

Recurrency on the Space of Hilbert-Schmidt Operators

Mansooreh Moosapoor

Department of Mathematics Education, Farhangian University, P.O. Box 14665-889, Tehran, Iran.

Received 07/04/2023, Revised 15/07/2023, Accepted 17/07/2023, Published Online First 20/10/2023, Published 01/05/2024

0

© 2022 The Author(s). Published by College of Science for Women, University of Baghdad. This is an Open Access article distributed under the terms of the <u>Creative Commons Attribution 4.0 International</u> <u>License</u>, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In this paper, it is proved that if a CO-semigroup is chaotic, hypermixing or supermixing, then the related left multiplication CO-semigroup on the space of Hilbert-Schmidt operators is recurrent if and only if it is hypercyclic. Also, it is stated that under some conditions recurrence of a CO-semigroup and the recurrency of the left multiplication CO-semigroup that is related to it, on the space of Hilbert-Schmidt operators are equivalent. Moreover, some sufficient conditions for recurrency and hypercyclicity of the left multiplication CO-semigroup are presented that are based on dense subsets.

Keywords: Hilbert-Schmidt Operators, Hypercyclic Operators, Left Multiplication, Recurrent Operators, Recurrent Semigroup.

Introduction

Let B(H) be a set of bounded and linear operators on a Hilbert space H. An operator $T \in B(H)$ is called hypercyclic if $h \in H$ exists such that orb(T,h)be dense in Η. that is $\overline{\{h, Th, \dots, T^nh, \dots\}} = H^{-1}$. Hypercyclicity of an operator implies for any nonempty open sets $U, V \subseteq$ *H*, there is $n \in \mathbb{N}$ such that $T^{-n}(U) \cap V \neq \emptyset^{-1}$. If for any nonempty open set $U \subseteq H$, there is $n \in \mathbb{N}$ such that $T^{-n}(U) \cap U \neq \emptyset$, T is called a recurrent 2. Hence, operator hypercyclicity implies recurrence. These concepts and related topics are investigated by many mathematicians. To see a history of these concepts, one can refer to 3 and 4 .

Another interesting structure that concepts like hypercyclicity and recurrency investigated on it is a C_0 -semigroup. A C_0 -semigroup on a Hilbert space H is a family $(T_t)_{t\geq 0}$ of operators on H with these properties that $T_0 = I$, $T_t T_s = T_{s+t}$ for any $s, t \geq 0$, and for any $h \in H$, $\lim_{s \to t} T_s h = T_t h$ for any $t \geq 0^{-1}$. A C_0 -semigroup $(T_t)_{t\geq 0}$ is said a hypercyclic C_0 semigroup if $orb((T_t)_{t\geq 0}, h)$ is dense in H for some $h \in H$. It is well known that the hypercyclicity of a C_0 -semigroup implies that for any nonempty open sets $U, V \subseteq H$, t > 0 can be found such that $T_t^{-1}(U) \cap V \neq \emptyset^{-1}$. One can find more about the hypercyclicity of a C_0 -semigroup in ⁵. It is proved in Theorem 2.4 of ¹ that hypercyclic C_0 -semigroups can be found in every infinite-dimensional separable Hilbert space. Also, one can see ⁶⁻⁹ for more information.

There are some criteria for C_0 -semigroups. Recall hypercyclicity criterion (HCC) and recurrent hypercyclicity criterion (RHCC) given from ¹⁰ as follows. In the following, *H* always indicates a separable Hilbert space.

Definition 1: (see ¹⁰) (HCC) A C_0 -semigroup $(T_t)_{t\geq 0}$ on *H* fulfills the hypercyclicity criterion if and only if t > 0 can be found with these properties Page | 1667 that $T_t(U) \cap W \neq \emptyset$, and $T_t(W) \cap V \neq \emptyset$, where *W* is a neighborhood of zero in *H* and $U, V \subseteq H$ are nonempty open sets.

Definition 2: (see ¹⁰) (RHCC) A C_0 -semigroup $(T_t)_{t\geq 0}$ on H fulfills recurrent hypercyclicity criterion if and only if for any nonempty open sets $U, V \subseteq H$ and any neighborhood W of zero in H, L_1 and L_2 can be chosen with this property that, $q_1 \in [t, t + L_1]$ and $q_2 \in [t, t + L_2]$ can be found such that for any t > 0

 $T_{q_1}(U)\cap W\neq \emptyset\,, \quad \text{and} \quad T_{q_2}(W)\cap V\neq \emptyset.$

One can see some relations between HCC and RHCC in $^{10}\!\!$

A C_0 -semigroup $(T_t)_{t\geq 0}$ on H is called recurrent if for any nonempty open set $U \subseteq H$, there is t > 0such that $T_t^{-1}(U) \cap U \neq \emptyset^2$. By Definition 1, and Definition 2, it is deduced that for C_0 -semigroups, hypercyclicity implies recurrency. It is proved in Theorem 5 of ² that recurrent C_0 -semigroups can be found in finite-dimensional spaces, too. If for a vector $h \in H$, an increasing sequence (t_n) exists such that $T_{t_n}h \rightarrow h$, then h is called a recurrent vector for $(T_t)_{t\geq 0}$ ². The set of recurrent vectors for $(T_t)_{t\geq 0}$ is denoted by $Rec(T_t)_{t\geq 0}$. It is proved that the recurrence of $(T_t)_{t\geq 0}$ has a dense set of recurrent vectors ².

It is interesting to investigate recurrency on $B_2(H)$, where $B_2(H)$ is the algebra of Hilbert-Schmidt operators. Remind that if a separable Hilbert space *H* has the basis $\{e_i\}$, then

$$||T||_2 = (\sum_{i=1}^{\infty} ||Te_i||^2)^{\frac{1}{2}}.$$

If $||T||_2 < \infty$, *T* is said a Hilbert-Schmidt operator. Also, it is interesting to investigate recurrency on the operator algebra B(H), when *H* is a Hilbert space on \mathbb{C} , the field of complex numbers, where *H* is separable and infinite-dimensional. The norm

Results and Discussion

Main Results

In the beginning, it is proved that the recurrency of left multiplication semigroup on operator algebra

topology of B(H) is not separable ¹¹. Also, B(H) is separable with strong operator topology or briefly SOT-topology ¹¹.

A considerable operator on B(H) and $B_2(H)$ is left multiplication. Recall that the left multiplication $L_T: B(H) \rightarrow B(H)$ is defined with $L_TS = TS$ for any $S \in B(H)$. The operator L_T defines similarly on $B_2(H)$. Yousefi and Rezaei proved that the hypercyclicity of L_T on B(H) is equivalent to the hypercyclicity of L_T on $B_2(H)$, and equivalent to this condition that T satisfies in hypercyclicity criterion for operators on H^{12} . One can see ¹³ and ¹⁴ for some related matter to operators on Hilbert-Schmidt operators.

For a C_0 -semigroup $(T_t)_{t\geq 0}$ on H and any operator $S \in B(H)$, if $(L_{T_t})_{t\geq 0}$ is defined on B(H), with $(L_{T_t}S)_{t\geq 0} = (T_tS)_{t\geq 0}$, then $(L_{T_t})_{t\geq 0}$ is a C_0 -semigroup, since for any $t, q \geq 0$ and any $S \in B(H)$,

$$L_{T_0}S = L_IS = IS = I,$$

$$L_{T_t}L_{T_q}S = L_{T_t}(L_{T_q}S) = L_{T_t}(T_qS) = T_t(T_qS)$$

$$= T_{t+q}S,$$

$$\lim_{t \to a} L_{T_t}S = \lim_{t \to a} T_tS = T_qS.$$

 $(L_{T_t})_{t\geq 0}$ Is called a left multiplication C_0 -semigroup related to $(T_t)_{t\geq 0}$ or simplify a left multiplication C_0 -semigroup.

It is proved in this paper that the recurrency of $(L_{T_t})_{t\geq 0}$ on $B_2(H)$ with $||.||_2$ -topology and on B(H) with SOT-topology is equivalent. It is established that if $(T_t)_{t\geq 0}$ satisfies the RHCC or HCC, then $(L_{T_t})_{t\geq 0}$ is recurrent. It is proved that if a C_0 -semigroup is chaotic, hypermixing or supermixing, then its related left multiplication C_0 semigroup on the space of Hilbert-Schmidt operators is recurrent if and only if it is hypercyclic. some sufficient conditions Moreover, for hypercyclicity and recurrency of $(L_{T_t})_{t\geq 0}$ that are based on dense subsets of B(H) are stated.

and its recurrency on the space of Hilbert-Schmidt operators are equivalent.

In the following, consider S(H) as the set of finite rank operators. That means for any $T \in S(H)$, a natural number m_T can be found such that $Te_i = 0$, when $i \ge m_T$.

Theorem 1: For a C_0 -semigroup $(T_t)_{t\geq 0}$ on H, the following are equivalent:

(a) $(L_{T_t})_{t\geq 0}$ is recurrent on $B_2(H)$ with $||.||_2$ -topology,

(b) $(L_{T_t})_{t\geq 0}$ is recurrent on B(H) with strong operator topology.

Proof: (a) \rightarrow (b) Suppose $(L_{T_t})_{t\geq 0}$ is recurrent on $B_2(H)$ with $||.||_2$ -topology. Hence $(L_{T_t})_{t\geq 0}$ has a dense set of recurrent vectors on $B_2(H)$ by Theorem 3 in ². That means $Rec((L_{T_t})_{t\geq 0})$ is dense in $B_2(H)$ with $||.||_2$ -topology. Consider $x \in Rec((L_{T_t})_{t\geq 0})$. Hence, $L_{T_{t_n}}x \rightarrow x$ with $||.||_2$ -topology for some increasing sequence (t_n) . Therefore, $L_{T_{t_n}}x \rightarrow x$ with SOT-topology. So x is a recurrent vector for $(L_{T_t})_{t\geq 0}$ in the SOT-topology on $B_2(H)$. Hence, $Rec((L_{T_t})_{t\geq 0})$ is dense in $B_2(H)$ with SOT-topology ¹². Hence, $(L_{T_t})_{t\geq 0}$ has a dense set of recurrent vectors on B(H) with SOT-topology. So $(L_{T_t})_{t\geq 0}$ is recurrent on B(H) with SOT-topology ¹². Hence, $(L_T)_{t\geq 0}$ has a dense set of recurrent vectors on B(H) with SOT-topology. So $(L_{T_t})_{t\geq 0}$ is recurrent on B(H) with SOT-topology. So $(L_{T_t})_{t\geq 0}$ is recurrent on B(H) with SOT-topology. So $(L_{T_t})_{t\geq 0}$ is recurrent on B(H) with SOT-topology. So $(L_{T_t})_{t\geq 0}$ is recurrent on B(H) with SOT-topology. So $(L_{T_t})_{t\geq 0}$ is recurrent on B(H) with SOT-topology. So $(L_{T_t})_{t\geq 0}$ is recurrent on B(H) with SOT-topology. So $(L_{T_t})_{t\geq 0}$ is recurrent on B(H) with SOT-topology. So $(L_{T_t})_{t\geq 0}$ is recurrent on B(H) with SOT-topology. So $(L_{T_t})_{t\geq 0}$ is recurrent on B(H) with SOT-topology. So $(L_{T_t})_{t\geq 0}$ is recurrent on B(H) with SOT-topology. So $(L_{T_t})_{t\geq 0}$ is recurrent on B(H) with SOT-topology. So $(L_{T_t})_{t\geq 0}$ is recurrent on B(H) with SOT-topology. So $(L_{T_t})_{t\geq 0}$ is recurrent on B(H) with SOT-topology. So $(L_{T_t})_{t\geq 0}$ is recurrent on B(H) with SOT-topology. So $(L_{T_t})_{t\geq 0}$ is recurrent on B(H) with SOT-topology. So $(L_{T_t})_{t\geq 0}$ is recurrent on B(H) with SOT-topology. So $(L_{T_t})_{t\geq 0}$ is recurrent on B(H) with SOT-topology. So $(L_{T_t})_{t\geq 0}$ is recurrent on L_{T_t} .

(b) \rightarrow (a) Suppose that $(L_{T_t})_{t\geq 0}$ is recurrent on B(H) with SOT-topology. Let U be a norm open and nonempty set. Let $A \in U \cap S(H)$. Suppose that $Ae_i = 0$ for any i > N. Let $D = \sum_{i=1}^{N} e_i \otimes e_i$. Hence,

 $AD = \sum_{i=1}^{N} A(e_i \otimes e_i) = A.$

Now, let

$$\begin{split} U_k &= \Big\{ V \in B(H) \colon \big| |Ve_i - Ae_i| \big| < \frac{1}{k} \colon 1 \le i \le N \Big\}. \\ U_k \text{ is a SOT-open set in } B(H). \text{ By assumption,} \\ \text{there is } t_0 > 0 \text{ with this property that } L_{T_{t_0}}^{-1}(U_k) \cap \\ U_k \neq \emptyset. \text{ Hence, there is } S_k \in B(H) \text{ such that } S_k \in \\ U_k \text{ and } T_{t_0}S_k \in U_k. \text{ That means, for any } i \text{ with } 1 \le i \le N, \end{split}$$

$$\left|\left|S_k e_i - A e_i\right|\right| < \frac{1}{k} \text{, and } \left|\left|T_{t_0} S_k e_i - A e_i\right|\right| < \frac{1}{k}.$$

Now,

$$||S_k D - AD||_2^2 = \sum_{i=1}^N ||(S_k - A)e_i||^2 \le \frac{N}{k^2},$$

and

$$\left| \left| L_{T_{t_0}}(S_k D) - AD \right| \right|_2^2 = \sum_{i=1}^N \left| |(T_0 S_k - A)e_i| \right|^2 \le \frac{N}{k^2}.$$

Therefore, $S_k D \to AD$ with $||.||_2$ and $L_{T_{t_0}}(S_k D) \to AD$ with $||.||_2$, where $k \to \infty$. So $S_k D \in U$, and $L_{T_{t_0}}(S_k D) \in U$. Moreover, $S_k D$ and $L_{T_{t_0}}(S_k D)$ are finite rank operators and hence, they are Hilbert-Schmidt operators. Therefore, $L_{T_{t_0}}^{-1}(U) \cap U \neq \emptyset$.

The following theorem indicates that satisfying HCC and RHCC are sufficient conditions for the recurrence of left multiplication C_0 -semigroup.

Theorem 2: If $(T_t)_{t\geq 0}$ satisfies HCC or RHCC on $B_2(H)$, then $(L_{T_t})_{t\geq 0}$ is recurrent.

Proof: If $(T_t)_{t\geq 0}$ satisfies RHCC, then it satisfies HCC by Proposition 2.2 of ¹⁰. So T_1 satisfies HCC ¹. By ¹², L_{T_1} is hyper on $B_2(H)$. Hence, L_{T_1} is recurrent on $B_2(H)$. Therefore, $(L_{T_t})_{t\geq 0}$ is recurrent by Theorem1 in ².

Now, this question arises is the recurrency of $(L_{T_t})_{t\geq 0}$ implying that $(T_t)_{t\geq 0}$ is recurrent? In the next theorem, it is shown that if $(L_{T_t})_{t\geq 0}$ satisfies HCC or RHCC, then the answer to this question is positive.

Theorem 3: Let $(T_t)_{t\geq 0}$ be a C_0 -semigroups on H. If $(L_{T_t})_{t\geq 0}$ satisfies RHCC or HCC on $B_2(H)$, then $(T_t)_{t\geq 0}$ is recurrent on H.

Proof: Let $(L_{T_t})_{t\geq 0}$ satisfies RHCC. Hence $(L_{T_t})_{t\geq 0}$ satisfies HCC ¹⁰. So $(L_{T_t} \oplus L_{T_t})_{t\geq 0}$ is hypercyclic by Theorem 2.3 in ¹⁵. Therefore, $L_{T_t} \oplus L_{T_t}$ is hypercyclic for any t > 0 by Theorem 2.3 in ¹⁶. Consider $t_0 > 0$. By Theorem 2.3 in ¹⁵, $L_{T_{t_0}}$ satisfies in HCC. By Proposition 2.3 in ¹², $\bigoplus_{n=1}^{\infty} T_{t_0}$ satisfies in HCC. Therefore, T_{t_0} is hypercyclic. Thus T_{t_0} and so $(T_t)_{t\geq 0}$ is recurrent.

By Theorem 2, and Theorem 3, the following corollary is concluded.

Corollary 1: Let $(T_t)_{t\geq 0}$ on H and $(L_{T_t})_{t\geq 0}$ on $B_2(H)$ both satisfy one of RHCC or HCC. Then the following conditions are equivalent:

(a) $(L_{T_t})_{t\geq 0}$ is recurrent on $B_2(H)$ with $||.||_2$ -topology.

(b) $(L_{T_t})_{t\geq 0}$ is recurrent on B(H) with SOT-topology.

(c) $(T_t)_{t\geq 0}$ is recurrent on *H*.

A C_0 -semigroup $(T_t)_{t\geq 0}$ on H is chaotic if it is hypercyclic and has a dense set of periodic points in H. That means, there is a dense set of points like $h \in H$ such that $T_{t_0}h = h$ for some $t_0 > 0^{-1}$. Therefore, a chaotic C_0 -semigroup is recurrent.

Example 1: Consider $H \coloneqq l^p$, $1 \le p < \infty$. Let $(T_t)_{t\ge0}$ be a C_0 -semigroups on l^p such that $T_{t_0} = \lambda_0 B$ for some $t_0 > 0$, where *B* is the backward shift on l^p and $|\lambda_0| > 1$. By Example 2.32⁻¹, $T_{t_0} = \lambda_0 B$ is chaotic. Hence, $(T_t)_{t\ge0}$ is a chaotic C_0 -semigroups on l^p since any periodic point of $T_{t_0} = \lambda_0 B$ is a periodic point of $(T_t)_{t\ge0}$. Hence, $(T_t)_{t\ge0}$ is recurrent on l^p . So, $(L_{T_t})_{t\ge0}$ is recurrent on $B_2(H)$ with $||.||_2$ -topology, and $(L_{T_t})_{t\ge0}$ is recurrent on B(H) with SOT-topology by Corollary 1.

By Theorem 3, the following corollary about chaotic semigroups is concluded.

Corollary 2: If $(T_t)_{t\geq 0}$ and $(S_t)_{t\geq 0}$ are chaotic C_0 -semigroups on H, then $(T_t \bigoplus S_t)_{t\geq 0}$ is recurrent on $H \bigoplus H$.

Proof: By Corollary 6.2 in ¹⁰, a chaotic semigroup satisfies RHCC. By Corollary 5.6 in ¹⁰, $(T_t \bigoplus S_t)_{t\geq 0}$ satisfies in RHCC. So $(T_t \bigoplus S_t)_{t\geq 0}$ is recurrent.

The following corollary is a direct result of Corollary 1, and Corollary 2.

Corollary 3: If $(T_t)_{t\geq 0}$ is a chaotic C_0 -semigroups on H, then $(L_{T_t})_{t\geq 0}$ is recurrent on $B_2(H)$ and B(H). Moreover, $(L_{T_t \oplus T_t})_{t\geq 0}$ is recurrent.

Some Sufficient Conditions

This section is started with a sufficient condition for hypercyclicity and hence, recurrency for a C_0 -semigroup.

Theorem 4: Let $(T_t)_{t\geq 0}$ be a C_0 -semigroup on a Hilbert space H. Suppose $A \subseteq H$ exists such that $\overline{A} = H$ and suppose that $(S_t)_{t\geq 0}$ exists on H with these properties:

- (a) $T_t S_t = I$ on A,
- (b) $||T_t(a)|| \to 0$, when $t \to \infty$ for any $a \in A$,
- (c) $||S_t(a)|| \to 0$, when $t \to \infty$ for any $a \in A$.

Then $(T_t)_{t\geq 0}$ is hypercyclic. Especially, $(T_t)_{t\geq 0}$ is recurrent.

Proof: It is sufficient to consider Theorem 7.29 in ¹.

The idea of the following theorem is given from Theorem 2.1 in 1 .

Theorem 5: Let $(T_t)_{t\geq 0}$ be a C_0 -semigroups on B(H). Suppose that there is a C_0 -semigroup $(S_t)_{t\geq 0}$ on B(H) such that $T_tS_t = I$ for any t > 0. If there is a SOT-dense set $D \subseteq B(H)$ such that for any $g \in D$,

$$|T_t(g)|| \rightarrow 0$$
, and $||S_t(g)|| \rightarrow 0$,

when $t \to \infty$, then $(T_t)_{t\geq 0}$ is hypercyclic. Especially, $(T_t)_{t\geq 0}$ is recurrent.

Proof: Let $D' = \{f_k : k \ge 1\}$ be a countable SOTdense subset of *D*. By hypothesis, t_1 can be found such that

$$\left|\left|T_{t_1}(f_1)\right|\right| < \frac{1}{2}.$$

Also, t_2 can be found such that

$$\left| \left| T_{t_2}(f_2) \right| \right| < \frac{1}{2^{1+2}}, \text{ and } \left| \left| S_{t_2}(f_1) \right| \right| < \frac{1}{2^2}.$$

Also, one can find t_3 such that

$$\begin{split} \left| \left| T_{t_1+t_2+t_3}(f_3) \right| \right| &< \frac{1}{2^{1+2+3}}, \left| \left| T_{t_2+t_3}(f_3) \right| \right| < \frac{1}{2^{2+3}}, \\ & \left| \left| T_{t_3}(f_3) \right| \right| < \frac{1}{2^3}, \end{split}$$

$$\left| \left| S_{t_2+t_3}(f_1) \right| \right| < \frac{1}{2^{2+3}}, \text{ and } \left| \left| S_{t_3}(f_2) \right| \right| < \frac{1}{2^3}$$

In such a way, one can find t_k such that for m = 1, 2, ..., k and for i = 2, 3, ..., k,

$$\left| \left| T_{t_m + t_{m+1} + \dots + t_k}(f_k) \right| \right| < \frac{1}{2^{m + (m+1) + \dots + k}},$$

and

$$\left| \left| S_{t_i + t_{i+1} + \dots + t_k}(f_{i-1}) \right| \right| < \frac{1}{2^{i + (i+1) + \dots + k}}$$

Let

2024, 21(5): 1667-1674 https://dx.doi.org/10.21123/bsj.2023.8870 P-ISSN: 2078-8665 - E-ISSN: 2411-7986

$$f = \textstyle{\sum_{k=1}^{\infty} S_{t_1+t_2+\dots+t_k}}(f_k),$$

The above definition is meaningful. Since the series is absolutely convergent by Eq 2.

Consider $m \ge 2$. Then by the boundedness of $T_{t_1+t_2+\dots+t_m}$,

$$\begin{split} T_{t_1+t_2+\dots+t_m}(f) \\ &= \sum\nolimits_{k=1}^{\infty} T_{t_1+t_2+\dots+t_m} S_{t_1+t_2+\dots+t_k} \left(f_k \right) \\ &= \\ \sum\nolimits_{k=1}^{m-1} T_{t_1+t_2+\dots+t_m}(f_k) + f_m + \\ \sum\nolimits_{k=m+1}^{\infty} S_{t_{m+1}+\dots+t_k}(f_k). \quad 3 \end{split}$$

By Eq 1 and Eq 2, it is concluded from Eq 3 that

$$\lim_{m \to \infty} || T_{t_1 + t_2 + \dots + t_m}(f) - f_m || = 0.$$
 4

f is a hypercyclic vector for $(T_t)_{t\geq 0}$. For this, let *U* be a nonempty open set in SOT-topology. So there are $h_1, h_2, ..., h_n \in H$ and $f_0 \in B(H)$ such that

$$U = U(f_0, \varepsilon; h_1, h_2, \dots, h_n) = \{g \in B(H): ||(g - f_0)h_i|| < \varepsilon, \ i = 1, 2, \dots, N\}.$$

If $h_1 = h_2 = \dots = h_n = 0$, then U = B(H) and hence $U \cap orb((T_t)_{t \ge 0}, f) \neq \emptyset$.

If one of the h_i 's is non-zero, consider

 $\alpha = \max\{1, ||h_i|| : 1 \le i \le N\}.$

By Eq 4, a positive integer M exists with this property that for any $m \ge M$,

 $||T_{t_1+t_2+\cdots+t_m}(f)-f_m|| < \frac{\varepsilon}{2\alpha}.$

Hence, for any $1 \le i \le N$ and for any $m \ge M$,

$$||T_{t_1+t_2+\cdots+t_m}f(h_i) - f_m(h_i)|| < \frac{\varepsilon}{2\alpha} ||h_i|| < \frac{\varepsilon}{2\alpha}$$

On the other hand, SOT-density of $\{f_k : k \ge 1\}$ in B(H) implies that $\{f_k : k \ge m\}$ is SOT-dense in B(H), too. Hence, there is $k_0 \ge M$ such that $f_{k_0} \in U$. So for any $k_0 \ge M$,

$$\left| \left| f_{k_0}(h_i) - f_0(h_i) \right| \right| < \frac{\varepsilon}{2}.$$
 5

Therefore, by Eq 5 for any $1 \le i \le N$

$$\begin{aligned} ||T_{t_1+t_2+\dots+t_{k_0}}f(h_i) - f_0(h_i)|| &\leq \\ ||T_{t_1+t_2+\dots+t_{k_0}}f(h_i) - f_{k_0}(h_i)|| + \\ &\left| \left| f_{k_0}(h_i) - f_0(h_i) \right| \right| \\ &< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon. \end{aligned}$$

Now, Eq 6 implies that $T_{t_1+t_2+\dots+t_{k_0}}(f) \in U$. That means in this case, $U \cap orb((T_t)_{t\geq 0}, f) \neq \emptyset$. So f is a hypercyclic vector for $(T_t)_{t\geq 0}$. This completes the proof.

Theorem 6: Let $(T_t)_{t\geq 0}$ and $(S_t)_{t\geq 0}$ be two C_0 -semigroups on B(H). Suppose that $A \subseteq H$ exists such that $\overline{A} = H$, and for any $x \in A$,

$$\lim_{t\to\infty} ||T_t x|| = 0, \text{ and } \lim_{t\to\infty} ||S_t x|| = 0.$$

Then there is $D \subseteq B(H)$ such that *D* is dense in B(H) with SOT-topology with this property that for any $W \in D$,

$$\lim_{t\to\infty} \left| \left| L_{T_t}(W) \right| \right| = 0, \text{ and } \lim_{t\to\infty} \left| \left| L_{S_t}(W) \right| \right| = 0.$$

Proof: A countable set $A' \subseteq A$ can be found such that $\overline{A'} = H$. Let $\{e_k : k \ge 1\}$ be an orthonormal basis for *H*. Consider

$$D := \{ W \in B(H) : \exists n_W; We_k = 0 \text{ when } k > n_W \text{ and } We_k \in A' \text{ when } k \le n_W \}.$$

The set *D* is dense in B(H) [4, Lemma 3.1]. Also, if $f = \sum_{k=1}^{\infty} a_k e_k$ with $\sum_{k=1}^{\infty} |a_k|^2 < \infty$, then by Eq 7 for any $W \in D$,

$$||L_{T_t}(W)f||^2 = ||T_t(Wf)||^2$$

= $||T_t\left(\sum_{k=1}^{n_W} a_k W(e_k)\right)||^2$
= $||\sum_{k=1}^{n_W} a_k T_t W(e_k)||^2$
 $\leq \sum_{k=1}^{n_W} (|a_k| ||T_t(We_k)||)^2$
 $\leq (\sum_{k=1}^{n_W} |a_k|^2) (\sum_{k=1}^{n_W} ||T_t(We_k)||^2)$
 $\leq ||f||^2 \sum_{k=1}^{n_W} ||T_t(We_k)||^2.$ 8

For each $W \in D$, $We_k \in A'$ for any $k \le n_W$. So $||T_t(We_k)|| \to 0$, when $t \to \infty$. Hence, it is Page | 1671

concluded from Eq 8 that $||L_{T_t}(W)|| \to 0$, when $t \to \infty$. So, *D* is the desired set.

Theorem 6 and Theorem 4 lead us to the next corollary. Note that if $(T_t)_{t\geq 0}$ and $(S_t)_{t\geq 0}$ are two C_0 -semigroups on H with this property that $T_tS_t = I$ on H, then $L_{T_t}L_{S_t} = I$ on B(H). Because for any $W \in B(H)$,

 $L_{T_t}L_{S_t}W = L_{T_t}(L_{S_t}W) = L_{T_t}(S_tW) = T_t S_tW = W.$ 9

Corollary 4: Let $(T_t)_{t\geq 0}$ be a C_0 -semigroup on H. If $(T_t)_{t\geq 0}$ satisfies the conditions of Theorem 4, then $(L_{T_t})_{t\geq 0}$ is hypercyclic on $B_2(H)$ with $||.||_2$ -topology. Especially, $(T_t)_{t\geq 0}$ is recurrent on B(H) with SOT-topology and on $B_2(H)$ with $||.||_2$ -topology.

Proof: If $(T_t)_{t\geq 0}$ satisfies the conditions of Theorem 4, then $(T_t)_{t\geq 0}$ satisfies the conditions of Theorem 6. Also, because $(S_t)_{t\geq 0}$ is the right inverse of $(T_t)_{t\geq 0}$, then $(L_{W_t})_{t\geq 0}$ is the right inverse of $(L_{T_t})_{t\geq 0}$ as it is shown in Eq 9.

Supermixing, Hypermixing, and Recurrency of Left Multiplication C_0 -semigroup

A C_0 -semigroup $(T_t)_{t\geq 0}$ on H is named supermixing if $\bigcup_{i=0}^{\infty} \bigcap_{t\geq i} T_t(U)$ is dense in H for any nonempty open subset U of H and if $H \setminus \{0\} \subseteq \bigcup_{i=0}^{\infty} \bigcap_{t\geq i} T_t(U)$, then $(T_t)_{t\geq 0}$ is called hypermixing ¹⁷. The set of hypermixing and supermixing C_0 semigroups are proper subsets of the set of hypercyclic C_0 -semigroups ¹⁷. It is shown in the next theorem that hypermixing (supermixing) of a C_0 -semigroup indicates hypercyclicity and recurrency of the related left multiplication.

Theorem 7: Let $(T_t)_{t\geq 0}$ be a hypermixing (supermixing) C_0 -semigroup on H. Then

(a) $(L_{T_t})_{t\geq 0}$ is hypercyclic on $B_2(H)$ with $||.||_2$ -topology,

(b) $(L_{T_t})_{t\geq 0}$ is recurrent on $B_2(H)$ with $||.||_2$ -topology,

(c) $(L_{T_t})_{t\geq 0}$ is recurrent on B(H) with SOT-topology.

Proof: First note that $(T_t)_{t\geq 0}$ satisfies HCC because $(T_t)_{t\geq 0}$ is hypermixing by Theorem 3.6 in ¹⁷. Similar to the proof of Theorem 2, L_{T_1} is hypercyclic on $B_2(H)$. So $(L_{T_t})_{t\geq 0}$ is hypercyclic on $B_2(H)$.

Part (a) implies part (b) because recurrency is concluded from hypercyclicity.

Finally, Theorem 1 asserts part (c), since by Theorem 1, the recurrency of $(L_{T_t})_{t\geq 0}$ on $B_2(H)$, and recurrency of $(L_{T_t})_{t\geq 0}$ on B(H) with SOTtopology are equivalent.

The proof is similar when $(T_t)_{t\geq 0}$ is supermixing.

The following theorem shows that hypermixing (supermixing) of left multiplication C_0 -semigroup $(L_{T_t})_{t\geq 0}$, implies the recurrency of $(T_t)_{t\geq 0}$.

Theorem 8: Let $(L_{T_t})_{t\geq 0}$ is a hypermixing(supermixing) C_0 -semigroup on $B_2(H)$ with $||.||_2$ -topology. Then $(T_t)_{t\geq 0}$ is hypercyclic on H. Especially, $(T_t)_{t\geq 0}$ is recurrent.

Proof: By hypothesis, $(L_{T_t})_{t\geq 0}$ is a hypermixing. So by Theorem 3.6 in ¹⁷, $(L_{T_t})_{t\geq 0}$ satisfies HCC. Similar to the proof of Theorem 1, the operator T_{t_1} is hypercyclic. Hence, $(T_t)_{t\geq 0}$ is hypercyclic on H and hence, it is recurrent.

Similarly, the supermixing of $(L_{T_t})_{t\geq 0}$ indicates that $(T_t)_{t\geq 0}$ is recurrent.

Since hypermixing (supermixing) C_0 -semigroups are hypercyclic they do not exist on B(H) with SOT-topology. Also, the following corollary about the left multiplication operator is given.

Corollary 5: If $(L_{T_t})_{t\geq 0}$ is a hypermixing (supermixing) C_0 -semigroup $B_2(H)$ with $||.||_2$ -topology, then L_{T_t} and T_t are recurrent, respectively on $B_2(H)$ and H for any t > 0.

Proof: It is deduced from Theorem 3.6 in ¹⁷ that $(L_{T_t})_{t\geq 0}$ satisfies HCC. So $(L_{T_t})_{t\geq 0}$ is hypercyclic on $B_2(H)$. Hence, L_{T_t} is hypercyclic on $B_2(H)$ for any t > 0 by Theorem 2.3 in ¹⁶. Hence, L_{T_t} is hypercyclic on $B_2(H)$ for any t > 0. Moreover, the hypercyclicity of L_{T_t} implies that T_t satisfies HCC

on *H* by Theorem 2.2 in¹². Therefore T_t is hypercyclic and so recurrent for any t > 0.

Conclusion

A C_0 -semigroup is an important structure for mathematicians. In this paper, the recurrency of the C_0 -semigroups on the space of Hilbert-Schmidt operators are investigated which is an exciting matter in dynamical systems. In this paper, it is proved that the recurrence of a C_0 -semigroup $(T_t)_{t\geq 0}$ on H, and the recurrence of its related left multiplication C_0 -semigroup on $B_2(H)$ are equivalent. It is interesting to know if this issue can be stated for the related right multiplication C_0 semigroup as well? Recall that $(R_{T_t})_{t\geq 0}$ is the related right multiplication C_0 -semigroup such that

Author's Declaration

- Conflicts of Interest: None.
- I hereby confirm that all the Figures and Tables in the manuscript are mine. Furthermore, any Figures and images, that are not mine, have been

References

- 1. Grosse-Erdmann KG, Manguillot AP. Linear Chaos. London: Springer-Verlag; 2011. 388 p.
- Moosapoor M. On the Recurrent C₀-semigroups, Their Existence, and Some Criteria. J Math. 2021; 2021: 1-7. <u>https://doi.org/10.1155/2021/6756908</u>.
- 3. Subrahmonian Moothathu TK. Orbital and Spectral Aspects of Hypercyclic Operators and Semigroups. Indag Math. 2019; 30: 1006-1022. https://doi.org/10.1016/j.indag.2019.07.007.
- 4. Jamil ZZ. On Hereditarily Codiskcyclic Operators. Baghdad Sci J. 2022; 19(2): 309-312. https://doi.org/10.21123/bsj.2022.19.2.0309.
- Janfada M, Baghan AN. Hypercyclic Tuple C₀-semigroups of Operators. U P B Sci Bull Series A. 2019; 81: 103-110. https://www.scientificbulletin.upb.ro/rev_docs_arhiva/full844_195573.pdf.
- 6. Chong Y, Denghua Z. Chaotic Behavior of C₀-semigroup of Operators. Dyn Syst Appl. 2020; 29(2): 281-287. https://doi.org/10.46719/dsa20202926.
- Bonilla A, Grosse-Erdmann KG, López-Martínez A, Peris A. Frequently Recurrent Operators. J Funct Anal. 2022; 283(12): 109713. https://doi.org/10.1016/j.jfa.2022.109713.

 $R_{T_t}: B(H) \rightarrow B(H)$ is defined with $R_{T_t}S = ST_t$ for any $S \in B(H)$. In Theorem 4, Theorem 5, and Theorem 6, some sufficient conditions for a C_0 semigroup to be recurrent are stated that are based on dense sets. In Theorem 7, it is shown that if a C_0 semigroup $(T_t)_{t\geq 0}$ on H is hypermixing (supermixing), then hypercyclicity, and recurrency of its related left multiplication C_0 -semigroup on $B_2(H)$ are equivalent. This question arises can one state this equivalence for related right multiplication a C_0 -semigroup or not?

included with the necessary permission for republication, which is attached to the manuscript.

- Ethical Clearance: The project was approved by the local ethical committee in Farhangian University, Tehran, Iran.
- Moosapoor M, Nikoufar N. Some Properties and Citeria for Sub-chaotic C₀-semigroups. Jordan J Math Stat. 2022; 15(4B): 1065-1076. <u>https://doi.org/10.47013/15.4.18</u>.
- Ahmed BA, Al-Janaby HF. Hypercyclictty and Countable Hypercyclicity for Adjoint of Operators. Baghdad Sci J. 2010; 7(1): 191-199. <u>https://www.iasj.net/iasj/article/4013</u>.
- Desch W, Schappacher W. On Products of Hypercyclic Semigroups. Semigr Forum. 2005; 71: 301-311. <u>https://doi.org/10.1007/s00233-005-0523-z</u>.
- Chan KC. Hypercyclicity of the Operator Algebra for a Separable Hilbert Space. J Oper Theory. 1999; 42: 231-244. <u>https://www.jstor.org/stable/24715210</u>.
- Yousefi B, Rezaei H. Hypercyclicity on the Algebra of Hilbert-Schmidt Operators. Result Math. 2004; 46: 174-180.

https://link.springer.com/article/10.1007/BF03322879

13. Yousefi B. Subspace Transitivity and Subspace Supercyclicity of Tuples of Operators in SOT and in the Norm of Hilbert-Schmidt Operators. J Math Ext 2017; 11: 71-81. <u>https://ijmex.shiraz.iau.ir/index.php/ijmex/article/vie</u> w/563/334. 2024, 21(5): 1667-1674 https://dx.doi.org/10.21123/bsj.2023.8870 P-ISSN: 2078-8665 - E-ISSN: 2411-7986

- 14. Amouch M. Supercyclicity of Multiplication on Banach Ideal of Operators. Bol da Soc Parana de Mat. 2022; 40: 1-11. http://www.spm.uem.br/bspm/pdf/vol40/127.pdf.
- 15. Bes J, Peris A. Hereditarily Hypercyclic Operators. J Funct Anal. 1999; 167: 94-112. https://doi.org/10.1006/jfan.1999.3437.
- 16. Conejero J, Muller V, Peris A. Hypercyclic Behaviour of Operators in a Hypercyclic C₀semigroup. J Funct Anal. 2007; 244: 342-348. <u>https://doi.org/10.1016/j.jfa.2006.12.008</u>.
- Moosapoor M. Supermixing and Hypermixing of Strongly Continuous Semigroups and their Direct Sum. J Taibah Univ Sci. 2021; 15(1): 953-959. <u>https://doi.org/10.1080/16583655.2021.2014092</u>.

التكرار فى فضاء مؤثرات هلبرت شميدت

منصورة موسي بور

قسم تعليم الرياضيات، جامعة فرهنجيان، صندوق بريد 14665-889، طهران، إيران

الخلاصة

في هذا البحث, تم بر هان بانه اذا كانت شبه الزمرة-OD فوضوية وزائدة او فائقة الاختلاط فان الضرب من جهة اليسار المرتبط بشبه الزمرة-CO في فضاء مؤثرات هلبرت-شميدت متكرر اذا وفقط اذا كان مفرط الدوران. كذلك, تم بيان انه في ظل بعض الشروط يكون تكرار شبه الزمرة-CO وتكرار الضرب لشبه الزمرة-CO من جهة اليسار المرتبط بها في فضاء مؤثرات هلبرت-شميدت متكافئين. علاوة على ذلك, بعض الشروط الكافية للتكرار وزيادة الدوران للضرب من جهة اليسار لشبه الزمرة -CO تم عرضها بالاعتماد على المجموعات الجزئية المتشعبة.

الكلمات المفتاحية: مؤثرات هلبرت- شمدت، مؤثر مغرط الدوران، الضرب من جهة اليسار، مؤثر التكرار، شبه الزمرة المكررة