Effect of Graphene and Fe₃O₄ on the Protection Efficiency of Polyeugenol Conducted Coating for Stainless Steel 316L in NaCl solution

Khulood Abid Saleh, Ayat Monther Alqudsi*

Department of Chemistry, College of Science, University of Baghdad, Baghdad, Iraq.
*Corresponding Author.

Received 08/04/2023, Revised 22/09/2023, Accepted 24/09/2023, Published Online First 20/04/2024

© 2022 The Author(s). Published by College of Science for Women, University of Baghdad. This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Corrosion is the term for the surface disintegration of metals and alloys in a specific environment. Corrosion processes change a metal alloy's chemical properties as well as its mechanical behaviors. To stop rusting, a novel strategy based on an original material has been applied. By electrochemically synthesizing polyEugenol (PE)/nanocomposite (Graphene,Fe₃O₄) on stainless steel 316L (SS316L), which serves as the working electrode, using the electropolymerization approach, conducting polymer composites are material types that show promise for anticorrosion. The atomic force microscopy images (AFM) and Fourier transform-infrared spectroscopy analyses were used to evaluate the produced coated polymer. The results showed that, in comparison to the blank SS316L, PE/Nanocomposite and PE offer the metal's best corrosion protection.

Keywords: Corrosion, Electro polymerization, Eugenol, Nanocomposite, Polyeugenol.

Introduction

The use of biobased molecules obtained from renewable sources to substitute petroleum-based ones for manufacturing products is actively promoted due to current environmental concerns and legislation.¹ ² A desirable alternative for the production of green polymers is the use of biobased monomers in polymerization. A fascinating chemical for the creation of biobased monomers and polymers is eugenol, a naturally occurring phenol that is now mostly derived from clove oil but might potentially be made by depolymerizing lignin. By altering the phenol group, it is simple to insert readily polymerizable functional groups into the chemical structure³.

Due to its simplicity and repeatability, the electrochemical polymerization process is a common methodology that is frequently utilized for the creation of electro-active conducting polymer films.⁴ Potentiostatic, galvanostatic, potential step, and potential sweep methods are often used in the electropolymerization of monomers and their derivatives⁵. The features and applications of the polymer films produced are therefore influenced by the type of the monomer, pH, solvent effect, temperature, applied potential, doping effect, electrolyte solution, direction of potential sweep, and voltammetry potential window⁶. In essence, this procedure entails providing a voltage to an anode (working electrode) that is positioned inside an electrochemical cell that also includes an electrolyte solution, a doping agent (if required), and a monomer. Free radicals might then be created by electrochemically oxidizing the monomer. Two important subgroups of the electrochemical
polymerization process are anodic and cathodic electrochemical polymerization.

From cloves of the Syzygium genus, eugenol, or "4-allyl-2-methoxyphenol," an important phenol compound, is synthesized. It is an adaptable natural material that may possess a number of beneficial properties, including anti-inflammatory, antioxidant, and antibacterial effects. Eugenol is also widely known to be advantageous as a local anesthetic in dentistry due to its capacity to lessen tooth pain by blocking the voltage-gated sodium channel (VGSC) and activating the transient receptor potential vanilloid subtype (TRPV1). The conventional application of eugenol as a local anesthetic in a painful area like intact skin has been curtailed due to its negative side effects.

According to Al-Mashhadani, H. A., & Saleh, K. A., Before and after Micro Arc oxidation, Eugenol polymerized on titanium alloys had high protection efficacy (Pe%) at 323K and was resistant to corrosion. Thus, the efficiency increased to 81%. The samples' ability to fight against numerous oral bacteria and fungi was assessed. In addition to having antibacterial effects against S. aureus and B. subtilis, the Poly Eugenol (PE) coating has antifungal efficacy against C. albicans and C. glabrata oral fungus. By electropolymerizing Eugenol oxidative polymerization on a platinum electrode. Basid et al. investigate polyeugenol/graphene composite as a corrosion-prevention coating. The barrier properties of graphene can significantly improve the corrosion resistance of metals connected to polymers. Polyegenol (PE) was created using the cationic addition polymerization process. When 1.25% graphene by weight was added to the PE polymer matrix, the corrosion protection efficacy increased from 37% to 78%, making the PE/G composite more corrosion-resistant than pure PE.

To assess PE's antibacterial and antioxidant properties, Erwin A. produced a high molecular weight version, which was then measured using a viscometer. Those findings showed a strong antibacterial action. Testing of antioxidant defenses from DPPH, as a free radical, followed by diphenyl pyrlylhydrazyl. As a result, the synthetic polyeugenol offers a great deal of promise for use in numerous biological applications.

In this work, stainless steel 316L (SS316L) alloys are electropolymerized by forming layer of polyeugenol (PE) on the surface of the alloy using an alkaline electrolyte than the effect of Graphene and Fe_3O_4. The electrosynthesis of PE coatings was examined using FT-IR spectroscopy and AFM measurements, and the coating adhesive was assessed to ascertain their surface morphologies. Investigations were also done on the biological effectiveness of PE covering against oral fungi and bacteria.

Materials and Methods

Stainless Steel alloys (SS 316 L) specimens of 2 ×2 cm² area area (including 0.08 weight percent (Wt%) (C), > 0.75 Wt% (Si), 2.00 Wt% (Mn), 17.00 Wt% (Cr), > 0.045 Wt% (P), 12.00 Wt% (Ni), 0.030 Wt% (S), 2.5 Wt% (Mo), 0.10 Wt% (N) and iron (Fe) the remaining to 100% from 31.00-38.00) were purchased from commercial sources SS 316L alloy of (0.5) mm thickness. These samples were had been polished using emery sheets of various grades, including 600, 800, 1200, and 2000 mesh grit, and then washed with tap water, distilled water, ethanol, and lastly acetone before being dried by hot air drier. The materials used are listed in the Table 1 below.

<table>
<thead>
<tr>
<th>Raw Material</th>
<th>Molecular Formula</th>
<th>Supplier</th>
<th>Purity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eugenol</td>
<td>C₁₀H₁₀O₂</td>
<td>MASTER-DENT</td>
<td>99%</td>
</tr>
<tr>
<td>Ethanol</td>
<td>C₂H₅OH</td>
<td>GCC</td>
<td>99.9%</td>
</tr>
</tbody>
</table>

Table 1. List of required chemicals

Cyclic Voltammetry is used to determine the electro polymerization potential. A solution of 10mM Eugenol in 70% 0.1M NaOH solution was prepared with a few drops of concentrated H₂SO₄ added to improve electrolyte conductivity between a voltage...
range from -2000 mV to 2000 mV vs. a typical calomel electrode. the consecutive cyclic voltammogram made using PE at around 2.8 volts.

Euginol Electrochemical Polymerization

A cell contains two electrodes, the first working electrode which is made of stainless steel 316L, and the second electrode is the counter electrode which is made of graphene rode. The first electrode acts as an anode and the second acts as a cathode.

To prepare a protected film of poly eugenol on the SS316L, a (10 Mm) solution of eugenol was prepared in (0.1 M) of NaOH solution with a few drops of sulphuric acid and 0.1g of oxalic acid. The work was achieved at room temperature and by applying 2.8volt and at 90 min. Finally, the surface is cleaned, washed with distilled water then dried by hot dry air\(^\text{13}\). Eq. 1 shows how the monomer electrochemically polymerizes.

\[
\text{Eugenol} \xrightarrow{\text{electropolymerization}} \text{Polyeugenol}
\]

Results and Discussion

Corrosion studies

Fig. 2 depicts typical polarization curves for coated and uncoated stainless steel type 316L with prepared polymer before and after using nanomaterial in a 3.5% solution of sodium chloride with 298-328 K of temperature range. The following Eq. 2 is used to determine the protection efficacy \(^\text{14,15}\):

\[
\% \text{Pe} = \frac{(I_{\text{cor. unc.}} - I_{\text{cor. c.}})}{I_{\text{cor. unc.}}} \times 100 \quad \ldots \quad 2
\]

Where \((I_{\text{cor. unc.}})\) and \((I_{\text{cor. c.}})\) are the corrosion current density for blank SS316L (uncoated) and for coated SS316L, derived by extrapolating the corrosion potential from the cathodic and anodic Tafel lines. The rearranged Stern-Geary equation may be used to calculate the polarization resistance \((R_p)\)\(^\text{16}\):

\[
R_p = \frac{\beta_a \cdot \beta_b}{(\beta_a + \beta_b)^2} \frac{1}{I_{\text{cor}}} \quad \ldots \quad 3
\]
Figure 2. Shows the Tafel curves for corrosion of the following materials: a.untreated alloy, b. coating PE, c. coating PE/ G, and d. coating PE/Fe₃O₄.

The cathodic and anodic Tafel plots in a solution of 3.5% NaCl were used to calculate the corrosion potential (Ecorr) and corrosion current density (Icorr) of the SS316L that had not been coated with PE before to and after. Using Fig. 4, it was also possible to determine polarization resistance Rp, the weight loss WL, protection efficiency Pe% and penetration loss PL. According to Table 2 findings, temperature enhanced the corrosion potential and current density. Tafel’s graphic illustrates how the coated alloy gives Ecorr. Climbs to higher values as compared to uncoated SS316L, demonstrating how the coating acts as an anodic barrier.

Table 2. Corrosion values for polymer PE-coated and untreated SS316L.

<table>
<thead>
<tr>
<th>System</th>
<th>T(K)</th>
<th>-Ecorr (mV)</th>
<th>Icorr (µA/cm²)</th>
<th>-βa (mV/Dec)</th>
<th>βc (mV/Dec)</th>
<th>WL (g/m².d)</th>
<th>Rp (Ω/cm²)</th>
<th>PL (mm/y)</th>
<th>PE%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uncoated SS316L</td>
<td>298</td>
<td>219</td>
<td>32.78</td>
<td>123</td>
<td>102</td>
<td>8.22</td>
<td>738.6</td>
<td>0.36</td>
<td></td>
</tr>
<tr>
<td></td>
<td>308</td>
<td>242</td>
<td>76.79</td>
<td>175</td>
<td>173</td>
<td>12.9</td>
<td>491.9</td>
<td>0.85</td>
<td></td>
</tr>
<tr>
<td></td>
<td>318</td>
<td>260</td>
<td>88.83</td>
<td>164</td>
<td>182</td>
<td>22.3</td>
<td>421.6</td>
<td>0.99</td>
<td></td>
</tr>
<tr>
<td></td>
<td>328</td>
<td>278</td>
<td>127.69</td>
<td>179</td>
<td>186</td>
<td>31.0</td>
<td>310.1</td>
<td>1.39</td>
<td></td>
</tr>
<tr>
<td>Coated</td>
<td>298</td>
<td>145</td>
<td>5.73</td>
<td>114</td>
<td>111</td>
<td>1.44</td>
<td>4261.8</td>
<td>6.39*10⁻²</td>
<td>82.5</td>
</tr>
<tr>
<td>P_Eugenol</td>
<td>308</td>
<td>163</td>
<td>10.48</td>
<td>172</td>
<td>160</td>
<td>2.63</td>
<td>3434.4</td>
<td>0.117</td>
<td>86.3</td>
</tr>
<tr>
<td></td>
<td>318</td>
<td>178</td>
<td>20.76</td>
<td>121</td>
<td>111</td>
<td>2.98</td>
<td>1210.8</td>
<td>0.13</td>
<td>76.6</td>
</tr>
<tr>
<td></td>
<td>328</td>
<td>184</td>
<td>35.54</td>
<td>166</td>
<td>186</td>
<td>3.07</td>
<td>1071.6</td>
<td>0.25</td>
<td>72.1</td>
</tr>
<tr>
<td>Coated + G</td>
<td>298</td>
<td>88</td>
<td>0.56</td>
<td>79.1</td>
<td>78.6</td>
<td>0.56*10⁻¹</td>
<td>30569.2</td>
<td>0.25*10⁻²</td>
<td>98.2</td>
</tr>
<tr>
<td>P_Eugenol+Fe₃O₄</td>
<td>308</td>
<td>128</td>
<td>0.87</td>
<td>73.6</td>
<td>75.3</td>
<td>1.73*10⁻¹</td>
<td>18576.5</td>
<td>0.77*10⁻²</td>
<td>98.8</td>
</tr>
<tr>
<td></td>
<td>318</td>
<td>139</td>
<td>1.44</td>
<td>75.6</td>
<td>73.8</td>
<td>3.62*10⁻¹</td>
<td>11260.8</td>
<td>1.61*10⁻²</td>
<td>98.3</td>
</tr>
<tr>
<td></td>
<td>328</td>
<td>169</td>
<td>2.85</td>
<td>75.9</td>
<td>72.2</td>
<td>4.62*10⁻¹</td>
<td>5637.4</td>
<td>2.06*10⁻²</td>
<td>97.7</td>
</tr>
<tr>
<td>Coated + Fe₃O₄</td>
<td>298</td>
<td>141</td>
<td>1.03</td>
<td>103</td>
<td>111</td>
<td>0.21</td>
<td>22522.4</td>
<td>0.54*10⁻²</td>
<td>96.8</td>
</tr>
<tr>
<td></td>
<td>308</td>
<td>155</td>
<td>3.33</td>
<td>121</td>
<td>113</td>
<td>0.83</td>
<td>7619.2</td>
<td>3.71*10⁻²</td>
<td>95.6</td>
</tr>
<tr>
<td></td>
<td>318</td>
<td>165</td>
<td>8.76</td>
<td>101</td>
<td>109</td>
<td>2.20</td>
<td>2598.5</td>
<td>9.78*10⁻²</td>
<td>90.1</td>
</tr>
<tr>
<td></td>
<td>328</td>
<td>183</td>
<td>11.83</td>
<td>102</td>
<td>105</td>
<td>2.96</td>
<td>1899.06</td>
<td>13.2*10⁻²</td>
<td>90.7</td>
</tr>
</tbody>
</table>
The parameters for measuring polarization resistance (Rp) values listed in Table 2 are similar to those for measuring by the polarization curves. Also, they offer a useful method for identifying corrosion disturbances and initiating remedial action.

According to these findings, rate variations that govern the steps in the metal dissolution reaction range from electrochemical desorption and chemical desorption in cathodic reactions through the charge transfer process. At all temperatures, there are variations in the anodic and cathodic Tafel slope findings. The values of polarization resistance Rp for uncoated and coated SS316L without and with nanomaterials decreased with temperature, as shown in Tables 2 and calculated from Eq. 3. because polymer layers are less conductive than bare metal. This is due to the nanoparticles’ virtually full coverage of the SS316L surface. The electropolymerization of eugenol in the presence of G in a NaCl at 298 K also has the highest Rp rating (30569 /cm²). According to Table 2’s findings, temperature has a significant impact on protection efficiency (Pe%), and Pe% decreases with temperature rises. The fact that temperature-dependent increases in boundary layer thickness occurred can serve to illuminate this.

FTIR Spectroscopy of the polyeugenol (PE) FT-IR spectra for the polyeugenol and eugenol monomer produced on an SS 316L alloy by electrochemical polymerization were captured as shown in Fig. 3a. The asymmetric =CH₂ in eugenol is attributed to the absorption bands at 3076 cm⁻¹ in Fig. 3b although the polyeugenol IR spectra do not show this peak. The peak at about 3299 cm⁻¹, which is not present in the IR spectra of eugenol, is due to intramolecular H-bonds between the polyeugenol chins’ repeating units.

Figure 3. FTIR spectra of a.eugenol b.PE
Using a comparable Arrhenius formula as following Eq. 4:

\[I_{\text{cor}} = A \exp \left(\frac{-E_a}{RT} \right) \]

By the temperature range 298-328 K, the corrosion treatment of SS316L that for coated and uncoated alloy in a 3.5 percent NaCl solution were determined.

The resulting logarithmic version of the Eq.5 is as follows:

\[\log I_{\text{cor}} = \log A - \frac{E_a}{(2.303RT)} \]

whereas the following, is the transition state equation as Eq. 6:

\[\log \left(\frac{I_{\text{cor}}}{T} \right) = \log \left(\frac{R}{Nh} \right) + \frac{\Delta S^*}{(2.303R)} - \frac{\Delta H^*}{(2.303RT)} \]

Where \(h \) is the Planks constant and has the value 6.62*10^{-34} J S, \(R \) is the universal gas constant and has the value 8.31 J/K.mol, the absolute temperature (T) in K, \(A \) is the preexponential factor, \(N \) is the Avogadros number and has the value 6.02*10^{23} mol, the thermodynamic functions are \(\Delta S \) and \(\Delta H \) (entropy and enthalpy of activation), and \(E_a \) is the activation energy. The slope and intercept of the linear regression between \(\log I_{\text{cor}} \) vs. \(1/T \) produced the \(E_a \) and \(A \) values, as shown in Fig. 4a. \(\Delta H \) and \(\Delta S \) were determined using the linear regression's slope and intercept between \(\log I_{cor}/T \) and \(1/T \), as shown in Fig. 4b and summarized in Table 3.

![Figure 4](https://example.com/figure4.png)

Figure 4. A graph showing: a. log Icor. Against 1/T for SS316L with coating by PE/G, Fe_3O_4, b. log I_{cor}/T versus 1000/T SS316L for with coating by PE/G, Fe_3O_4.

Table 3. The kinetic and thermodynamic parameters for SS316L with coating by PE/G, Fe_3O_4.

<table>
<thead>
<tr>
<th>System</th>
<th>Enthalpy (\Delta H) (kJ/mol)</th>
<th>Entropy (-\Delta S) (J/mol.K)</th>
<th>Activation energy (E_a) (kJ/mol)</th>
<th>(A) (Molecule.Cm^{-2}.S^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uncoated SS316L alloy</td>
<td>31.98</td>
<td>107.43</td>
<td>34.47</td>
<td>26.29*10^{30}</td>
</tr>
<tr>
<td>Coated SS316L by PE</td>
<td>47.30</td>
<td>71.43</td>
<td>49.79</td>
<td>1.99*10^{33}</td>
</tr>
<tr>
<td>Coated SS316L by PE/G</td>
<td>84.83</td>
<td>156.56</td>
<td>67.03</td>
<td>5.49*10^{35}</td>
</tr>
<tr>
<td>Coated SS316L by PE/Fe_3O_4</td>
<td>40.98</td>
<td>112.79</td>
<td>43.47</td>
<td>13.79*10^{31}</td>
</tr>
</tbody>
</table>

The calculated values of the kinetics and thermodynamic parameters are all included in Table 3. The results show that the value of activation energy rose after coating by polyeugenol, indicating a better coating's effectiveness as a barrier. Additionally, the values of the Arrhenius factors, can determine how many corrosion locations are present on the alloy. It noticed that the activation energy after coating has increased, which means that the energy barrier for the reaction process is high, making the coating process difficult despite the increase in the value of \(A \) (Arrhenius factor) and that means increased corrosion sites but the higher \(E_a \) value helped to increase corrosion protection.

The endothermic properties of St.transition St's state reaction are demonstrated by positive values of enthalpies \((\Delta H^*) \) for both uncoated and coated stainless steel SS 316L. The fact that both coated and uncoated SS316L exhibit negative values for \(\Delta S^* \) indicates that instead of being a dissociation, the activation complex during the speed determination phase is a combination. This suggests that the degree
of disordering decreases as one moves from a reactant to an activated complex25.

AFM for PE, PE/G and PE/Fe\textsubscript{3}O\textsubscript{4}

Using the AFM Technique, the surface topography and morphology of SS316L coated with PE was investigated both in the presence and absence of nanoparticles (Fe\textsubscript{3}O\textsubscript{4} and G). Fig. 5 displays 2D and 3D AFM images of every coating film that has been used. The three most used metrics for assessing a surface's roughness using AFM-analysis are: Ra is the mean grain size, Rq is the root mean square, and the roughness average. According to findings, as shown in Table 4. The use of nanoparticles to reduce the grain size of PE resulted in a reduction in surface roughness for all coated films. Therefore, the less rough the surface, the greater the barrier effect for avoiding coating corrosion26,27

Table 4: AFM parameters to blank and coated SS316L with PE and PE/G, Fe\textsubscript{3}O\textsubscript{4}

<table>
<thead>
<tr>
<th>Samples</th>
<th>Ra (nm)</th>
<th>Rq (nm)</th>
<th>mean grainsize (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>With coating of PE</td>
<td>42.9</td>
<td>54.11</td>
<td>206.5</td>
</tr>
<tr>
<td>coated of polymer PE</td>
<td>21.65</td>
<td>32.58</td>
<td>234.1</td>
</tr>
<tr>
<td>modified by G</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>coated of polymer PE</td>
<td>32.50</td>
<td>53.98</td>
<td>221.76</td>
</tr>
<tr>
<td>modified by Fe\textsubscript{3}O\textsubscript{4}</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 5. AFM Images of a. PE, b. PE/G, c. PE/Fe\textsubscript{3}O\textsubscript{4}.

PE's antimicrobial properties

In two cases, the inhibitory zones of the synthesized polymers were tested against S. aureus and E. coli in both the presence and absence of the nanomaterials G and Fe\textsubscript{3}O\textsubscript{4} at 800 g/ml. As a solvent, di-methyl sulfoxide was used (DMSO). The results are summarized in Table 5.

Table 5. The PE and PE/G, Fe\textsubscript{3}O\textsubscript{4} inhibition zone.

<table>
<thead>
<tr>
<th>The sample</th>
<th>gram positive (S. aureus)</th>
<th>gram negative (E. coli)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polymer of PE</td>
<td>12</td>
<td>16</td>
</tr>
<tr>
<td>Polymer of PE/G</td>
<td>26</td>
<td>24</td>
</tr>
<tr>
<td>Polymer of PE/Fe\textsubscript{3}O\textsubscript{4}</td>
<td>24</td>
<td>25</td>
</tr>
<tr>
<td>Amoxicillin</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>di-methyl sulfoxide</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

The produced polymers showed greater inhibitory efficacy toward S. aureus and E. coli when compared to amoxicillin. The polymer's ability to kill bacteria is determined by the stable interaction complex produced between the cleaved DNA and the drug-bound topoisomerases. The polymer's suppression of topoisomerase activity and the formation of stable complexes with DNA have a significant detrimental effect on cells, as shown by the cell's resistance to medicines that damage DNA28. As an antibacterial strategy to combat the spread of communicable diseases and the emergence of antibiotic-resistant strains, nanomaterials are taking on a larger role in pharmaceutical and biological applications29. Nanomaterials are thought to interact closely with microbial membranes due to their tiny size, high surface-to-volume ratio, and high surface area.
Conclusion

Electropolymerization of PL on SS316L produced a potent anti-corrosion coating in a 3.5% NaCl solution. The coated polymer’s protection effectiveness (Pe%) and polarization resistance (Rp) both decline as temperature rises, but the Pe% rises when nanomaterials, notably Graphene, are added. Anodic protection is provided as a result of the change in the corrosion potential to the noble side.

The establishment of a protective layer on the surface of the SS316L is related to the examined SS316L protection, claims the FAM research. Additionally, Gram positive bacteria (B. subtilis) and Gram negative bacteria (E. coli) do not respond well to the antibacterial properties of the polymer film (PE) covered with nanomaterial (S. aureus).

Acknowledgment

The authors thank Department of Chemistry, College of Science, University of Baghdad for its support of this research.

Authors’ Declaration

- Conflicts of Interest: None.
- We hereby confirm that all the Figures and Tables in the manuscript are ours. Furthermore, any Figures and images, that are not ours, have been included with the necessary permission for re-publication, which is attached to the manuscript.

Authors’ Contribution Statement

Data was gathered, examined, and outcomes were interpreted by A. M. N., and the research plan was created, results were tracked, and the manuscript was proofread by K. A. S.

References

تأثير الكرافين واوكسيد الحديدوز على كفاءة طلاء البوليوجينول للفولاذ المقاوم للصدأ في محلول كلوريد الصوديوم

خلود عبد صالح، ايات منذر القدسي
قسم الكيمياء، كلية العلوم، جامعة بغداد، بغداد، العراق.

الخلاصة
التآكل هو مصطلح يطلق على عملية تفكك سطح المعادن والسبياك في بيئة معينة. تتغير الخواص الكيميائية للسبائك المعادنية بعد عملية التآكل وكذلك سلوكها الميكانيكي. لغرض الحماية من التآكل تم تطبيق استراتيجية جديدة تعتمد على تحليق مادة بوليمرية من خلال البلمرة الكهربائية للبوليوجينول لتكون البوليوجينول / المركب النانوي (Graphgene 4O3Fe 1). والذي يرتبط كقطب كهربائي انود، باستخدام عملية البلمرة الكهربائية، فإن البوليمر الموصل الناتج يعطي حماية جيدة ضد التآكل. تم إجراء الفحوصات المخبرية من التشخيص بتقنية الأشعة تحت الحمراء ومطيافية القوة الذرية للبوليمر المحضر لوحدة المعدن المستخدم من التآكل. أظهرت النتائج أنه بالمقارنة مع SS316L غير مطلي، يوفر البوليوجينول مع الكرافين أفضل حماية للمعدن المستخدم من التآكل.

الكلمات المفتاحية: بوجينول, التآكل, بلمرة كهربائية, مركبات نانوية, بوليوجينول.