conference Series 2019; 1294 (6): 06 2021. IOP Publishing. https://doi.org/10.1088/1742-6596/1294/6/062021.
- 24. Cho SB. Molecular Mechanisms of Endometriosis Revealed Using Omics Data. Biomedicines 2023; 1(11) 2-19. https://doi.org/10.3390/biomedicines11082210 .
- S, Ramezanidoraki 25. Ravat N, Kazemi N, Mohammad HM, Falah M, Zardadi S and Morovvati S Association study between polymorphisms in MIA3, SELE, SMAD3 and CETP genes and coronary artery disease in an Iranian population. BMC Cardiovascular Disorders 2022; 22(298) 1-9. https://doi.org/10.1186/s12872-022-02695-6
- 26. Yousif RA, Almohaidi AMS, Al-Musawi BJ. Assessment of ITGB3 gene expression and hormonal status in infertile female undergoing an in vitro fertilization protocol. HIV Nurs. 2023; 23(1): 770-8. <a href="https://doi.org/10.31838/hiv23.01.130">https://doi.org/10.31838/hiv23.01.130</a>
- Elnaggar A, Farag AH, Gaber ME, Hafeez MA, Ali MS, Atef AM. AlphaVBeta3 Integrin expression within uterine endometrium in unexplained infertility: a prospective cohort study. BMC Women's Health. 2017; 17(1): 1-9. https://doi.org/10.1186/s12905-017-0438-3.
- 28. Wang B, Sheng JZ, He RH, Qian YL, Jin F, Huang HF. High expression of l-selectin ligand in secretory endometrium is associated with better endometrial receptivity and facilitates embryo implantation in human being. Am J Reprod Immunol. 2008; 60(2): 127-34. <a href="https://doi.org/10.1111/j.1600-0897.2008.00604.x">https://doi.org/10.1111/j.1600-0897.2008.00604.x</a>.
- 29. Zakariya BF, Almohaidi AMS, Şimşek SA, Al-Waysi SA, Al-Dabbagh WH, Kamal AM. The relationship of E-26 selectin single nucleotide polymorphisms with breast cancer in Iraqi Arab

- women. Genomics Inform. 2022; 20(4). https://doi.org/10.5808/gi.22042.
- 30. Achache H, Revel A. Endometrial receptivity markers, the journey to successful embryo implantation. Hum Reprod Update. 2006; 12(6): 731-46. https://doi.org/10.1093/humupd/dml004.
- Miller D, Motomura K, Garcia-Flores V, Romero R, Gomez-Lopez N. Innate lymphoid cells in the maternal and fetal compartments. Front Immunol. 2018;
   9: 2396. <a href="https://doi.org/10.3389/fimmu.2018.02396">https://doi.org/10.3389/fimmu.2018.02396</a>
- 32. Wang B, Sheng JZ, He RH, Qian YL, Jin F, Huang HF. High expression of l-selectin ligand in secretory endometrium is associated with better endometrial receptivity and facilitates embryo implantation in human being. Am J Reprod Immunol. 2008; 60(2): 12734. https://doi.org/10.1111/j.16000897.2008.0060 4.x.
- 33. Pina Carvalho LF, Hui CY, Agarwal A. Endometriosis and infertility: biomarkers affecting implantation rate. J Obstet Gynaecol. 2013; 8(5): 467-73.
  - https://doi.org/10.1586/17474108.2013.825456
- 34. Feng Y, Ma Z, Deng L, Yao B, Xiong Y, Wu Y, Wang L, Ma Q, and Ma F. Role of selectins and their ligands in human implantation stage. Glycobiolog. 2017; 27(5) 385–391 https://doi.org/10.1093/glycob/cwx009.
- 35. Vazgiourakis Vm, Zervou2 Mi, Papageorgiou L, Chaniotis D, Spandidosm Da, Vlachakis D,Eliopoulos E and Goulielmos2 Ga. Association of endometriosis with cardiovascular disease: Genetic aspects. International Journal of Molecular Medicine. 2023; 51(29) 1-16. https://doi.org/10.3892/ijmm.2023.5232.
- 36. Ersuz R, Karapınar O S, Doğan S. Comparison of Serum Levels of Cell Adhesion Molecules (E-selectin, P-selectin, Icam-1, Vcam-1, Lrg-1) in Placental İnvasion and Adhesion Anomalies With Patients With Vaginal Delivery and Former Cesarerean. Research Square; 2-19. <a href="https://doi.org/10.21203/rs.3.rs-2059755/v1">https://doi.org/10.21203/rs.3.rs-2059755/v1</a>

## تعدد الأشكال للقاعدة المفردة rs2229569 مع التعبير الجيني للسلكتين L في الاناث العراقيات اثناء برنامج الاخصاب خارج الجسم الحي

### رغد حميد رشيد ، أسماء محمد صالح المهيدي ، عالية حسين علي

قسم علوم الحياة، كلية العلوم للبنات، جامعة بغداد ، بغداد ، العراق.

#### الخلاصة

يُعرف العقم بأنه أحد مشاكل الصحة الإنجابية الرائدة في مناطق مختلفة من العالم. يعتبر الإخصاب في المختبر أحد أكثر علاجات العقم فعالية. في الدراسة الحالية ، تم تحديد دور جين SELL ، وخاصة تعدد الأشكال rs2229569 ، من حيث الانغراس ومستوى التعبير. اشتملت الدراسة على 67 انثى خضعن لدورة إخصاب في المختبر ، مقسمة إلى مجموعتين رئيسيتين: مجموعة الإناث التي فشلت عملية الزرع ومجموعة الإناث الناجحة في عملية الزرع. تم جمع عينات الدم من مجموعتي الاناث. بعد استخلاص الدنا من الدم وتضخيم الحمض النووي عن طريق تفاعل البلمرة المتسلسل ، تم إرسال العينات لتحليل التسلسل ، وتم تحديد SNP rs2229569 التي التي اظهرت ثلاثة أنماط وراثية. كانت مجموعة الفشل منحرفه عن .H.W.E، وكانت مجموعة النجاح في اتفاق مع .H.W.E وقيم مربع كاي (1.50 1.58) ، تشير الفروق المعنوية في مجموعة الفشل إلى تأثير العقم في مجتمع الدراسة. تُظهر نسبة الأرجحية لـ rs2229569 أن أليل T كان (2.09) ، لذلك قد يمثل T allele أليل المخاطرة لعملية فشل الزرع .أخيرًا ، أظهر جين SELL مستوى تعبيرًا منخفضًا لدى الاناث المصابات بفشل الزرع مقارنة بالاناث في مجموعات الزرع الناجحة.

الكلمات المفتاحية: التعبير الجيني, تعدد الأشكال للقاعدة الواحدة وrs2229569, العقم الاخصاب في المختبر, سلكتين L.