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Introduction  

It is well identified that graphs are very useful tools 

in solving model problems occurring in almost all 

areas of our lives. This article focuses on intersection 

graphs. Let 𝒳 = {𝒳𝑖 : 𝑖 ∈ Λ} be a random class of 

sets. The intersection graph Γ(𝒳) for 𝒳 is a graph 

whose vertices are 𝒳𝑖, 𝑖 ∈ Λ and there is an edge 

between different vertices 𝒳𝑖 and 𝒳𝑗 if and only if 

𝒳𝑖 ∩ 𝒳𝑗 ≠ ∅. The studies of Γ(𝒳) whenever the 

elements of 𝒳 have an algebraic structure is 

interesting. These revisions allow us to get 

representations of the classes of algebraic structure 

in terms of graphs and vice versa. In 2009, the idea 

of the intersection graph of a ring was introduced by 

Chakrabarty1, et. al. Inspired by his work in 2012, 

Akbari2, et. al. defined the intersection graphs of 

modules. Also, there are some graphs on groups and 

modules3-5. In 2021, Mahdavi and Talebi6 considered 

graph Γ(𝑀) on a module 𝑀 with vertices as non-

trivial submodules of 𝑀, where two different 

vertices 𝑁, 𝐿 are adjacent if and only if 𝑁 ∩ 𝐿 is 

small in 𝑀. Inspired by preceding revisions on the 

intersection graph of algebraic constructions, in this 

paper, Γg(𝑀) the g-small intersection graph of a 

module is defined.  

       In Section 2, certain assets of g-small 

submodules are introduced. In Section 3, Γg(𝑀) is 

complete if either 𝑀 is a direct sum of two simple 

modules or 𝑀 is a generalized hollow module are 

proved. Also, if 𝑀 is a g-supplemented module, then 

Γg(𝑀) is connected and diam(Γg(𝑀)) ≤ 2. Besides 

proved that if |Γg(𝑀) | ≥ 3, then  Γg(𝑀) is a star 

graph if and only if 𝑅𝑎𝑑g(𝑀) is a non-zero simple g-

small submodule where any pair of non-trivial 

submodules of 𝑀 have non-g-small intersections. In 

addition, if |𝕊g(𝑀)| ∈ {1, 2} and under some 
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condition, then Γg(𝑀) is a planar graph. Also, if 

|𝕊g(𝑀)| ≥ 3, then Γg(𝑀) is not a planar graph. In 

Section 4, the main result, that is if 𝑀 = ⨁𝑖=1
𝑛 𝑀𝑖, 

with 𝑀𝑖 is a distinct simple 𝑅-module, then Γg(𝑀) is 

a planar graph if and only if 𝑛 ≤ 4.  

       Throughout this paper 𝑅 is a commutative ring 

with identity and 𝑀, it is a unitary left 𝑅-module. 

Using a non-trivial submodule of 𝑀 means that it is 

a non-zero proper submodule of 𝑀, see7. A 

submodule 𝑁 (𝑁 ≤ 𝑀) of 𝑀 is named small in 𝑀 

(and written 𝑁 ≪ 𝑀), if for every submodule 𝐿 ≤
𝑀, with 𝑁 + 𝐿 = 𝑀 implies that 𝐿 = 𝑀. 𝐿 ≤ 𝑀 is 

said to be essential in 𝑀, symbolized as 𝐿 ⊴ 𝑀, if 

𝐿 ∩ 𝑁 ≠ 0 for every non-zero submodule 𝑁 ≤ 𝑀, 

see7. Kosar8, et. al. called a submodule 𝐾 generalized 

small (briefly, g-small) submodule of 𝑀 if, for every 

essential submodule 𝑇 of 𝑀 such that 𝑀 = 𝐾 + 𝑇 

implies that 𝑇 = 𝑀, one can write 𝐾 ≪g 𝑀, see8 ( it 

is called an e-small submodule of 𝑀 and is indicated 

by 𝐾 ≪𝑒 𝑀 by Zhou and Zhang9). Small submodules 

are generalized small submodules nonetheless; the 

converse is not true generally. 𝑀 is named hollow 

[resp., generalized hollow]8,10, if all proper 

submodules of 𝑀 are small [resp., g-small] in 𝑀. 

Evidently, every hollow module is generalized 

hollow. The converse assertion is not always true. A 

submodule 𝑃 of a module 𝑀 is maximal if it is not 

properly contained in any other submodule of 𝑀. 𝑀 

is named local if it has a unique maximal submodule. 

𝑀 is local if it is hollow and finitely generated7. 

𝑅𝑎𝑑(𝑀) is the Jacobson radical of 𝑀, and it is the 

intersection of all maximal submodules of 𝑀. If 𝑇 is 

an essential and maximal submodule in 𝑀 then 𝑇 is 

called a generalized maximal submodule of 𝑀, see 

Definition 2 of8. The intersection of all generalized 

maximal submodules of 𝑀 is called the generalized 

radical of 𝑀 and is given the symbol 𝑅𝑎𝑑g(𝑀) that 

is also known as the sum of all g-small submodules 

in 𝑀. Since 𝑅𝑎𝑑(𝑀) is the sum of all small 

submodules of 𝑀, it follows that 𝑅𝑎𝑑(𝑀) ≤
𝑅𝑎𝑑g(𝑀) for a module 𝑀 see8. The module 𝑀 is 

named simple if 𝑀 has no proper submodules, 

besides 𝑀 is termed semisimple if 𝑀 is a direct sum 

of simple submodules. The socle of 𝑀, is indicated 

by 𝑆𝑜𝑐(𝑀), it is the sum of all simple submodules in 

𝑀. Each definition in graph theory written in the 

following section has appeared in Bondy and Murty 

work11.  

     Let Γ be a graph, then 𝑉(Γ) and 𝐸(Γ) denote the 

set of vertices and edges in Γ, respectively. 

Neighborhood of 𝑣 indicated by 𝑁(𝑣) which is the 

set of vertices adjacent to vertex 𝑣 of Γ. The order of 

Γ is the number of vertices of Γ, it indicates using |Γ|. 
If |Γ| < ∞, then Γ is finite, otherwise, Γ is infinite. If 

𝑢 and 𝑣 are adjacent vertices of Γ, then write 𝑢 − 𝑣, 

i.e. {𝑢, 𝑣} ∈ 𝐸(Γ). The degree of a vertex 𝜈 in Γ is 

indicated using deg(𝜈), which is the number of edges 

incident with 𝜈. Let 𝑢, 𝑣 be different vertices of Γ. A 

𝑢, 𝑣 −path is a path that starts with vertex 𝑢 and ends 

in vertex 𝑣. For different vertices 𝑢 and 𝑣, 𝑑(𝑢, 𝑣) is 

the least length of a 𝑢, 𝑣 −path. If Γ has no such path, 

then 𝑑(𝑢, 𝑣) = ∞. The diameter of Γ is referred to as 

diam(Γ), it is the supremum of the set {𝑑(𝑢, 𝑣): 𝑢 

and 𝑣 are different vertices of Γ}. A cycle in Γ is a 

path of length through at least 3 different vertices and 

it begins and ends at the same vertex. The girth of Γ, 

is indicated using gr(Γ), it is the length of the 

shortest cycle in Γ, provided Γ contains a cycle; else; 

gr(Γ) = ∞. A graph Γ is called connected if there is 

a path among all pairs of vertices of Γ. A tree is a 

connected graph that does not contain a cycle. A star 

graph is a tree consisting of one vertex adjacent to all 

the others. A graph is complete if it is connected with 

a diameter that is less than or equal to one. A 

complete graph with 𝑛 distinct vertices is indicated 

by 𝐾𝑛. A clique of Γ is its maximal complete 

subgraph besides the number of vertices in the largest 

clique of graph Γ, and it is denoted by 𝜔(Γ) and is 

called the clique number of Γ. 

  

g-Small Submodules 

Here, some assets of g-small submodules are 

introduced. 

Lemma 1:9,10 Let 𝑀 be a module. Then 

(1) For submodules 𝒜, 𝐾, 𝐿 of 𝑀 with 𝐾 ≤ 𝒜, we 

get 

(a) If 𝒜 ≪g 𝑀, then 𝐾 ≪g 𝑀 and 𝒜/𝐾 ≪g 𝑀/

𝐾. 

(b) 𝒜 + 𝐿 ≪g 𝑀 if and only if 𝒜 ≪g 𝑀 and 

𝐿 ≪g 𝑀. 

(2) If 𝑊 ≪g 𝑀 and 𝑓: 𝑀 → 𝑁 is a homomorphism, 

then 𝑓(𝑊) ≪g 𝑁. Specifically, if 𝑊 ≪g 𝑀 ≤

𝑁, then 𝑊 ≪g 𝑁. 

(3) Let 𝑁, 𝐾, 𝐿, and 𝑇 be submodules of 𝑀. If 

𝐾 ≪g 𝐿 and 𝑁 ≪g 𝑇, then 𝐾 + 𝑁 ≪g 𝐿 + 𝑇. 

(4) Let ℱ1 ≤ 𝒜1 ≤ 𝑀, ℱ2 ≤ 𝒜2 ≤ 𝑀 and 𝑀 =
𝒜1 ⊕ 𝒜2. Then ℱ1 ⊕ ℱ2 ≪g 𝒜1 ⊕ 𝒜2 if and 

only if ℱ1 ≪g 𝒜1 and ℱ2 ≪g 𝒜2. 
 

Definition 1:9,10 Let 𝑀 be a module. Define 
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𝑅𝑎𝑑g(𝑀) =∩ {𝑁 ⊴ 𝑀 | 𝑁 is maximal of 𝑀}. 

 

If 𝑀 has no maximal essential submodules, then it 

is indicated by 𝑅𝑎𝑑g(𝑀) = 𝑀. 

Clearly, 𝑅𝑎𝑑(𝑀) ≤ 𝑅𝑎𝑑g(𝑀) and 𝑆𝑜𝑐(𝑀) ≤

𝑅𝑎𝑑g(𝑀). For an arbitrary ring 𝑅, let 𝑅𝑎𝑑g(𝑅) =

𝑅𝑎𝑑g(R𝑅).  

Lemma 2: (Lemma 1 of12) The next assertions hold 

for a module 𝑀. 

(1) For every 𝑎 ∈  𝑅𝑎𝑑g(𝑀), 𝑅𝑎 ≪g 𝑀. 

(2) If 𝑁 ≤ 𝑀, at that time 𝑅𝑎𝑑g(𝑁) ≤ 𝑅𝑎𝑑g(𝑀).  

(3) 𝑅𝑎𝑑g(𝑀) = ∑ 𝑁𝑁≪g𝑀 . 

 

Lemma 3:9 Let 𝑀 and 𝑁 be modules. Then 

(1) If 𝑓: 𝑀 → 𝑁 is a homomorphism, then 

𝑓(𝑅𝑎𝑑g(𝑀)) ≤ 𝑅𝑎𝑑g(𝑁). 

(2) If all proper essential submodule in 𝑀 is 

contained in a maximal submodule in 𝑀, then 

𝑅𝑎𝑑g(𝑀) is a unique largest g-small submodule 

in 𝑀. 
 

Remark 1: It is clear that, in general, 𝑅𝑎𝑑g(𝑀) need 

not be g-small in 𝑀. Also, if 𝑀 is a finitely generated 

module, i.e. all proper submodule of 𝑀 is contained 

in a maximal submodule in 𝑀, then 𝑅𝑎𝑑g(𝑀) is the 

unique largest g-small in 𝑀 by Lemma 3(2). 

 

Lemma 4:10 If 𝑀 = ⨁𝑖∈𝐼𝑀𝑖 then 𝑅𝑎𝑑g(𝑀) =

⨁𝑖∈𝐼𝑅𝑎𝑑g(𝑀𝑖).  

 

Connectivity of 𝚪𝐠(𝑴) 

In this section, g-small intersection graphs of non-

trivial submodules of certain modules are connected, 

completed, and described. In addition, the girth and 

the diameter of Γg(𝑀) are fixed. Generalizing the 

definition of Mahdavi and Talebi6 considering the 

graph Γg(𝑀) as follows:  

 

Definition 2: The g-small intersection graph of non-

trivial submodules of an 𝑅-module 𝑀, denoted by 

Γg(𝑀), is a simple undirected graph whose vertices 

are in one-to-one correspondence with all non-trivial 

submodules of 𝑀 and two distinct vertices 𝑁 and 𝐿 

that are adjacent if and only if 𝑁 ∩ 𝐿 ≪g 𝑀. 

 

      Let Γ(𝑀) denote the graph introduced by 

Mahdavi and Talebi6. From definition 2 one has the 

following corollary.    

Corollary 1: Let 𝑀 be an 𝑅-module. Then the graph 

Γ(𝑀) is a subgraph of Γg(𝑀).  

Proof: Let Γ(𝑀) be a graph of 𝑀 with vertex set 

𝑉(Γ(𝑀)). It is clear that 𝑉(Γ(𝑀)) = 𝑉(Γg(𝑀)). 

Now, let 𝑁, 𝐾 ∈ 𝑉(Γg(𝑀)) such that 𝑁, 𝐾 are 

adjacent in Γ(𝑀). So 𝑁 ∩ 𝐾 ≪ 𝑀. Since every small 

submodule is a g-small submodule one has 𝑁 ∩

𝐾 ≪g 𝑀. Therefore, 𝑁, 𝐾 are adjacent in Γg(𝑀). 

Hence, Γ(𝑀) is a subgraph of Γg(𝑀).  □ 

Example 1: Let 𝑅 = ℤ and let 𝑀 = ℤ24. Then, 

𝑉(Γ(𝑀)) = 𝑉 (Γg(𝑀)) = {𝑀1 = 2ℤ24, 𝑀2 =

3ℤ24, 𝑀3 = 4ℤ24, 𝑀4 = 6ℤ24, 𝑀5 = 8ℤ24 and 

𝑀6 = 12ℤ24}. From Example 2, 𝑀𝑖 ∩ 𝑀𝑗 ≪g 𝑀, for 

all 1 ≤ 𝑖, 𝑗 ≤ 6 hence 𝑀𝑖 and 𝑀𝑗 are adjacent in 

Γg(ℤ24) for all 1 ≤ 𝑖, 𝑗 ≤ 6. Thus Γg(ℤ24) ≅ 𝐾6. 

Whereas Γ(ℤ24) is isomorphic to the subgraph of 𝐾6, 

since 𝑀1 and 𝑀3 are not small submodules of 𝑀 

according to9, so 𝑀1 ∩ 𝑀3 = 𝑀3 is not a small 

submodule of 𝑀. Hence 𝑀1 and 𝑀3 are not adjacent 

in Γ(ℤ24). Thus, the graph Γ(ℤ24) is not a complete 

graph.   

Proposition 1: Let 𝑀 be any module. If any one of 

the following holds. then Γg(𝑀) is complete: 

(1) If 𝑀 = 𝑀1⨁𝑀2, where 𝑀1 and 𝑀2 are simple 𝑅-

modules. 

(2) 𝑀 is a generalized hollow. 

Proof: (1) Suppose 𝑀 = 𝑀1⨁ 𝑀2 where 𝑀1 and 𝑀2 

are two simple 𝑅-modules. So, 𝑀1 + 𝑀2 = 𝑀 and 

𝑀1 ∩ 𝑀2 = {0}. Then every non-trivial submodule 

of 𝑀 is simple. Let 𝑁, 𝒜 be two distinct vertices of 

Γg(𝑀). then they are simple and minimal non-trivial 

submodules of 𝑀. Also, 𝑁 ∩ 𝒜 ≤ 𝑁, 𝒜 and if 𝑁 ∩
𝒜 ≠ (0), using minimality of 𝑁 and 𝒜 involves that 

𝑁 = 𝑁 ∩ 𝒜 = 𝒜, which is a contradiction. Thus, 

𝑁 ∩ 𝒜 = (0) ≪g 𝑀, and so 𝑁 and 𝒜 are adjacent in 

Γg(𝑀) for all two distinct vertices 𝑁, 𝒜 of Γg(𝑀). 

Hence Γg(𝑀) is a complete graph. 

(2) Suppose 𝑀 is a generalized hollow. Assume 𝑁1 

and 𝑁2 are two vertices of the graph Γg(𝑀). Hence 

𝑁1  and 𝑁2 are two non-zero g-small submodules of 

𝑀. As 𝑁1 ∩ 𝑁2 ≤ 𝑁𝑖, 𝑖 = 1, 2, by Lemma 1(2), 𝑁1 ∩
𝑁2 ≪g 𝑀, and so 𝑁 and 𝒜 are adjacent in Γg(𝑀) for 

all distinct vertices 𝑁, 𝒜 of Γg(𝑀). Hence Γg(𝑀) is 

complete.  □  

 

     The next corollary follows from Part 2 of 

Proposition 1. 
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Corollary 2: Let 𝑀 be any module. Then the 

following statements hold: 

(1) If 𝑉(Γg(𝑀)) is a totally ordered set, then the 

graph Γg(𝑀) is complete.  

(2) If 𝑀 is a hollow (local) and 𝑅𝑎𝑑g(𝑀) ≠ 𝑀, then 

the graph Γg(𝑀) is complete. 

(3) Every non-zero g-small submodule of 𝑀 is 

adjacent to all vertices in Γg(𝑀) and the induced 

subgraphs on the sets of g-small submodules of 

𝑀 are cliques. 

Proof: (1) Assume 𝑉(Γ(𝑀)) is a totally ordered set. 

Then each two non-trivial submodules of 𝑀 are 

comparable. Clearly, every non-trivial submodule of 

𝑀 is small (and g-small). Hence, 𝑀 is a generalized 

hollow module. As a result, by Proposition 1(2), 

Γg(𝑀) is complete.  

    (2) Assume that 𝑀 is a hollow (or local) module 

and 𝑅𝑎𝑑g(𝑀) ≠ 𝑀. then 𝑀 is a generalized hollow 

module10. So by Proposition 1(2), Γg(𝑀) is complete.  

    (3) Evident.  □ 

     The next example shows that Γg(𝑀) is a complete 

graph, whereas  𝑀 = ℤ24  is not generalized hollow 

as 𝑁 = 3ℤ24 is not a g-small submodule of 𝑀 = ℤ24, 

as in Example 2.13 of Zhou and Zhang9. 

 

Example 2:  Let 𝑅 = ℤ, 𝑀 = ℤ24 as an 𝑅-module. 

There are only six non-trivial submodules 𝑀1 =
2ℤ24 ≪g 𝑀, 𝑀2 = 3ℤ24, 𝑀3 = 4ℤ24 ≪g 𝑀, 𝑀4 =

6ℤ24 ≪g 𝑀, 𝑀5 = 8ℤ24 ≪g 𝑀 and 𝑀6 =

12ℤ24 ≪g 𝑀, as in Zhou and Zhang9. Clearly, 𝑀𝑖 ∩

𝑀𝑗 ≪g 𝑀, for all 1 ≤ 𝑖, 𝑗 ≤ 6. Thus, Γg(𝑀) is 

complete with 6 vertices, i.e., Γg(𝑀) ≅ 𝐾6.                                                              

Example 3: To any prime number 𝑝 for any 𝑛 ∈ ℤ, 

𝑛 ≥ 2. ℤ𝑝𝑛 is local ℤ-module, at that point it is 

hollow and so is generalized hollow. Also, let 𝑅 = ℤ, 

𝑝 be a prime besides 𝑀 = ℤ𝑝∞, the Prüfer 𝑝-group, 

now every 𝔅 ≤ 𝑀, 𝔅 ≠ 𝑀, 𝔅 ≪g 𝑀. Also, 

𝑅𝑎𝑑g(𝑀) = 𝑀. Thus, for all prime numbers 𝑝, ℤ𝑝∞  

is a generalized hollow ℤ-module. Using Proposition 

1(2), Γg(ℤ𝑝𝑛) and Γg(ℤ𝑝∞) are complete graphs. 

 

Example 4: Let 𝒫 be a finitely generated submodule 

of a ℤ-module ℚ. Thus 𝒫 ≪  ℚ (and so 𝒫 ≪g ℚ). 

Then it follows from Corollary 2(3), one has that the 

induced subgraph on the set of finitely generated 

submodules of ℚ are cliques in the graph Γg(ℚ). 

Now to clarify, let 𝑆 = {𝑁𝑖|𝑖 ∈ 𝐼} where 𝑆 is a set of 

nonzero g-small submodules of ℚ. Since 𝑁𝑖 ∩ 𝑁𝑗 ≤

𝑁𝑖 ≪g ℚ for all 𝑖, 𝑗 ∈ 𝐼. By Lemma 1(a), 𝑁𝑖 ∩

𝑁𝑗 ≪g ℚ. Hence 𝑁𝑖 − 𝑁𝑗 and so 𝑁𝑖 and 𝑁𝑗 are 

adjacent vertices of Γg(ℚ). Therefore, the induced 

subgraph on the set 𝑆 is a clique in Γg(ℚ).  

      Now, some descriptions of 𝑅𝑎𝑑g (R𝑅) and certain 

properties of 𝑅 related to 𝑅𝑎𝑑g(𝑅) are given.  

Remark 2: For a ring 𝑅, each of the following sets 

is equal to 𝑅𝑎𝑑g(𝑅): 

(1) 𝑅1 = the largest g-small left ideal of 𝑅. 

(2) 𝑅2 = the intersection of all essential maximal 

left ideals of 𝑅. 

 

Proof: It follows by putting 𝑀 = 𝑅.  □ 

 

Proposition 2: Let 𝑅 be an integral domain with 0 ≠
𝑅𝑎𝑑g(𝑅). If 𝑀 is a finitely generated torsion-free 

module and 𝑀 has a proper essential submodule. 

Then Γg(𝑀) is connected also diam(Γg(𝑀)) ≤ 2. 

 

Proof: Suppose 𝑀 is finitely generated and it has a 

proper essential submodule according to Remark 1, 

𝑅𝑎𝑑g(𝑀) ≪g 𝑀. Also, by Remark 2, 𝑅𝑎𝑑g(𝑅) is the 

largest g-small left ideal of 𝑅. By 21.12(4)7, 

𝑅𝑎𝑑g(𝑅)𝑀 ≤ 𝑅𝑎𝑑(𝑀), since 𝑅𝑎𝒅(𝑀) ≤

𝑅𝑎𝑑g(𝑀), so 𝑅𝑎𝑑g(𝑅)𝑀 ≤ 𝑅𝑎𝑑g(𝑀). Hence, 

𝑅𝑎𝑑g(𝑅)𝑀 ≪g 𝑀. Since 𝑅𝑎𝑑g(𝑅) ≠ 0 and 𝑀 is 

torsion-free then 𝑅𝑎𝑑g(𝑅)𝑀 ≠ 0. Thus 𝑅𝑎𝑑g(𝑅)𝑀 

is a vertex of Γg(𝑀). Since 𝑅𝑎𝑑g(𝑅)𝑀 ≪g 𝑀, then 

𝑅𝑎𝑑g(𝑅)𝑀 ∩ 𝑋 ≪g 𝑀 for every 0 ≠ 𝑋 ≤ 𝑀 by 

Lemma 1. So, there exists an edge between the vertex 

𝑅𝑎𝑑g(𝑅)𝑀 and 𝑋 of Γg(𝑀). Also, for every two 

vertices 𝑋, 𝑌 in the graph Γg(𝑀), there exists a path 

𝑋 − 𝑅𝑎𝑑g(𝑅)𝑀 − 𝑌 of length 2 in Γg(𝑀). This 

completes the proof.  □       

 

Definition 3:8 A submodule 𝐴 ≤ 𝑀 is called a g-

supplement of a submodule 𝑁 ≤ 𝑀 if 𝑀 = 𝑁 + 𝐴 

and 𝑁 ∩ 𝐴 ≪g 𝐴 (so 𝑁 ∩ 𝐴 ≪g 𝑀). 𝐴 is called a g-

supplement submodule if 𝐴 is a g-supplement of 

some submodule of 𝑀. 𝑀 is called a g-supplemented 

module if all submodules of 𝑀 have a g-supplement. 

 

Proposition 3: Let 𝔘 ≤ 𝑀. then any g-supplement to 

𝔘 is adjacent to 𝔘 in Γg(𝑀).    

Proof: Let 𝒜 be a g-supplement of 𝔘, 𝔘 ≤ 𝑀. Hence 

𝑀 = 𝔘 + 𝒜 and 𝔘 ∩ 𝒜 ≪g 𝒜. According to 
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Lemma 1(2),  𝔘 ∩ 𝒜 ≪g 𝑀. Thus 𝒜 adjacent to 𝔘 

in Γg(𝑀).  □     

   

Proposition 4: Γg(𝑀) is connected and 

diam(Γg(𝑀)) ≤ 2 whenever 𝑀 is g-supplemented. 

Proof: Let 𝑁, 𝐿 be submodules of 𝑀. As 𝑀 is g-

supplemented, now there is 𝒜 ≤ 𝑀 with 𝑁 + 𝒜 =
𝑀,  𝑁 ∩ 𝒜 ≪g 𝒜, and 𝑁 ∩ 𝒜 ≪g 𝑀 by Lemma 

1(2). One can consider two possible cases for 𝑁 ∩ 𝒜. 

Case 1: If 𝑁 ∩ 𝒜 = (0), then 𝑁⨁𝒜 = 𝑀.  

Now, if 𝐿 ≤ 𝑁, then 𝐿 ∩ 𝒜 ≪g 𝑀. Thus 𝐿 − 𝒜 − 𝑁 

a path of length 2 in Γg(𝑀). If 𝐿 ≤ 𝒜, at that point 

𝐿 ∩ 𝑁 ≪g 𝑀. As a result of 𝑁 − 𝐿 in the graph 

Γg(𝑀). Hence, Γg(𝑀) is connected and 

diam(Γg(𝑀)) ≤ 2. 

Case 2: If 𝑁 ∩ 𝒜 ≠ (0). Since 𝑁 ∩ 𝒜 ≪g 𝑀, thus 

𝑁 − 𝑁 ∩ 𝒜 − 𝐿 is a path of length 2 in Γg(𝑀). This 

ends the proof. □   

Lemma 5: For a module 𝑀:  

(1) Assume 𝑁 is a finitely generated submodule in 𝑀 

and 𝑁 ≤ 𝑅𝑎𝑑g(𝑀). Then 𝑁 ≪g 𝑀. 

(2) Assume 𝑁 is a semisimple submodule in 𝑀 with 

𝑁 ≤ 𝑅𝑎𝑑g(𝑀). Then 𝑁 ≪g 𝑀. 

Proof: (1) Presume that 𝑁 ≤ 𝑀 is finitely generated, 

as a result, 𝑁 = ∑ 𝑅𝑛𝑖
𝑟
𝑖=1  for some 𝑛𝑖 ∈ 𝑁, 1 ≤ 𝑖 ≤

𝑟. Since 𝑅𝑛𝑖 ≤ 𝑅𝑎𝑑g(𝑀), 𝑅𝑛𝑖 ≪g 𝑀, by Lemma 2. 

As a result, 𝑁 ≪g 𝑀, according to Lemma 1.  

       (2) Let 𝑁 + 𝐾 = 𝑀 for specific essential 

submodule 𝐾 of 𝑀. As 𝑁 is semisimple, there exists 

a 𝑁′ ≤ 𝑁 with 𝑁 = (𝑁 ∩ 𝐾)⨁𝑁′. As a result, 𝑀 =
𝑁 + 𝐾 = [(𝑁 ∩ 𝐾)⨁𝑁′] + 𝐾 = 𝑁′ + 𝐾. Since 

𝑁′ ∩ 𝐾 = (𝑁′ ∩ 𝑁) ∩ 𝐾 = 𝑁′ ∩ (𝑁 ∩ 𝐾) = 0. 

Thus 𝑀 = 𝑁′⨁𝐾. By Lemma 4, 𝑅𝑎𝑑g(𝑀) =

𝑅𝑎𝑑g(𝑁′)⨁𝑅𝑎𝑑g(𝐾) = 𝑅𝑎𝑑g(𝐾) since 

𝑅𝑎𝑑g(𝑁′) ≤ 𝑅𝑎𝑑g(𝑁) = 0. Then 𝑀 = 𝑁 + 𝐾 ≤

𝑅𝑎𝑑g(𝑀) + 𝐾 ≤ 𝐾. Thus 𝑁 ≪g 𝑀. □ 

 

Proposition 5: Let 𝑀 be a 𝑅-module and 

𝑅𝑎𝑑g(𝑀) ≠ (0). Then the next conditions hold: 

(1) If 𝑁 is a non-trivial direct summand submodule 

for 𝑀 also (0) ≠ 𝑅𝑎𝑑g(𝑀) ≪g 𝑀, then there is 

at least one cycle of length 3 in Γg(𝑀). 

(2) If 𝑁 is a non-trivial semisimple or finitely 

generated submodule in 𝑀 contained in 

𝑅𝑎𝑑g(𝑀). Then 𝑑(𝑁, 𝑅𝑎𝑑g(𝑀)) = 1 and 

𝑑(𝑁, 𝐿) = 1 for any non-trivial submodule 𝐿 of 

𝑀. 

Proof: (1) As 𝐾 ≤ 𝑀 with 𝑁 ⊕ 𝐾 = 𝑀, as 𝑁 is a 

direct summand of 𝑀. Then 𝑅𝑎𝑑g(𝑁) ⊕

𝑅𝑎𝑑g(𝐾) = 𝑅𝑎𝑑g(𝑀), according to Lemma 4. Since 

𝑅𝑎𝑑g(𝑁) ≤ 𝑁 besides 𝑁 ∩ 𝑅𝑎𝑑g(𝐾) ≤ 𝑁 ∩ 𝐾 =

(0), using the modular law, 𝑅𝑎𝑑g(𝑀) ∩ 𝑁 =

[𝑅𝑎𝑑g(𝐾) + 𝑅𝑎𝑑g(𝑁)] ∩ 𝑁 = [𝑅𝑎𝑑g(𝐾) ∩ 𝑁] +

𝑅𝑎𝑑g(𝑁) = 𝑅𝑎𝑑g(𝑁). Thus, 𝑅𝑎𝑑g(𝑀) ∩ 𝑁 =

𝑅𝑎𝑑g(𝑁). At that time 𝑅𝑎𝑑g(𝑀) ∩ 𝑁 ≪g 𝑀. Also, 

𝑅𝑎𝑑g(𝑁) = 𝑁 ∩ 𝑅𝑎𝑑g(𝑁) ≪g 𝑀 besides 

𝑅𝑎𝑑g(𝑁) = 𝑅𝑎𝑑g(𝑁) ∩ 𝑅𝑎𝑑g(𝑀) ≪g 𝑀 and one 

has, 𝑑(𝑁, 𝑅𝑎𝑑g(𝑀)) = 1, 𝑑(𝑁, 𝑅𝑎𝑑g(𝑁)) = 1 

besides 𝑑(𝑅𝑎𝑑g(𝑁), 𝑅𝑎𝑑g(𝑀)) = 1. Hence, 

(𝑁, 𝑅𝑎𝑑g(𝑁), 𝑅𝑎𝑑g(𝑀)) is a cycle. Thus, there is at 

least one cycle of length 3 in Γg(𝑀). 

     (2) Assume 𝑁 is a non-trivial semisimple or 

finitely generated submodule in 𝑀; 𝑁 ≤ 𝑅𝑎𝑑g(𝑀). 

Using Lemma 5, 𝑁 ≪g 𝑀. Since 𝑁 ∩ 𝐿 ≤ 𝑁 so, 𝐿 ∩

𝑁 ≪g 𝑀 for every other non-trivial submodule 𝐿 of 

𝑀 by Lemma 1(1). Hence 𝑑(𝑁, 𝑅𝑎𝑑g(𝑀)) = 1 and 

𝑑(𝑁, 𝐿) = 1.  □ 
 

Proposition 6: If 𝑀 has at least one non-zero g-small 

submodule, then Γg(𝑀) is a connected graph and 

diam(Γg(𝑀)) ≤ 2. 

Proof: Take ℱ ∈ Γg(𝑀) a non-zero g-small 

submodule. Let 𝐴 and 𝐵 be two non-adjacent vertices 

of Γg(𝑀). Obviously, 𝐴 ∩ ℱ ≤ ℱ ≪g 𝑀, and ℱ ∩

𝐵 ≤ ℱ ≪g 𝑀. By Lemma 1(1), 𝐴 ∩ ℱ ≪g 𝑀 and 

ℱ ∩ 𝐵 ≪g 𝑀. So, 𝐴 − ℱ − 𝐵 is a path of length 2. 

So Γg(𝑀) is a connected graph and diam(Γg(𝑀)) ≤

2.  □ 

 

Corollary 3: If 𝑀 has a proper essential submodule. 

Then Γg(𝑀) is connected, if any one of the following 

holds. 

(1) 𝑀 is finitely generated and 𝑅𝑎𝑑g(𝑀) ≠ 𝑀. 

(2) If there exists a non-trivial submodule of 𝑀 

which is finitely generated or semisimple 

contained in 𝑅𝑎𝑑g(𝑀). 

Proof: (1) Assume 𝑀 is finitely generated besides 𝑀 

has a proper essential submodule such that  

𝑅𝑎𝑑g(𝑀) ≠ 𝑀. According to Remark 1, 0 ≠

𝑅𝑎𝑑g(𝑀) ≪g 𝑀. By Proposition 6, Γg(𝑀) is a 

connected graph.         

(2) It follows from Lemma 5 and Proposition 6.  □ 

 

      Zhou and Zhang9 generalized the notion of socle 

of 𝑀 to that of 𝑆𝑜𝑐𝑠(𝑀), 𝑆𝑜𝑐𝑠(𝑀) = ∑{𝐹 ≪ 𝑀 | 𝐹 
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is simple}. 𝑆𝑜𝑐𝑠(𝑀) ⊆ 𝑅𝑎𝑑(𝑀) and 𝑆𝑜𝑐𝑠(𝑀) ⊆
Soc(𝑀). 

 

Proposition 7: Let 𝑀 be a module with the graph 

Γg(𝑀) and Soc𝑠(𝑀) ≠ (0). Then the next statements 

hold: 

(1) Soc𝑠(𝑀) is adjacent to any other vertex in 

Γg(𝑀). 

(2) 𝑑(𝑅𝑎𝑑(𝑀), Soc(𝑀)) = 1, 

(3) Γg(𝑀) is connected and diam (Γg(𝑀)) ≤ 2, 

Proof: (1) According to Lemma 213, Soc𝑠(𝑀) =

𝑅𝑎𝑑(𝑀) ∩ Soc(𝑀). But Soc(𝑅𝑎𝑑(𝑀)) =

𝑅𝑎𝑑(𝑀) ∩ Soc(𝑀) by 21.2(2)7. Since by 2.8(9)14, 

𝑆𝑜𝑐(𝑅𝑎𝑑(𝑀)) ≪ 𝑀, at this time Soc𝑠(𝑀) ≪ 𝑀, so 

Soc𝑠(𝑀) ≪g 𝑀. Thus, Soc𝑠(𝑀) ∩ 𝔇 ≪g 𝑀 for any 

submodule 𝔇 of 𝑀. Hence, every other vertex in 

Γg(𝑀) is adjacent to Soc𝑠(𝑀). 

(2) Using the proof of (1), 𝑅𝑎𝑑(𝑀) ∩ Soc(𝑀) =
Soc𝑠(𝑀) ≪g 𝑀. Thus, 𝑑(𝑅𝑎𝑑(𝑀), Soc(𝑀)) = 1. 

(3) It is clear from (1). □ 

 

Proposition 8: If Γg(𝑀) has no isolated vertex, then 

Γg(𝑀) is connected and diam(Γg(𝑀)) ≤ 3. 

Proof: Presume 𝐴, 𝐵 is non-adjacent vertices in 

Γg(𝑀). As Γg(𝑀) has no isolated vertex, there exist 

submodules 𝐴1 and 𝐵1 with 𝐴 ∩ 𝐴1 ≪g 𝑀 and 𝐵 ∩

𝐵1 ≪g 𝑀. Now, if 𝐴1 ∩ 𝐵1 ≪g 𝑀, then 𝐴 − 𝐴1 −

𝐵1 − 𝐵 is a path of length 3. Otherwise 𝐴 − 𝐴1 ∩
𝐵1 − 𝐵 is a path of length 2. As a result, Γg(𝑀) is a 

connected graph besides diam(Γ𝑔(𝑀)) ≤ 3.  □ 

 

Theorem 1: Let 𝑀 be a semisimple module where 

𝑀 is not simple. then: 

(1) Γg(𝑀) has no isolated vertex. 

(2) Γg(𝑀) is connected and diam(Γg(𝑀)) ≤ 3. 

Proof: (1) Let 𝑋 ∈ 𝑉(Γg(𝑀)). As 𝑀 is a semisimple 

module, then by properties (20.2)7 all submodules in 

𝑀 are direct summand to 𝑀. As a result, there is 𝒜 ≤
𝑀 and 𝑀 = 𝑋 ⊕ 𝒜. From now 𝑋 ∩ 𝒜 = (0) ≪g 𝑀 

and so, there is an edge between vertex 𝑋 of Γg(𝑀) 

and another vertex. At that time 𝑋 is not an isolated 

vertex. 

(2) By Proposition 8 and Part (1). □  

              

      For module 𝑀, now use 𝕊g(𝑀) which indicates 

the set of all non-zero g-small submodules of 𝑀. 

 

Proposition 9: Assume 𝑛 ∈ ℤ+. In 𝑅-module 𝑀 with 

|𝕊g(𝑀)| = 𝑛 and |Γg(𝑀)| ≥ 2: 

(a) If ℋ ∈ 𝕊g(𝑀), then deg(ℋ) ≠ 0. 

(b) 𝜔(Γg(𝑀)) ≥ 𝑛.  

Proof: (a) Clear.  

(b) Let 𝕊g(𝑀) = {ℋ | ℋ ≪g 𝑀} and let |𝕊g(𝑀)| =

𝑛. The induced subgraph on the set 𝕊g(𝑀) is a 

complete subgraph of Γg(𝑀). 𝜔(Γg(𝑀)) ≥ 𝑛. □ 

Theorem 2: Let 𝑅𝑎𝑑g(𝑀) be a non-zero simple g-

small submodule of 𝑀 and let |Γg(𝑀)| ≥ 2. If Γg(𝑀) 

is a tree, then Γg(𝑀) is a star graph. 

Proof: Since 𝑅𝑎𝑑g(𝑀) ≠ 0, then 𝑅𝑎𝑑g(𝑀) is a 

vertex in Γg(𝑀). Now, 𝑅𝑎𝑑g(𝑀) is simple g-small, 

so 𝑅𝑎𝑑g(𝑀) a unique non-zero g-small submodule 

of 𝑀. But, 𝒮 ∩ 𝑅𝑎𝑑g(𝑀) ≪g 𝑀, for any 𝒮 ∈

𝑉(Γg(𝑀)). Thus Γg(𝑀) contains a vertex 𝑅𝑎𝑑g(𝑀) 

which is adjacent to all vertices. Now, presume 𝔫 ≠
𝑅𝑎𝑑g(𝑀)  besides 𝔪 ≠ 𝑅𝑎𝑑g(𝑀) are two distinct 

vertices of Γg(𝑀). Now, if 𝓃 ∩ 𝓂 ≪g 𝑀. Then 𝓃 −

𝑅𝑎𝑑g(𝑀) − 𝓂, which is a conflict since  Γg(𝑀) is a 

tree. Thus, 𝓃 ∩ 𝓂 is not g-small. As a result, 𝓃, 𝓂 

are not adjacent vertices. As a result, Γ𝑔(𝑀) is a star 

with center 𝑅𝑎𝑑g(𝑀).  □ 

     𝜒(Γ) is the smallest number of colors needed to 

color the vertices, 𝜒(Γ) is called the chromatic 

number of Γ so that no two adjacent vertices share a 

similar color. By Theorem 2, One has the next 

corollary. 

Corollary 4: Let 0 ≠ 𝑅𝑎𝑑g(𝑀) ≪g 𝑀 and let 

|Γg(𝑀)| ≥ 3. Now the next are equivalent: 

(1) Γg(𝑀) is a star, 

(2) Γg(𝑀) is a tree, 

(3) 𝜒 (Γg(𝑀)) = 2, 

(4) 𝑅𝑎𝑑g(𝑀) is a simple submodule of 𝑀 besides all 

pairs of non-trivial submodules in 𝑀, have non-

g-small intersection. 

Proof: (1) ⇒ (2) and (2) ⇒ (3) The implications are 

clear. 

(3) ⇒ (4) On the contrary, suppose 0 ≠ 𝐾 ≤
𝑅𝑎𝑑g(𝑀) besides 𝐾 ≪g 𝑀. If 𝐿 ∈ 𝑉(Γg(𝑀)). 

Evidently, (𝐾, 𝑅𝑎𝑑g(𝑀), 𝐿) is a cycle in Γg(𝑀), 

contradicts 𝜒 (Γg(𝑀)) = 2. So, 𝑅𝑎𝑑g(𝑀) is simple. 

Now, assume that 𝑋, 𝑌 belong to 𝑉(Γg(𝑀)) with 𝑋 ∩

𝑌 ≪g 𝑀. (𝑋, 𝑅𝑎𝑑g(𝑀), 𝑌) is a cycle in Γg(𝑀), 

which contradicts 𝜒 (Γg(𝑀)) = 2.  
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(4)  ⇒ (1) It is clear that 𝑅𝑎𝑑g(𝑀) is adjacent to each 

other vertex. Now, suppose that 𝑁 ≠ 𝑅𝑎𝑑g(𝑀)  and 

𝐿 ≠ 𝑅𝑎𝑑g(𝑀) are two distinct vertices of Γg(𝑀), and 

𝑁, 𝐿 are adjacent. As a result, 𝑋 ∩ 𝑌 ≪g 𝑀, a 

contradiction. Hence, Γg(𝑀) is a star graph.  □  

 

Proposition 10: Let 𝑀 be an 𝑅-module and 

|𝕊g(𝑀)| ≥ 1. If Γg(𝑀) does not contain a cycle, then 

Γg(𝑀) ≅ 𝐾1 or Γg(𝑀) is a star graph. 

Proof: Suppose that the graph  Γg(𝑀) contains no 

cycle. To prove |𝕊g(𝑀)| < 2, by the contrary way, 

let 𝑋 ≪g 𝑀 besides 𝑌 ≪g 𝑀. As a result, X +

Y ≪g 𝑀 by Lemma 1, besides,  Y − (X + Y) − X is 

cycle, which is a contradiction. Then |𝕊g(𝑀)| < 2. 

As |𝕊g(𝑀)| ≥ 1, at that time |𝕊g(𝑀)| = 1. Hence, 

𝑀 has a unique non-zero g-small submodule. Let 

𝑁 ∈ 𝕊g(𝑀). For every vertex 𝐿 of Γg(𝑀), if 𝐿 = 𝑁, 

then Γg(𝑀) ≅ 𝐾1 and if 𝐿 ≠ 𝑁, as 𝐿 ∩ 𝑁 ≪g 𝑀, now 

deduce Γg(𝑀) ≅ 𝐾2. Let Ψ = {v𝑖  | v𝑖 ≠ 𝑁, 𝑖 ∈ 𝐼}. 

Then every two arbitrary distinct vertices v𝑖  and v𝑗, 

𝑖 ≠ 𝑗, are not adjacent, and for 𝑖 ≠ 𝑗, v𝑖 − 𝑁−v𝑗  is a 

path and Γg(𝑀) is a star graph. □ 

 

Proposition 11: If |𝕊g(𝑀)| ≥ 2, then Γg(𝑀) 

contains at least one cycle and gr(Γg(𝑀)) = 3. 

Proof: Suppose that |𝕊g(𝑀)| ≥ 2. At that point, 𝑀 

has at least two non-zero g-small submodules, at a 

guess 𝒞1 besides 𝒞2. Since 𝒞1 ∩ 𝒞2 ≤ 𝒞𝑖, for 𝑖 = 1,2, 

by Lemma 1, 𝒞1 ∩ 𝒞2 ≪g 𝑀. Also, 𝒞1 ∩ (𝒞1 ∩

𝒞2) ≪g 𝑀 and 𝒞2 ∩ (𝒞1 ∩ 𝒞2) ≪g 𝑀. One 

considers two possible cases for 𝒞1 ∩ 𝒞2. 

Case 1: If 𝒞1 ∩ 𝒞2 ≠ (0), at that point 𝑑(𝒞1, 𝒞2) =
1, 𝑑(𝒞1, 𝒞1 ∩ 𝒞2) = 1 besides 𝑑(𝒞2, 𝒞1 ∩ 𝒞2) = 1. 

Thus (𝒞1, 𝒞1 ∩ 𝒞2, 𝒞2) is a cycle of length 3. Also by 

Lemma 1, 𝒞1 + 𝒞2 ≪g 𝑀 and since 𝒞1 ∩ (𝒞1 +

𝒞2) ≪g 𝑀 besides 𝒞2 ∩ (𝒞1 + 𝒞2) ≪g 𝑀, (𝒞1, 𝒞1 +

𝒞2, 𝒞2) is a cycle of length 3. Similarly, (𝒞1 ∩
𝒞2, 𝒞1, 𝒞1 + 𝒞2) and (𝒞1 ∩ 𝒞2, 𝒞2, 𝒞1 + 𝒞2) are 

cycles of length 3 and (𝒞1, 𝒞1 + 𝒞2, 𝒞2, 𝒞1 ∩ 𝒞2, 𝒞1) 

is a cycle of length 4. 

Case 2: If 𝒞1 ∩ 𝒞2 = (0), then (𝒞1, 𝒞1 + 𝒞2, 𝒞2) is a 

cycle of length 3 in Γg(𝑀). Thus, Γg(𝑀) contains at 

least one cycle and so gr(Γg(𝑀)) = 3.  □ 

 

Domination and Planarity of 𝚪𝐠(𝑴) 

In this section, the domination of Γg(𝑀) is fixed. 

And the relationship between the planarity of Γg(𝑀) 

and the non-zero g-small submodules of 𝑅-module 𝑀 

is revised. 

𝐷 ⊆ 𝑉(Γ) is called a dominating set if all vertices 

not in 𝐷 are adjacent to a vertex in 𝐷. The domination 

number, 𝛾(Γ), of Γ is the minimum cardinality of a 

dominating set of Γ. See, for instance15. Here, 𝐷 ⊆
𝑉(Γ) is a dominating set if and only if for any non-

trivial submodule 𝑁 of 𝑀 there is a 𝐿 ∈ 𝐷 with 𝑁 ∩
𝐿 ≪g 𝑀. 

 

Lemma 6: Let 𝑀 be a module such that |Γg(𝑀)| ≥

2, now the following hold: 

(i) If 𝐷 ⊆ 𝑉(Γg(𝑀)) such that 𝐷 either contains at 

least one g-small submodule of 𝑀 or there is a 

vertex 𝑋 ∈ 𝐷 which 𝑋 ∩ 𝑌 = (0), for 𝑌 ∈
 𝑉(Γg(𝑀))\𝐷. At that time 𝐷 is a dominating set 

in Γg(𝑀). 

(ii) If 𝑀 has at least one non-zero g-small 

submodule, at that time for all 0 ≠ 𝑋 ≪g 𝑀, {𝑋} 

is a dominating set and 𝛾(Γg(𝑀)) = 1. 

 

Proposition 12: Let 𝑀 = ℋ ⊕ ℱ be an 𝑅-module, 

where ℋ and ℱ are simple 𝑅-modules. Then 

𝛾(Γg(𝑀)) = 1. 

Proof: Assume 𝑀 = ℋ ⊕ ℱ, such that ℋ and ℱ are 

simple modules. Using Proposition 1(1), Γg(𝑀) is 

complete. Assume 𝒳 is a random vertex of Γg(𝑀). 

At that moment for any distinct vertex 𝒴 of Γg(𝑀), 

𝒳 ∩ 𝒴 ≪g 𝑀, thus {𝒳} is a dominating set besides 

𝛾(Γg(𝑀)) = 1.  □ 

 

Proposition 13: Assume 𝑀 is finitely generated and 

𝑅𝑎𝑑g(𝑀) ≠ 0. Then {𝑅𝑎𝑑g(𝑀)} is a dominating set 

of Γg(𝑀) and Γg(𝑀) is connected.  

Proof: Assume 𝐿 ∈ Γg(𝑀). Now, 𝐿 is adjacent to 

𝑅𝑎𝑑g(𝑀) if 𝐿 is g-small. Besides, if 𝐿 is not g-small. 

Since 𝑅𝑎𝑑g(𝑀) ≠ 0 in the finitely generated 

module, then 𝑅𝑎𝑑g(𝑀) ≪ g 𝑀. Hence, 𝐿 ∩

𝑅𝑎𝑑g(𝑀) ≪ g 𝑀. So, 𝐿 is adjacent to 𝑅𝑎𝑑g(𝑀). 

This suggests that {𝑅𝑎𝑑g(𝑀)} is a dominating set to 

Γg(𝑀) and so Γg(𝑀) is connected as vital. □  

 

Theorem 3: Let |𝕊g(𝑀)| ≥ 2 and |Γg(𝑀)| ≥ 3. 

Then the following conditions hold: 

(1) If 𝐼 and 𝐽 are two g-small submodules of 𝑀 then 

there is 𝔅 ∈ 𝑉(Γg(𝑀)), with 𝔅 belong to 𝑁(𝐼) ∩

𝑁(𝐽). 

(2) A graph Γg(𝑀) has at least one triangle. 

Proof: It is evidence.  □    
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Proposition 14: The next are equivalent for any 

module 𝑀: 

(1) Γg(𝑀) has no triangle. 

(2) If {𝐼, 𝐽} ∈ 𝐸(Γg(𝑀)), then there is no 𝔅 

belonging to 𝑉(Γg(𝑀)) with 𝔅 belong to 𝑁(𝐼) ∩

𝑁(𝐽). 

(3) |𝕊g(𝑀)| ≤ 1 and the intersection of every pair of 

the non-g-small non-trivial submodules of 𝑀 is 

not g-small. 

Proof: For (1) ⇒ (2) Suppose that the graph Γg(𝑀) 

has no triangle. On the other hand, consider 𝔅 ∈

𝑉(Γg(𝑀)) such that 𝔅 ∈ 𝑁(𝐼) and 𝔅 ∈ 𝑁(𝐽). It 

follows that (𝐼, 𝔅, 𝐽) is a triangle in Γg(𝑀), which is 

a conflict.  

Let (2) ⇒ (3) for every two adjacent vertices of the 

graph Γg(𝑀), there is no 𝔅 ∈ 𝑉(Γg(𝑀)) with 𝔅 ∈

𝑁(𝐼) ∩ 𝑁(𝐽). Let there exist at least two submodules 

0 ≠ ℋ1 ≪g 𝑀 and 0 ≠ ℋ2 ≪g 𝑀. Since ℋ1 ∩

ℋ2 ≪g 𝑀, they are adjacent vertices of the graph 

Γg(𝑀) and so, there is no 𝔅 ∈ 𝑉(Γg(𝑀)) with 𝔅 ∈

𝑁(𝐼) ∩ 𝑁(𝐽), which is a contradiction by Theorem 

3(1). 

(3) ⇒ (1) Assume 0 is the only g-small submodule 

of 𝑀. As the intersection of all pairs of non-g-small 

non-trivial submodules in 𝑀 is not g-small, Γg(𝑀) 

contains no triangles. Besides, 𝑆 is the only non-zero 

g-small submodule of 𝑀. At that time for every three 

arbitrary vertices 𝑁1, 𝑁2 besides 𝑁3 of Γg(𝑀), at least 

two of them are not g-small. Let 𝑆 = 𝑁1. As 𝑁2 ∩ 𝑁3 

is not a g-small submodule of 𝑀, then 𝑁2 − 𝑆 − 𝑁3 

is a path. Also, if 𝑆 ≠ 𝑁𝑖 , for 𝑖 = 1,2,3. Since 𝑁𝑖 ∩
𝑁𝑗  is not a g-small submodule in 𝑀, for 𝑖 ≠ 𝑗, 𝑖, 𝑗 =

1, 2, 3, then in the graph Γg(𝑀), 𝑁1, 𝑁2 and 𝑁3 are 

not adjacent vertices. Hence, there is no triangle in 

Γg(𝑀).  □ 

Remark 3: Let 𝑀 be a module with 𝑅𝑎𝑑g(𝑀) ≠ (0) 

and |Γg(𝑀)| ≥ 3. If 𝑀 is finitely generated, then 

Γg(𝑀) has a triangle. 

Proof: Straightforward. □ 

 

Definition 4: A graph Γ is called planar if Γ can be 

drawn in the plane so that its edges intersect only at 

their ends.  

Lemma 7: (Theorem 10.30)11 Γ is planar if and only 

if it has no subdivision of either 𝐾5 or 𝐾3,3. 

Proposition 15: If |𝕊g(𝑀)| = 1 or |𝕊g(𝑀)| = 2, 

then Γg(𝑀) is a planar graph, whenever the 

intersection of all pairs of non-g-small submodules 

in 𝑀 is not a g-small. 

Proof: If |𝕊g(𝑀)| = 1, then Γg(𝑀) has a vertex 𝐼 

which is adjacent to another vertex. According to the 

assumption, if 𝐽 ≠ 𝐼 and 𝐾 ≠ 𝐼 are two distinct 

vertices of Γg(𝑀),  then 𝐽 and 𝐾 are not adjacent 

vertices. As a result, Γg(𝑀) is a star graph with the 

center 𝐼.  Thus, Γg(𝑀) is planar. Now, if |𝕊g(𝑀)| =

2, then Γg(𝑀) does not contain 𝐾5 or 𝐾3,3 and by the 

definition of a planar graph in Lemma 7. □ 

                                                                                                                                                         

Proposition 16: For any module 𝑀, if |𝕊g(𝑀)| ≥ 3, 

then Γg(𝑀) is not a planar graph. 

Proof: Assume that  |𝕊g(𝑀)| ≥ 3. Now there are 

0 ≠ 𝐹 ≪g 𝑀 and 0 ≠ 𝑁 ≪g 𝑀 and 0 ≠ 𝑃 ≪g 𝑀. 

Obviously, any one of the vertices 𝐹 + 𝑁, 𝑁 + 𝑃, 
and  𝐹 + 𝑃 are non-zero submodules as well as 

adjacent to each of the submodules 𝐹, 𝑁, and 𝑃 in 

Γg(𝑀). As a result, Γg(𝑀) contains a complete graph 

𝐾5 such as the subgraph induced on { 𝐹, 𝑁, 𝑃, 𝐹 +
𝑁, 𝑁 + 𝑃}. Thus, by the definition of a planar graph 

in Lemma 7, Γg(𝑀) is not a planar graph. □ 

 

Results and Discussion 

Some results are proven, such as the graph Γg(𝑀) is 

connected if 𝑀 is g-supplemented or Soc𝑠(𝑀) ≠
(0).    

Conclusion 

In this paper, an undirected graph Γg(𝑀), the g-small 

intersection graph of 𝑀 where 𝑉(Γg(𝑀)) are non-

trivial submodules of 𝑀 and two different vertices 𝑁 

and 𝐿 are adjacent if and only if 𝑁 ∩ 𝐿 ≪g 𝑀 was 

introduced and studied. Here, Γg(𝑀) is complete if 

𝑀 is a generalized hollow module or 𝑀 is a direct 

sum of two simple modules. Girth, diameter, 

https://doi.org/10.21123/bsj.2024.8967
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domination, and planar property of the graph Γg(𝑀) 

are studied. 
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 للمقاس g – النمط من صغير تقاطع بيان

 علوان حسن أحمد

.ذي قار، ذي قار، العراق جامعةالتربية للعلوم الصرفة،  كليةالرياضيات،  قسم  

 

 ةالخلاص

هو بيان  Γg(𝑀) , يرمز له  𝑀للمقاس  g-دي. بيان تقاطع صغير من النمطااحيسر ا مقاسا  𝑀 كن يول، يةدحاألية ابداحلقة  𝑅لتكن     

وكل رأسين مختلفين متجاورين أذا وفقط أذا كان التقاطع بينهما  𝑀غير مباشر بسيط رؤوسه تقابل كل المقاسات الجزئية غير التافهة في 

 أعتبرΓg(𝑀).  والخصائص البيانية الى 𝑀 العلاقة بين الخصائص الجبرية الى  سةدراتم  ،. في هذا المقالg-هو صغير من النمط

الى جانب  زمرةوكذلك أعطى صيغة لحساب ال، Γg(𝑀)الى و الطوق القطر  دحديتم ت، . علاوة على ذلك، الكمالالترابطخصائص مثل 

 .Γg(𝑀)د الهيمنة الى اعدأ

 .بيان تقاطع صغير ،مقاس جزئي صغير، مقاس ،الهيمنة الترابط، الكلمات المفتاحية:

https://doi.org/10.21123/bsj.2024.8967

