تسخين بلازما التوكاماك بالموجات المايكروية عند تردد رنين الإلكترون ECRH السايكلوتروني

حامد حافظ مربط*

تاريخ قبول النشر 2008/3/19

الخلاصة

عرض مختصر للأسس النظرية لانتشار الأمواج الكهرومغناطيسية في البلازما, مع بيان حدود مناطق القطع والرنين, وكذلك تفصيل آلية التسخين بالأمواج المايكروية بطريقة الرنين السايكلوتروني ECRH. أجريت عملية النمذجة على ثلاث محطات عالمية وهي: محطة Tosca في المملكة المتحدة, ومحطة T-10 في روسيا. حُسب كلاً من السمك البصري T الامتصاصية A للأمواج الاعتيادية لكل محطة وقُرِن بينها. ظهر بان كلاً من السمك البصري و الامتصاصية يزداد مع زيادة حجم المنظومة وبالإمكان ان يكون الامتصاص كاملاً في المحطات الكبيرة.

المقدمة

هذالك مشكاتين أساسيتين في محطات الاندماج النووي وهما حصر البلازما وتسخينها داخل المنظومة. هناك العديد من الطرق أقترحت لتسخين بلازما التوكاماك مثل التسخين الأومي " Ohmic ", ولكن هذه الطريقة غير كافية بمفردها لأيصال درجة حرارة البلازما الى درجة الاتقاد والتي تساوي 4 KeV لذلك تتطلب الحاجة الى استخدام طرق إضافية . وهذه الطرائق هي (1) :

1- التسخين باستخدام حزمة من الجسيمات المتعادلة
 المعجلة

2- التسخين باستخدام الامواج الراديوية.
 3- التسخين باستخدام جسيمات الفا.

4- التسخين باستخدام سحب تيارات غير محتثة. Non-inductive Current Drive

وطريقة التسخين بالأمواج المايكروية هي بدورها تتفرع ايضا إلى مجموعة من الطرق اعتمادا على تردد الموجة المستخدمة مثل طريقة التسخين بالرنين السايكلوتروني للإلكترون(ECRH) وطريقة التسخين بالرنين السايكلوتروني للأيون (ICRH) وطريقة التسخين بالتردد الهجيني الأسفل وطرق اخرى.

وقد ظهرت العديد من الدراسات النظرية والعملية (5.4,3,2) لتؤكد الخصائص الهامة والمميزة لطريقة التسخين بالرنين السايكلوتروني للإلكترون لبلازما التوكاماك بالاضافه الى نتائج التجارب المشجعة جدا التي اجريت في روسيا (7.6) والولايات المتحدة الأمريكية (8) والمتزامن مع التطور السريع في انشاء مصادر لتوليد الأمواج المايكروية بأطوال موجية بحدود 1 ملمتر وبكفاءة وقدرة عاليتين (11,10,9,5) كل هذا يضع طريقة التسخين بالرنين السايكلوتروني

للإلكترون في موقع هام بين طرق تسخين بلازما التوكاماك .

وفي بحثنا هذا سنقوم بعرض مبسط للأسس النظرية لانتشار الموجات الكهرومغناطيسية في البلازما وكذلك الية التسخين بطريقة الرنين السايكلوتروني للإلكترون ثم نقوم بإجراء محاكاة حاسوبية لثلاث محطات عالمية هي: محطة Tosca في المملكة المتحدة, ومحطة ISX-B في الولايات المتحدة, ومحطة T-10 في روسيا. وحساب السمك البصري T والامتصاصية A للأمواج الاعتيادية لكل محطة والمقارنة بينها.

انتشار الأمواج الكهرومغناطيسية في البلازما

إن وسيلة نقل الطاقة إلى البلازما هنا هي الأمواج الكهر ومغناطيسية لذلك سنقوم بإعطاء مقدمة عن نظرية انتشار الأمواج الكهر ومغناطيسية وتفاعلاتها مع البلازما وسنقتصر على موجة بشكل $\exp\left[i(\omega t - \vec{K}.\vec{x})
ight]$

لنَاخذ حالة بلازما متجانسة وواقعة داخل مجال مغناطيسي ساكن B_0 وسنهمل كلا من حركة الجسيمات الحرارية والمجالات الكهربائية الساكنة و من الممكن كتابة معادلة الحركة للإلكترون او الأيون على النحو الاتى:

$$\dots \dots (1_{m_s} \frac{d\vec{v}_s}{dt} = i\omega m_s \vec{v} = q_s (\vec{E} + \vec{v} \times \vec{B}_o)$$
 اذ $e = s$

ان كثافة التيار الناتجة عن هذه الحركة هي:

^{*}جامعة بغداد - كلية العلوم للبنات

$$\vec{J} = \breve{\sigma} \cdot \vec{E} = \sum_{s} q_{s} n_{s} v_{s}$$
 (2)

ومنها يمكن الحصول على ممتدة التوصيلية ($\ddot{\sigma}$ ان خاصية الامتداد "tensor" للتوصيلية ناتجة عن التحركات المختلفة للجسيمات المشحونة في اتجاهات عمودية وموازية للمجال المغناطيسي ويمكن ربط كثافة التيار ($ec{\sigma} \cdot ec{E}$) وكثافة تيار الإزاحة (في معادلة واحدة هي معادلة ممتدة العزل ($i\omega arepsilon_0$ $reve{\mathcal{E}}$ اي ان:

$$\breve{\varepsilon} = 1 + \breve{\sigma} / i\omega \varepsilon_0 \qquad \dots \qquad (3)$$

اذ $ar{\sigma}$. يمثل المجال الكامل لحركيات الجسيمة في معادلات ماكسويل ان معادلة الحركة (1) تمثل وصفا مبسطا للبلازما ومنها نرى الاعلومات التي B_0 وهي المجال المغناطيسي $\widetilde{\mathcal{E}}$ والكثافة N_S للنوع S_s والشحنة (N_S للنوع N_S تمثل اشارة الشحنة (q_s) والكتلة m_s ولنفرض ان E_s اتجاه المجال هو على امتداد محور (Z)

يالإمكان كتابة $\widecheck{\mathcal{E}}$ بالإحداثيات, $B=(0,0,B_0)$ الكارتيزية بالشكل الاتى:

$$\widetilde{\varepsilon} = \begin{vmatrix}
\varepsilon_{xx} & i\varepsilon_{xy} & 0 \\
i\varepsilon_{yx} & \varepsilon_{yy} & 0 \\
0 & 0 & \varepsilon_{zz}
\end{vmatrix} \dots (4)$$

اذ

$$\begin{split} \varepsilon_{xx} &= \varepsilon_{yy} = \varepsilon_{\perp} = 1 - \sum_{s} \omega_{ps}^{2} / (\omega^{2} - \omega_{gs}^{2}) \\ \varepsilon_{xy} &= -\varepsilon_{yx} = \varepsilon_{x} = \sum_{s} E_{s} \omega_{gs} \omega_{ps}^{2} / [\omega(\omega^{2} - \omega_{gs}^{2})] \\ \varepsilon_{zz} &= \varepsilon_{11} = 1 - \sum_{s} \omega_{ps}^{2} / \omega^{2} \end{split}$$

ان المعادلة (4) تعطي بعض الترددات المميزة تردد البلازما

$$\omega_{ps} = 2\pi = f \left(Z^2 e^2 n_s / \varepsilon_0 m_s \right)^{1/2} \qquad \dots (5)$$

s- وهو مقياس لكثافة جسيمات النوع والتـــردد التــدويمي او السـايكلوتروني $\omega_{os} = 2\pi f = Z_s e B_0 / m_e$ وهو التردد الذي تدور الجسيمة ذات النوع-s حول خط المجال المغناطيسي Bo وتعطى معادلة الموجة في البلازما كما ياتي:

$$\vec{k} \times (\vec{K} \times \vec{E}) + K_0^2 \tilde{\epsilon} \cdot \vec{E} = 0$$
 (7)

أذ K_0 = العدد الموجى في الفراغ ان حل هذه المعادلة لا يكون له معنى الا اذا كانت قيمة المحدد للمعاملات تساوي صفر اأي ان:

$$\left| \vec{K} \times \left(\vec{K} \times \vec{I} \right) + K_0^2 \ \vec{\varepsilon} \right| = 0$$
(8)

اذ ($reve{I}$) هي مصفوفة واحدية وهُذه المعادلَة تمثل علاقة التشتت للامواج الكهرومغناطيسية في البلازما. ولحل هذه المعادلة, تستخدم قيمة ($\tilde{\mathcal{E}}$) من المعادلة (3) ونحصل على معادلة جبرية من الدرجة الثانية ل K^2 وباستعمال تعریف معامل الانکسار ($N_0 = K/K_0$) وعلی فرض ان الموجة تصنع زاوية γ مع اتجاه المجال المغناطيسي وكذلك $K_{v}=0$ نحصل على :

$$AN^4 - BN^2 + C = 0$$
 ... (9)

اذ

$$A = \varepsilon_{\perp} \sin^{2}(\gamma) + \varepsilon_{11} \cos^{2}(\gamma)$$

$$B = \left(\varepsilon_{\perp}^{2} - \varepsilon_{x}^{2}\right) \sin^{2}(\gamma) + \varepsilon_{\perp} \varepsilon_{11} (1 + \cos^{2}(\gamma))$$

$$C = \left(\varepsilon_{\perp}^{2} - \varepsilon_{x}^{2}\right) \varepsilon_{11}$$

و للمعادلة (9) حلان هما : وللمعادلة (9)
$$N_{1,2}^2 = \left[B \pm \left(B^2 - 4AC \right)^{1/2} \right] / 2A$$
 (10)

التي تناظر نمطى البلازما الكهرومغناطيسيين. هناك حالتان خاصتان لانتشار الموجة هما: انتشار مواز للمجال ($\gamma = 0^0$), وعمودي على المجال : يصبح (9) فان حل المعادلة $(\gamma=90^0)$

$$N_L^2 = \varepsilon_{\perp} + \varepsilon_x$$

$$N_R^2 = \varepsilon_{\perp} - \varepsilon_x$$
.....(11)

اذ N_R , N_L ان مثل موجة مستقطبة استقطابا دائريا نحو الشمال و نحو اليمين على التوالي. وهناك ترددات قطع " cutoff " يكون معامل الانكسار فيها مساو للصفر (N=0), وترددات رنين " Resonance " النَّي يكون معامل الانكسار فيها ما لانهاية ر کے البلازما غیر المتجانسة تتكون ($N \to \infty$) نقاط القطع و الرنين موضعيا عند كثافات يمكن حسابها من التردد وشدة المجال المغناطيسي. فطاقة الموجة التي تتجه الى نقطة رنين تمتص كليا وتصبح كلاً من سرعة الطور وسرعة المجموعة مساويةً

للصفر عند تلك النقطة , اما الموجة المتجه الى نقطة قطع فانها تنعكس عند وصولها الى تلك النقطة (¹²⁾. ويحدث الرنين عند الترددات الاتية:

 $\omega=\omega_{ge}$ تردد الإلكترون السايكلوتروني $\omega=\omega_{ge}=\omega_{ge}$ تردد الأيون السايكلوتروني $\omega=\omega_{gi}=\omega_{gi}=\omega_{gi}$ تردد الأيون السايكلوتروني $\omega=\omega_{uh}pprox \left(\omega_{pe}^2+\omega_{ge}^2\right)^{1/2}=\omega_{uh}$ تردد الهجين الأعلى $\omega=\omega_{uh}pprox \left(\omega_{pe}^2+\omega_{ge}^2\right)^{1/2}=\omega_{uh}$ $\omega=\omega_{uh} pprox \left(\omega_{pi}^2/\left(1+\omega_{pe}^2/\omega_{ge}^2\right)\right)^{1/2}$

تسخين البلازما عند التردد السايكلوتروني للألكترون ECRH

الموجات المستعملة في مثل هذه التجارب هي ذات ترددات مساوية للتردد السايكلوتروني للإلكترون f_{ge} والذي يمكن حسابه من شدة المجال المغناطيسي من العلاقة :

$$f_{ge} = \omega_{ge}/2\pi = eB_0/m_e$$
 (13) اذ ان المجال B_0 بوحدات تسلا (T) والتردد بوحدات (Hz).

وعندما تكون قيم المجال بين (6 T), تكون قيم التردد بين (170 GHz) أي بطول موجي بضع مليمترات فقط, وهو اصغر بكثير من أبعاد البلازما. ان الإلكترونات هي وحدها القادرة على الاهتزاز في مثل هذه الترددات العالية, أما الأيونات فيمنعها قصورها الذاتي عن الاهتزاز, وعلى وفق فيمنعها قصورها الذاتي عن الاهتزاز, وعلى وفق هذا فان خواص العزل " dielectric " للبلازما تحسب بصورة رئيسة للإلكترونات, ومن الممكن إثبات ان علاقة التشتت للأمواج الاعتيادية extraordinary هي شكل .

$$N_0^2 = 1 - \omega_{pe}^2 / \omega^2$$
 ... (14)

$$N_x^2 = 1 - \frac{\omega_{pe}^2}{\omega^2} \left[\frac{\omega^2 - \omega_{pe}^2}{\omega^2 - \omega_{uh}^2} \right]$$
(15)

اذ ان $N_{\rm x}$, $N_{\rm x}$ هي معامل الانكسار للموجة الاعتيادية وغير الاعتيادية على التوالي. ان انتشار كلا النوعين من الأمواج داخل بلازما حلقية غير متجانسة يمكن ان يوصف كالآتي: الموجات الاعتيادية هي موجات مستعرضة يكون فيها متجه المجال الكهربائي $P_{\rm x}$ موازيا للمجال المعناطيسي $P_{\rm x}$ وبإمكان هذه الموجات الانتشار داخل البلازما عندما يكون ترددها اكبر من تردد البلازما $P_{\rm ye} < \omega$ ولكنها تنعكس عندما تصل الساح منطقة ذات كثافة عالية بحيث يكون تردد البلازماكبر من تردد عالية بحيث يكون تردد البلازماكبر من ترددها $P_{\rm ye} < \omega$. فيصبح عندها البلازمااكبر من ترددها $P_{\rm ye} < \omega$. فيصبح عندها البلازمااكبر من ترددها $P_{\rm ye} < \omega$.

معامل انكسارها مساو للصفر $N_0=0$ وتسمى هذه النقطة بنقطة قطع Cutoff. أما عندما تصل الموجة الى منطقة تردد البلازما فيها مساو لترددها فأنها تمتص كليا ويصبح معامل انكسارها مالانهاية ويسمى ترددها بالتردد الرنيني Resonance frequency وتسمى هذه المنطقة بمنطقة الرنين. اما الموجة غير الاعتيادية فهي موجه ذات استقطاب قطع تناقصي, وذات متجه موجه X عمودي على كلٍ من المجال الكهربائى X والمغناطيسى X

السمك البصرى Optical depth

ان حسابات إخماد الموجة عند الرنين السايكلوتروني يجب ان يشمل الحركة الحرارية للالكترونات واتجاه انتشار الموجة نسبة الى اتجاه المجال المغناطيسي. ولقد وجد بان طريقة ECRH ذات كفاءة عالية جدا في السيطرة على شكل توزيع درجة حرارة الإلكترونات T_e داخل حلقة التوكاماك لان معظم الطاقة الممتصة تتمركز في طبقة ضيقة و فللموجة الاعتيادية يعطى سمك الطبقة بالعلاقة الاتية (13).

$$\Delta r = \left(5T_e/mc^2\right)R$$

فعندما $\Delta r/R = 10^{-2}$ فان $T_{\rm e}=1~{\rm KeV}$ ولقد أُجرِيت دراسات نظرية سابقة ($^{(0)}$) لحساب السمك البصري , فعندما يكون الانتشار عموديا على اتجاه المجال فان السمك البصري للموجة الاعتيادية τ هو:

$$\tau = \frac{\pi}{2} k_0 \frac{\omega_{pe}^2}{\omega_{ge}^2} \frac{T_e}{mc^2} R \tag{16}$$

اذ

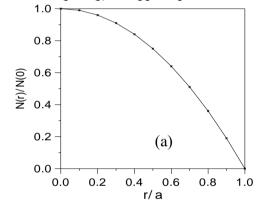
,
$$K_0 = \frac{\omega}{c} \left(1 - \frac{\omega_{pe}^2}{\omega_{ge}^2} \right)^{1/2}$$
$$\lambda = 2\pi c / \omega_{ge}$$

ان جزء الطاقة الممتص خلال مرور واحد خلال البلازما Λ يعرف بدلالة السمك البصرى (15,14):

$$A = 1 - e^{-\tau}$$
(17)

ان امتصاص طاقة الموجة يؤدي في البداية الى زيادة في طاقة الإلكترون لكلا درجتي الحرية العمودية, وعندما يكون الزمن المستغرق لهذه العملية اكبر من زمن تصادم الكترون-الكترون فمن المتوقع حدوث تسخين موضعي جيد. وتنتقل طاقة الإلكترونات إلى الأيونات بعمليات التصادم.

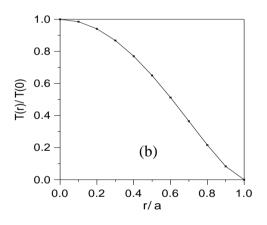
انموذج المحاكات Simulation Model


كما راينا سابقا من العلاقة (12) بان تردد الرنين يعتمد على كل من التردد السايكلوتروني للإلكترون و کما هو واضح من ω_{ne} و کما هو واضح من , ω_{ee} العلاقتين (5,6) بان تردد البلازما يعتمد على الكثافة ne. وان التردد السايكلوتروني يعتمد على شدة المجال المغناطيسي B0 فلذلك يتم اختيار قيم الكثافة و شدة المجال بحيث ان تردد الرنين للموجة يحدث فى مركز حلقة التوكاماك لكي تكون القيمة العظمى فی درجه حراره الالکترونات Te عند مرکز الحلقة النشكل توزيع كلامن الكثافة و درجة الحرارة داخل حلقة التوكاماك هو على النحو

$$n_{e}(r) = n_{e}(0) \left(1 - \frac{r^{2}}{a^{2}}\right) \qquad \dots (18)$$

$$T_{e}(r) = T_{e}(0) \left(1 - \frac{r^{2}}{a^{2}}\right)^{1.5} \qquad \dots (19)$$

$$T_e(r) = T_e(0)\left(1 - \frac{1}{a^2}\right)$$
(19) $T_e(0)$, $T_e(0)$, $T_e(0)$


هي كثافة ودرجة حرارة $T_{e}(0)$, الإلكترونات عند مركز الحلقة (r,(r=0 هو نصف قطر فتحة الحلقة a هو المحور الصغير للبلازما

وقد اختيرت ثلاث محطات عالمية بأحجام مختلفة لأجراء عملية المحاكاة عليها وهي: محطة Tosca في المملكة المتحدة وطول محور ها الرئيس (R=30 cm) ومحطة ISX-B في الولايات المتحدة الأمريكية وطول محورها الرئيس R=93) (cm) ومحطة T-10 في روسيا وطول محورها الرئيس (R=150 cm), وقد اعتمدت القيم العملية لهذه المحطات الثلاث كما هي مثبتة في المصدر .(16)

المناقشة

الشكل (b.a-1) يوضح شكل توزيع الكثافة النسبية $T_e(r)/T_e(0)$ و درجة الحرارة النسبية $n_e(r)/n_e(0)$ كدالة ل r/a داخل حلقة التوكاماك على التوالي, ويلاحظ ان القيمة العظمى للكثافة ودرجة الحرارة هي في مركز الحلقة وتتناقص تدريجياً حتى تصبح صفراً عند الحافة

r/a الشكل: a-1 الكثافة النسبية a-1 كدالة ل a-1 درجة الحرارة النسبية a-1 كدالة ل a-1

الشكل (c,b,a-2) يمثل تغيير السمك البصري للامواج الاعتبادية au كدالة لدرجة حرارة الالكترونات Te eV بثبوت الكثافة ne وشدة ISX-B, Tosca المجال B_0 للمنظومات الثلاث

R=.3 m³ FREQ.=28 GH

Ne=1.6 x 10¹⁸ m

200

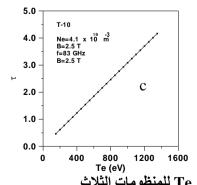
400

a

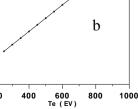
600

800

0.16


0.12

⊳ 0.08

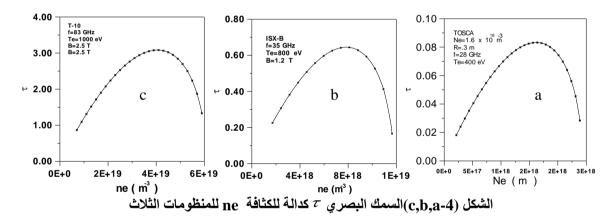

0.04

0.00

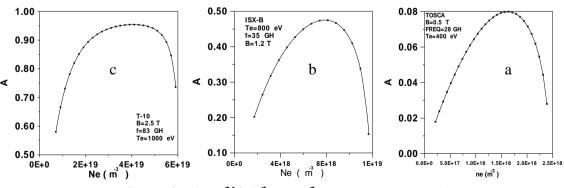
, T-10على التوالي, ويلاحظ انها علاقة خطية أي انه كلما از دادت درجة حرارة الإلكترونات از داد السمك البصري وكذلك بلاحظ أن السمك البصري يزداد بزيادة حجم المنظومة بثبوت درجة الحرارة

Ne=7 x 10⁸ m³ B=1.2 f=35 GH 0.60 **□ 0.40** b 0.20 0.00 400 600 Te (EV) 800

الشكل(c,b,a-2) السمك البصري \mathcal{T} كدالة لدرجة الحرارة Te للمنظومات الثلاث

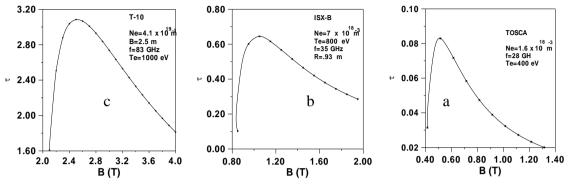

A يمثل تغيير الامتصاصية $T_{\rm e}$ يمثل تغيير الامتصاصية كدالة لدرجة الحرارة $T_{\rm e}$ بثبوت الكثافة $T_{\rm e}$ وشدة المجال $T_{\rm e}$ للمنظومات الثلاث وهي علاقة غير

خطية, و يلاحظ ان الامتصاصية تزداد مع زيادة حجم المنظومة حتى يكون الامتصاص كاملاً في المنظومة T-10.


الشكل (c,b,a-4) يوضح السمك البصري كدالة للكثافة n_e بثبوت درجة الحرارة T_e وشدة المجال في المنظومات الثلاث , يلاحظ ان السمك البصري يزداد مع زيادة الكثافة الى ان يصل لقيمة معينة ثم

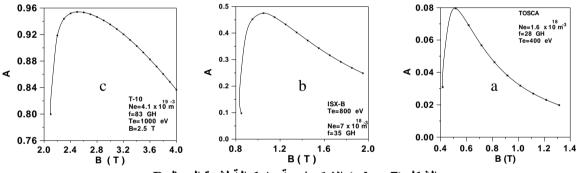
ينخفض تدريجياً وتختلف قيمة السمك البصري عند القمة باختلاف حجم المنظومة , فهو يزداد مع زيادة حجم المنظومة.

الشكل (c,b,a-5) يوضح تغيير الامتصاصية A مع الكثافة n_e بثبوت درجة الحرارة T_e وشدة المجال ρ وشكل العلاقة مشابه لعلاقة السمك البصري مع الكثافة السابقة ρ وكذلك فان قيمة الامتصاصية عند


القمة تزداد مع زيادة حجم المنظومة , ففي المنظومة ISX-B كانت $A \sim 0.08$ وفي المنظومة $A \sim 0.05$ كانت $A \sim 0.5$ الى ان تصل الى $A \sim 0.95$ في المنظومة $A \sim 0.95$

الشكل (c,b,a-5) الامتصاصية A كدالة للكثافة $n_{\rm e}$ للمنظومات الثلاث.

مع شدة المجال الى ان يصل قيمة معينة ثم ينخفض تدريجياً , وتزداد قيمة السمك البصري عند القمة مع زيادة حجم المنظومة.


الشكل (c,b,a-6) يوضح تغيير السمك البصري $T_{\rm e}$ مع شدة المجال B بثبوت درجة الحرارة $T_{\rm e}$ والكثافة $T_{\rm e}$ يلاحظ ان السمك البصري يزداد بشدة

 ${f B}$ السمك البصري ك كدالة لشدة المجال (c,b,a-6)

عند القمة مع زيادة حجم المنظومة , ففي المنظومة ISX-B كانت $A \sim 0.08$ وفي المنظومة $A \sim 0.5$ كانت $A \sim 0.5$ الى ان تصل ال $A \sim 0.5$ في المنظومة $A \sim 0.5$

الشكل (c,b,a-7) يوضح تغيير الامتصاصية A مع شدة المجال B بثبوت درجة الحرارة والكثافة للمنظومات الثلاث, ويلاحظ ان الامتصاصية تزداد بشدة مع زيادة شدة المجال إلى أن تصل الى قيمة عظمى ثم تنخفض تدريجياً, وتزداد قيمة الامتصاصية

الشكل (c,b,a-7) الامتصاصية A كدالة لشدة المجال

- **2.** Yadav V. K., Bora D. 2004," Electron cyclotron resonance heating in a short cylindrical plasma system" Indian Academy of Science, 63 (3):127-135.
- 3. Ohuni K., Ogawa Y., Morik J. 2004, "Characteristics of Electron Cyclotron Resonance Heating Plasmas and Experimental Plans for Formation of Radial Electric Field in an Internal Coil Device Mini-RT" J. Plasma Fusion Res. Series, 73(6): 183-186.
- **4.** Nagosak k., Mechael G., Smith H. 2001,"Power Absorption Calculation

الاستنتاجات

ان طريقة التسخين بالأمواج المايكروية عند رنين الالكترون السايكلوتروني ECRH هي طريقة ذات كفاءة عالية وففي المحطات الكبيرة يمكن ان تمتص طاقة الموجة بصورة كاملة خلال مرور واحد خلال الملازما اما في المحطات الصغيرة فان طاقة الموجة تمتص بعد عدة انعكاسات عن الجدران. كما ان بامكان هذه الطريقة تركيز التسخين على منطقة ضيقة Δ حول المركز

المصادر:

1. Hartman D., 1999. Plasma Heating Summer School, September, Italy, Venice,pp.91.

- **10.**Jory H. R. et al. 1979,"High Efficiency of 140-GHz Microwave Production", IEEE Int. Conf. on Plasma Science, Quebec June, pp.ll.
- **11.**Read M.E. et al. 1979,"160-GHz Microwave for Heating of Plasma", 4th Int. Conf. On Infrared and Nearmillimeter Waves, 9-14 Dec., Miami,47-51.
- **12.**Reader J., Borass K., 1986, "Controlled Nuclear Fusion", New York, pp 61.
- **13.**Cano R., 1981, "Heating in Toroidal Plasma II", 2nd Joint Grenoble-Varenna International Sympos. 1, pp. 107.
- **14.**Litvak A. G., Permitin A. ,1977,Energy Absorption of Microwave in Toroidal Device Plasma, Nucl. Fusion., 17(7):659-662.
- **15.**Baumgarted K., 1979, Optical Depth in Tokamak Plasma, Nucl. Fusion, 19(10):1543-1547.
- **16.**Golant V. E Fedorov V. I., 1989, RF Plasma Heating in Toroidal Fusion Devices, 233 spring street, New York N, Y, 10013, pp.95.

- for Electron Cyclotron Resonance Heating in H-1Heliac", J. Physical Society of Japan, 70(3), 617-620.
- 5. Westerhaf W., Barth C. J., Donne A. J., 2001, Electron Cyclotron Resonance Heating in the Current ramp-up phase of TEXTOR-94 28th EPS. Conferennce on the Cont. Fusion and Plasma Phys. Funchal, 18-22 June, ECA, 25A, 77-80.
- **6.** Alikaev V. V. et al. (1976), "Heating of Plasma by Electron Cyclotron Resonance Heating", Sov. J. plasma Phys., 2(212):217-224.
- 7. Bulyginsky D.G. et al., 1979, "Plasma Heating by Microwave in ECRH", 9th European Conf. On Controlled Fusion and Plasma Physics, Oxford 17-21 Sept. paper B2.4.
- 8. Gilgenbach R. M. et al., 1980 ,"Heating of Plasma in ISX-B Tokamk", Phys. Rev. Lett. 44(647):158-163.
- **9.** Flyagin V. A. et al. 1979,"Efficiency of Microwave Production", IEEE Trans. Microwave theory and Tech., 25(522):241-245.

Plasma Heating of Tokamak by Microwaves at Electron Cyclotron Resonance Heating (ECRH)

H.H.Murbat*

*University of Baghdad /Collage of science for women /Department of physics

Abstract

The brief description to the theory of propagation of electromagnetic waves in plasma was done. The cutoff and resonance regions have been showed. The principles of plasma heating at electron cyclotron resonance (ECRH) method have been mentioned. The numerical simulation to three different station: Tosca station in United Kingdom, ISX-B station in USA and T-10 station in Russia had been done. The optical depth τ and the friction of energy absorbed A have been calculated. The simulation results indicate that both τ and A are increase with size of the tokamak and it is possible to obtain full absorption in large tokamak.