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Abstract

Let R be a commutative ring with identity, and M be a left R-module. The g-small intersection graph of
non-trivial submodules of M, indicated by I';(M), is a simple undirected graph whose vertices are in one-

to-one correspondence with all non-trivial submodules of M and two distinct vertices are adjacent if and
only if the intersection of the corresponding submodules is a g-small submodule of M. In this article, the
interplay among the algebraic properties of M, and the graph properties of I['; (M) are studied. Properties of
[y (M) such as connectedness, and completeness are considered. Besides, the girth and the diameter of
I, (M) are determined, as well as presenting a formula to compute the clique and domination numbers of
[y (M). The graph I';(M) is complete if, M is a generalized hollow module or M is a direct sum of two

simple modules, is proved.

Keywords: Connectivity, Domination, Module, Small submodule, Small intersection graph.

Introduction

It is well identified that graphs are very useful tools
in solving model problems occurring in almost all
areas of our lives. This article focuses on intersection
graphs. Let X = {X; : i € A} be a random class of
sets. The intersection graph I'(X) for X is a graph
whose vertices are X;, i € A and there is an edge
between different vertices X; and X if and only if
XiNX; # @. The studies of I'(X) whenever the
elements of X have an algebraic structure is
interesting. These revisions allow us to get
representations of the classes of algebraic structure
in terms of graphs and vice versa. In 2009, the idea
of the intersection graph of a ring was introduced by
Chakrabarty?, et. al. Inspired by his work in 2012,
Akbari?, et. al. defined the intersection graphs of
modules. Also, there are some graphs on groups and
modules®®. In 2021, Mahdavi and Talebi® considered
graph I'(M) on a module M with vertices as non-

trivial submodules of M, where two different
vertices N, L are adjacent if and only if NN L is
small in M. Inspired by preceding revisions on the
intersection graph of algebraic constructions, in this
paper, I;(M) the g-small intersection graph of a
module is defined.

In  Section 2, certain assets of g-small
submodules are introduced. In Section 3, T;(M) is
complete if either M is a direct sum of two simple
modules or M is a generalized hollow module are
proved. Also, if M is a g-supplemented module, then
[;(M) is connected and diam(Ty(M)) < 2. Besides
proved that if |[g(M) | =3, then Ty(M) is a star
graph if and only if Radg(M) is a non-zero simple g-
small submodule where any pair of non-trivial
submodules of M have non-g-small intersections. In
addition, if |Sg(M)|€{1,2} and under some
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condition, then [(M) is a planar graph. Also, if
|Sg(M)| = 3, then [(M) is not a planar graph. In
Section 4, the main result, that is if M = @], M;,
with M; is a distinct simple R-module, then I,(M) is
a planar graph if and only if n < 4.

Throughout this paper R is a commutative ring
with identity and M, it is a unitary left R-module.
Using a non-trivial submodule of M means that it is
a non-zero proper submodule of M, see’. A
submodule N (N < M) of M is named small in M
(and written N « M), if for every submodule L <
M, with N+ L =M impliesthat L=M. L < M is
said to be essential in M, symbolized as L 2 M, if
LN N # 0 for every non-zero submodule N < M,
see’. Kosar®, et. al. called a submodule K generalized
small (briefly, g-small) submodule of M if, for every
essential submodule T of M such that M = K+ T
implies that T = M, one can write K < M, see® (it
is called an e-small submodule of M and is indicated
by K «, M by Zhou and Zhang®). Small submodules
are generalized small submodules nonetheless; the
converse is not true generally. M is named hollow
[resp., generalized hollow]®°, if all proper
submodules of M are small [resp., g-small] in M.
Evidently, every hollow module is generalized
hollow. The converse assertion is not always true. A
submodule P of a module M is maximal if it is not
properly contained in any other submodule of M. M
is named local if it has a unique maximal submodule.
M is local if it is hollow and finitely generated’.
Rad(M) is the Jacobson radical of M, and it is the
intersection of all maximal submodules of M. If T is
an essential and maximal submodule in M then T is
called a generalized maximal submodule of M, see
Definition 2 of®. The intersection of all generalized
maximal submodules of M is called the generalized
radical of M and is given the symbol Radg(M) that
is also known as the sum of all g-small submodules
in M. Since Rad(M) is the sum of all small
submodules of M, it follows that Rad(M) <
Radg(M) for a module M see®. The module M is
named simple if M has no proper submodules,
besides M is termed semisimple if M is a direct sum
of simple submodules. The socle of M, is indicated
by Soc(M), it is the sum of all simple submodules in
M. Each definition in graph theory written in the
following section has appeared in Bondy and Murty
work!?,

Let I" be a graph, then VV(T') and E (T") denote the
set of wvertices and edges in T, respectively.
Neighborhood of v indicated by N(v) which is the

set of vertices adjacent to vertex v of I'. The order of
I" is the number of vertices of T, it indicates using |T'|.
If |T| < oo, then I is finite, otherwise, T is infinite. If
u and v are adjacent vertices of T, then write u — v,
i.e. {u,v} € E(T). The degree of a vertex v in I" is
indicated using deg(v), which is the number of edges
incident with v. Let u, v be different vertices of . A
u, v —path is a path that starts with vertex u and ends
in vertex v. For different vertices u and v, d(u, v) is
the least length of a u, v —path. If T has no such path,
then d(u, v) = oo. The diameter of T is referred to as
diam(T), it is the supremum of the set {d(u,v): u
and v are different vertices of T'}. Acyclein T is a
path of length through at least 3 different vertices and
it begins and ends at the same vertex. The girth of T,
is indicated using gr(I), it is the length of the
shortest cycle in T, provided I contains a cycle; else;
gr(I") = co. A graph T is called connected if there is
a path among all pairs of vertices of I'. A tree is a
connected graph that does not contain a cycle. A star
graph is a tree consisting of one vertex adjacent to all
the others. A graph is complete if it is connected with
a diameter that is less than or equal to one. A
complete graph with n distinct vertices is indicated
by K,. A clique of T is its maximal complete
subgraph besides the number of vertices in the largest
clique of graph I, and it is denoted by w(I") and is
called the clique number of T.

g-Small Submodules

Here, some assets of g-small submodules are

introduced.

Lemma 1:°1° Let M be a module. Then

(1) For submodules A, K, L of M with K < A, we

et

(a)glf A KLz M, thenK Kz M and A/K Kz M/
K.

(b) A+ L Kz Mifandonly if A <z M and
L <Lz M.

(2) f W <Lz M and f: M — N is a homomorphism,
then f(W) < N. Specifically, if W <, M <
N,then W <, N.

(3) LetN, K, L, and T be submodules of M. If
K<<gLandN<<gT,thenK+N KgL+T.

4) LetFi <A SM,Fy <A, <Mand M =
Ay D Ay ThenFy @ F, Kg A; D A, if and
only if F; Kz Ay and F, Kg A,.

Definition 1:°1° Let M be a module. Define
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Radg(M) =n{N 2 M | N is maximal of M}.

If M has no maximal essential submodules, then it
is indicated by Radgs(M) = M.

Clearly, Rad(M) < Radg(M) and Soc(M) <
Radg(M). For an arbitrary ring R, let Radg(R) =
Radg(rR).

Lemma 2: (Lemma 1 of'?) The next assertions hold
for a module M.

(1) Forevery a € Rady(M), Ra Kg M.

(2) If N < M, atthat time Radg(N) < Radg(M).
(3) Radg(M) = ZN<<gMN-

Lemma 3:° Let M and N be modules. Then

(1) If f:M — N is a homomorphism, then
f(Radg(M)) < Radg(N).

(2) If all proper essential submodule in M is
contained in a maximal submodule in M, then
Radgy(M) is a unique largest g-small submodule
inM.

Remark 1: Itis clear that, in general, Rad,(M) need
not be g-small in M. Also, if M is a finitely generated
module, i.e. all proper submodule of M is contained
in a maximal submodule in M, then Radg(M) is the
unique largest g-small in M by Lemma 3(2).

Lemma 4:"° If M = @;¢,;M; then Rady(M) =
eaiEIRadg(IVIi)-

Connectivity of I;(M)

In this section, g-small intersection graphs of non-
trivial submodules of certain modules are connected,
completed, and described. In addition, the girth and
the diameter of I[;(M) are fixed. Generalizing the
definition of Mahdavi and Talebi® considering the
graph I;(M) as follows:

Definition 2: The g-small intersection graph of non-
trivial submodules of an R-module M, denoted by
[ (M), is a simple undirected graph whose vertices
are in one-to-one correspondence with all non-trivial
submodules of M and two distinct vertices N and L
that are adjacent if and only if N N L <, M.

Let I'(M) denote the graph introduced by
Mahdavi and Talebi®. From definition 2 one has the
following corollary.

Corollary 1: Let M be an R-module. Then the graph
['(M) is a subgraph of I[';(M).
Proof: Let I'(M) be a graph of M with vertex set
V(T(M)). It is clear that V(I'(M)) = V(Iy(M)).
Now, let N, K € V(I;(M)) such that N, K are
adjacentin'(M).So N n K « M. Since every small
submodule is a g-small submodule one has N n
K &g M. Therefore, N, K are adjacent in [(M).
Hence, ['(M) is a subgraph of [;(M). ©
Example 1: Let R =7 and let M = Z,,. Then,
V(r() =V (Tg(M)) = (M; = 2,4, M, =
3Zy4, M3 = 4Z,,, M, = 6Z,,, Ms=8Z,, and
Mg = 127Z,,}. From Example 2, M; N M; < M, for
all 1<1i,j <6 hence M; and M; are adjacent in
[g(Zyy) for all 1<1i,j<6. Thus [5(Zz4) = K.
Whereas I'(Z,,) is isomorphic to the subgraph of K,
since M; and M; are not small submodules of M
according to®, so M; N M3 = M5 is not a small
submodule of M. Hence M; and M5 are not adjacent
in T'(Z,4). Thus, the graph I'(Z,,) is not a complete
graph.
Proposition 1: Let M be any module. If any one of
the following holds. then I, (M) is complete:
(1) f M = M,®M,, where M, and M, are simple R-
modules.
(2) M is a generalized hollow.

Proof: (1) Suppose M = M;@® M, where M, and M,
are two simple R-modules. So, M; + M, = M and
My N M, = {0}. Then every non-trivial submodule
of M is simple. Let N, A be two distinct vertices of
[;(M). then they are simple and minimal non-trivial
submodules of M. Also, NNA < N,A and if N n
A # (0), using minimality of N and A involves that
N=NnA = A, which is a contradiction. Thus,
NNA=(0) <z M,andso N and A are adjacent in
[z (M) for all two distinct vertices N, A of [x(M).
Hence I, (M) is a complete graph.

(2) Suppose M is a generalized hollow. Assume N;
and N, are two vertices of the graph I';(M). Hence
N; and N, are two non-zero g-small submodules of
M.AsN; NN, <N;,i=1,2bylLemmal(2), N, n
N, <g M, and so N and A are adjacent in [, (M) for
all distinct vertices N, A of I;(M). Hence T (M) is
complete. O

The next corollary follows from Part 2 of
Proposition 1.
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Corollary 2: Let M be any module. Then the
following statements hold:

(1) If V(Iy(M)) is a totally ordered set, then the
graph (M) is complete.

(2) If Misahollow (local) and Rady(M) # M, then
the graph I[;(M) is complete.

(3) Every non-zero g-small submodule of M is
adjacent to all vertices in I, (M) and the induced
subgraphs on the sets of g-small submodules of
M are cliques.

Proof: (1) Assume V(I'(M)) is a totally ordered set.

Then each two non-trivial submodules of M are
comparable. Clearly, every non-trivial submodule of
M is small (and g-small). Hence, M is a generalized

hollow module. As a result, by Proposition 1(2),

[y (M) is complete.

(2) Assume that M is a hollow (or local) module
and Rady(M) # M. then M is a generalized hollow
module™. So by Proposition 1(2), [, (M) is complete.

(3) Evident. o

The next example shows that I, (M) is a complete
graph, whereas M = Z,, is not generalized hollow
as N = 3Z,, is nota g-small submodule of M = Z,,,
as in Example 2.13 of Zhou and Zhang®.

Example 2: Let R =7, M = Z,, as an R-module.
There are only six non-trivial submodules M; =
2Ly Kg M, My = 374, My = 4Ly, Kg M, My =
6Ly KgM, Ms=8Zy, <gM and Mg=
12754 <g M, as in Zhou and Zhang®. Clearly, M; n
M; Kg M, for all 1<ij<6. Thus, I[((M) is
complete with 6 vertices, i.e., [, (M) = K.

Example 3: To any prime number p for any n € Z,
n=2. Zyn is local Z-module, at that point it is
hollow and so is generalized hollow. Also, let R = Z,
p be a prime besides M = Z,, the Priifer p-group,
now every B<M, B+M, BKL M. Also,
Radg(M) = M. Thus, for all prime numbers p, Z
is a generalized hollow Z-module. Using Proposition
1(2), Tg(Zyn) and Ty (Zy~) are complete graphs.

Example 4: Let 2 be a finitely generated submodule
of a Z-module Q. Thus P < Q (and so P < Q).
Then it follows from Corollary 2(3), one has that the
induced subgraph on the set of finitely generated
submodules of Q are cliques in the graph [, (Q).
Now to clarify, let S = {N;|i € I} where S is a set of
nonzero g-small submodules of Q. Since N; N N; <

N; &g Q for all i,j€l. By Lemma 1(a), N; N
N; &z Q. Hence N; —N; and so N; and N; are
adjacent vertices of I,(Q). Therefore, the induced
subgraph on the set S is a clique in I[;(Q).

Now, some descriptions of Rad, (rR) and certain
properties of R related to Radg(R) are given.
Remark 2: For a ring R, each of the following sets
is equal to Radg(R):

(1) R, = the largest g-small left ideal of R.
(2) R, = the intersection of all essential maximal

left ideals of R.

Proof: It follows by putting M = R. O

Proposition 2: Let R be an integral domain with 0 +#
Radg(R). If M is a finitely generated torsion-free
module and M has a proper essential submodule.
Then Iz (M) is connected also diam(I';(M)) < 2.

Proof: Suppose M is finitely generated and it has a
proper essential submodule according to Remark 1,
Radg(M) <4 M. Also, by Remark 2, Rady(R) isthe
largest g-small left ideal of R. By 21.12(4)7,
Radg(R)M < Rad(M), since Rad(M) <
Radg(M), so Radg(R)M < Rady(M). Hence,
Radg(R)M <z M. Since Radg(R) # 0 and M is
torsion-free then Radg(R)M *# 0. Thus Radgz(R)M
is a vertex of [;(M). Since Radg(R)M <z M, then
Radgs(RM NX K, M for every 0 #X <M by
Lemma 1. So, there exists an edge between the vertex
Radg(R)M and X of T,(M). Also, for every two

vertices X, Y in the graph I[,(M), there exists a path
X —Radg(R)M —Y of length 2 in I[;(M). This
completes the proof. o

Definition 3:® A submodule A < M is called a g-
supplement of a submodule N<M if M =N+ A
and NNA KLz A (SO NNAKL;M). Ais called a g-
supplement submodule if A is a g-supplement of
some submodule of M. M is called a g-supplemented
module if all submodules of M have a g-supplement.

Proposition 3: Let Al < M. then any g-supplement to
U is adjacent to W in [z (M).

Proof: Let A be a g-supplement of UL, UL < M. Hence
M=U+A and UNA KLz A. According to
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Lemma 1(2), U N A Kz M. Thus A adjacent to U
inTy(M). o

Proposition 4: T[,(M) is connected and
diam(Ty(M)) < 2 whenever M is g-supplemented.
Proof: Let N,L be submodules of M. As M is g-
supplemented, now there is A < M with N + A =
M, NNAKL;A, and NNA Ky M by Lemma
1(2). One can consider two possible cases for N N A.
Case1l: IfNNnA = (0), then NPA = M.

Now, if L < N,thenL N A Kg M. ThusL—A —N
a path of length 2 in Ty (M). If L < <A, at that point
LNN Kz M. As a result of N—L in the graph
[((M). Hence, T[,(M) is connected and
diam(Ty(M)) < 2.

Case 2: If NN A # (0). Since N N A Kz M, thus

N — N n A — Lisapath of length 2 in [;(M). This
ends the proof. o

Lemma 5: For a module M:
(1) Assume N is a finitely generated submodule in M

and N < Radg(M). Then N <z M.

(2) Assume N is a semisimple submodule in M with

N < Radg(M). Then N <4 M.

Proof: (1) Presume that N < M is finitely generated,
asaresult, N =Yi_, Rn; forsomen; EN, 1 <i <
r. Since Rn; < Rady(M), Rn; Kz M, by Lemma 2.
As aresult, N <z M, according to Lemma 1.

(2) Let N+ K =M for specific essential
submodule K of M. As N is semisimple, there exists
aN' < NwithN =(NNK)®N'. Asaresult, M =
N+K=[(NNK)®N']+K=N'+K. Since
N'NK=(NnNnN)NK=N"n(NnK) =0.
Thus M = N'@®K. By Lemma 4, Rady(M) =
Radg(N")®Radg(K) = Radg(K) since
Rady(N') < Radg(N) =0. Then M=N+K <
Radg(M) + K < K. Thus N <z M. o

Proposition 5: Let M be a R-module and

Radg(M) # (0). Then the next conditions hold:

(1) If N is a non-trivial direct summand submodule
for M also (0) # Rady(M) <g M, then there is
at least one cycle of length 3 in [;(M).

(2) If N is a non-trivial semisimple or finitely
generated submodule in M contained in
Radg(M). Then d(N,Radg(M))=1 and
d(N, L) = 1 for any non-trivial submodule L of
M.

Proof: (1) AsK <M with N@K =M, as N is a
direct summand of M. Then Rady(N)®
Rady(K) = Radg(M), according to Lemma 4. Since
Radg(N) < N besides NN Rady(K)<NNK =
(0), using the modular law, Rads(M)NN =
[Radg(K) + Rady(N)] NN = [Radg(K) N N| +
Radg(N) = Radg(N). Thus, Rady(M)NN =
Radg(N). At that time Radg(M) N N <z M. Also,
Radg(N) = N N Radg(N) Kg M besides
Radg(N) = Radg(N) N Radg(M) <g M and one
has, d(N,Radg(M)) =1, d(N,Radg(N))=1
besides  d(Radg(N),Radg(M)) = 1. Hence,
(N, Radg(N), Radg(M)) is a cycle. Thus, there is at
least one cycle of length 3 in [ (M).

(2) Assume N is a non-trivial semisimple or
finitely generated submodule in M; N < Radg(M).
Using Lemma 5, N <y M. Since NNL < Nso,LN
N < M for every other non-trivial submodule L of
M by Lemma 1(1). Hence d(N, Radg(M)) = 1 and
d(N,L)=1. o

Proposition 6: If M has at least one non-zero g-small
submodule, then T,(M) is a connected graph and
diam(Ty(M)) < 2.

Proof: Take F €Tlz(M) a non-zero g-small
submodule. Let A and B be two non-adjacent vertices
of I(M). Obviously, ANF <F Kz M, and F N
B<F <z M. By Lemma 1(1), ANF Kz M and
FNB Ky M. So, A—F — B is a path of length 2.
So I[;(M) is a connected graph and diam(Iz(M)) <
2.0

Corollary 3: If M has a proper essential submodule.
Then [ (M) is connected, if any one of the following
holds.

(1) M is finitely generated and Radg(M) + M.

(2) If there exists a non-trivial submodule of M
which is finitely generated or semisimple
contained in Radg(M).

Proof: (1) Assume M is finitely generated besides M

has a proper essential submodule such that

Radg(M) # M. According to Remark 1, 0=+

Radg(M) <g M. By Proposition 6, I;(M) is a

connected graph.

(2) It follows from Lemma 5 and Proposition 6. o

Zhou and Zhang® generalized the notion of socle
of M to that of Socs(M), Socs(M) = Y{F <K M | F
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is simple}. Socs(M) € Rad(M) and Socs(M) <
Soc(M).

Proposition 7: Let M be a module with the graph

[ (M) and Socs(M) # (0). Then the next statements

hold:

(1) Socy(M) is adjacent to any other vertex in
Ty (M).

(2) d(Rad(M),Soc(M)) =1,

(3) Ty(M) is connected and diam (Fg(M)) <2,

Proof: (1) According to Lemma 2%, Soc,(M) =

Rad(M) n Soc(M). But Soc(Rad(M)) =

Rad(M) n Soc(M) by 21.2(2)". Since by 2.8(9)*,

Soc(Rad(M)) « M, at this time Soc,(M) < M, so

Socs(M) Kg M. Thus, Socg(M) N D Ky M for any

submodule © of M. Hence, every other vertex in

[ (M) is adjacent to Socg(M).

(2) Using the proof of (1), Rad(M) n Soc(M) =

Socs(M) <g M. Thus, d(Rad (M), Soc(M)) = 1.

(3) It is clear from (1). O

Proposition 8: If [;(M) has no isolated vertex, then
[ (M) is connected and diam(Ty(M)) < 3.

Proof: Presume A, B is non-adjacent vertices in
[(M). As I;(M) has no isolated vertex, there exist
submodules A; and B; with AN A; Kz M and B n
By Kg M. Now, if A; NB; Kz M, then A —A; —
B, — B is a path of length 3. Otherwise A — A; N
B; — B is a path of length 2. As a result, [,(M) is a
connected graph besides diam(T;(M)) < 3. ©

Theorem 1: Let M be a semisimple module where
M is not simple. then:

(1) Tg(M) has no isolated vertex.

(2) Tg(M) is connected and diam(Iz(M)) < 3.
Proof: (1) Let X € V(I;;(M)). As M is a semisimple
module, then by properties (20.2)" all submodules in
M are direct summand to M. As aresult, thereis A <
MandM =X @ A. Fromnow X N A = (0) Kz M
and so, there is an edge between vertex X of [,(M)

and another vertex. At that time X is not an isolated
vertex.
(2) By Proposition 8 and Part (1). o

For module M, now use Sy(M) which indicates
the set of all non-zero g-small submodules of M.

Proposition 9: Assume n € Z*. In R-module M with
|Sg(M)| = nand |Ty(M)| = 2:

(@) If H € Sg(M), then deg(H) # 0.

(b) w(Tg(M)) =n.

Proof: (a) Clear.

(b) Let Sg(M) = {H | H <y M} and let |Sy(M)| =
n. The induced subgraph on the set Sy(M) is a
complete subgraph of [;(M). w(Ig(M)) = n. o
Theorem 2: Let Radg(M) be a non-zero simple g-
small submodule of M and let [Tz (M)| = 2. If T (M)
is a tree, then [ (M) is a star graph.

Proof: Since Radg(M) # 0, then Radg(M) is a
vertex in Iy (M). Now, Radg(M) is simple g-small,
so Radg(M) a unique non-zero g-small submodule
of M. But, §n Rady(M) <4 M, for any S €
V(Ig(M)). Thus I';(M) contains a vertex Radg(M)

which is adjacent to all vertices. Now, presume n #
Radg(M) besides m # Radg(M) are two distinct
vertices of [, (M). Now, if n n'm <Kz M. Thenn —
Radg (M) — m, which is a conflict since I[;(M) isa
tree. Thus, n N is not g-small. As a result, n, m
are not adjacent vertices. As a result, I'; (M) is a star
with center Radg(M). ©

x(T) is the smallest number of colors needed to
color the vertices, y(I") is called the chromatic
number of T" so that no two adjacent vertices share a
similar color. By Theorem 2, One has the next
corollary.
Corollary 4: Let 0+ Radg(M) <z M and let
[T(M)| = 3. Now the next are equivalent:
(1) Tg(M) is astar,
(2) Tg(M) is atree,

(3) x (rym) =2,
(4) Radg(M) is asimple submodule of M besides all

pairs of non-trivial submodules in M, have non-
g-small intersection.
Proof: (1) = (2) and (2) = (3) The implications are
clear.
(3) = (4 On the contrary, suppose 0 # K <
Radg(M) besides K Kz M. If L€V (I (M)).

Evidently, (K, Radg(M), L) is a cycle in I[;(M),
contradictsX(Fg(M)) = 2. S0, Radgy(M) is simple.
Now, assume that X, ¥ belong to V (T (M)) with X n
Y Kz M. (X, Radg(M), Y) is a cycle in [;(M),

which contradicts y (I‘g(M)) = 2.
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(4) = (1) Itisclear that Radg (M) is adjacent to each
other vertex. Now, suppose that N # Radg(M) and
L # Radg(M) are two distinct vertices of I'; (M), and
N, L are adjacent. As a result, XNY <, M, a
contradiction. Hence, I;(M) is a star graph. O

Proposition 10: Let M be an R-module and
|Sg(M)| = 1. If Iy (M) does not contain a cycle, then
[o(M) = Ky or I;(M) is a star graph.

Proof: Suppose that the graph T,(M) contains no
cycle. To prove |Sg(M)| < 2, by the contrary way,
let X <z M besides Y «; M. As a result, X+
YKL M by Lemma 1, besides, Y- (X+Y)—-Xis
cycle, which is a contradiction. Then [S;(M)| < 2.
As [Sg(M)| = 1, at that time |Sg(M)| = 1. Hence,
M has a unique non-zero g-small submodule. Let
N e §g(M). For every vertex L of Iy (M), if L=N,
then I(M) = K, andif L+ N,asLNN Kg M, now
deduce Ty(M) = K,. Let ¥ ={v;|v;#N,i €I}
Then every two arbitrary distinct vertices v; and v;,
i # j, are not adjacent, and for i # j, v; — N—v;isa
path and I, (M) is a star graph. o

Proposition 11: If |Sg(M)| =2, then [,(M)
contains at least one cycle and gr(I;(M)) = 3.
Proof: Suppose that |Sg(M)| = 2. At that point, M
has at least two non-zero g-small submodules, at a
guess C; besides C,. Since C; N C, < C;, fori = 1,2,
by Lemma 1, C; NC, Kz M. Also, ¢; N (C;N
C)KgM and C,N(C;NC) Ky M. One
considers two possible cases for ¢; N C,.

Case 1: If ¢; n G, # (0), at that point d(Cy,C5) =
1,d(C,C; NCy) =1 besides d(C,,C; NECy) = 1.
Thus (C4,C1 N C,, C,) isacycle of length 3. Also by
Lemma 1, C; +C, KgM and since C; N (C; +
C;) Kg M besides C, N (G + C3) Kg M, (C1,C; +
C,,C,) is a cycle of length 3. Similarly, (C; N
C,,C1,C1+C,) and (G4 NC,, CyCp+Cy) are
cycles of length 3 and (C;,C; + C,C,,C1 N G5, Cy)
is a cycle of length 4.

Case2:1fC; nC, = (0),then (C1,C, + C,,Cy) isa
cycle of length 3 in I, (M). Thus, I';(M) contains at
least one cycle and so gr(Iy(M)) = 3. ©

Domination and Planarity of I;(M)
In this section, the domination of I;(M) is fixed.
And the relationship between the planarity of I[;(M)

and the non-zero g-small submodules of R-module M
is revised.

D c V(T') is called a dominating set if all vertices
not in D are adjacent to a vertex in D. The domination
number, y(I), of T is the minimum cardinality of a
dominating set of T'. See, for instance®. Here, D €
V(T") is a dominating set if and only if for any non-
trivial submodule N of M thereisa L € D with N n
LKLy M.

Lemma 6: Let M be a module such that [[,(M)| =

2, now the following hold:

(i) If D € V(I;3(M)) such that D either contains at
least one g-small submodule of M or there is a
vertex X € D which XnY = (0), for Y €
V(g (M))\D. At that time D is a dominating set
in [z (M).

(i) If M has at least one non-zero g-small
submodule, at that time forall 0 = X Kg M, {X}
is a dominating set and y (Ty(M)) = 1.

Proposition 12: Let M = H @ F be an R-module,
where # and F are simple R-modules. Then
yTg(M)) = 1.

Proof: Assume M = H @ F, such that H and F are
simple modules. Using Proposition 1(1), I(M) is
complete. Assume X is a random vertex of [;(M).
At that moment for any distinct vertex Y of I,(M),
X NY Kg M, thus {X} is a dominating set besides

y(T(M) = 1. ©

Proposition 13: Assume M is finitely generated and
Radg(M) # 0. Then {Radg(M)} is a dominating set
of I';(M) and I[;(M) is connected.

Proof: Assume L € [(M). Now, L is adjacent to
Radg(M) if L is g-small. Besides, if L is not g-small.
Since Radg(M) # 0 in the finitely generated
module, then Radg(M) <gM. Hence, LN
Radg(M) < g M. So, L is adjacent to Radg(M).
This suggests that {Radg(M)} is a dominating set to
[;(M) and so I, (M) is connected as vital. o

Theorem 3: Let [Sg(M)| =2 and |[z(M)| = 3.

Then the following conditions hold:

(1) If I and J are two g-small submodules of M then
there is B € V(Iy(M)), with B belong to N(I) N
N()).

(2) A graph I (M) has at least one triangle.

Proof: It is evidence. o
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Proposition 14: The next are equivalent for any

module M:

(1) (M) has no triangle.

(2) If {I,]} € ETz(M)), then there is no B
belonging to V (Iy(M)) with B belong to N(I) N
N(D).

(3) ISg(M)| < 1and the intersection of every pair of

the non-g-small non-trivial submodules of M is
not g-small.

Proof: For (1) = (2) Suppose that the graph I,(M)
has no triangle. On the other hand, consider 8B €
V(Ig(M)) such that B € N(I) and B € N(J). It
follows that (1, B, J) is a triangle in Iy (M), which is
a conflict.

Let (2) = (3) for every two adjacent vertices of the
graph T(M), there is no B € V(I;(M)) with B €
N(I) N N(J). Let there exist at least two submodules
0+, KgM and 0=+ 3, Kz M. Since H;nN
H, Kg M, they are adjacent vertices of the graph
(M) and so, there is no B € V(I[;(M)) with B €
N(I) n N(J), which is a contradiction by Theorem
3(2).

(é)): (1) Assume 0 is the only g-small submodule
of M. As the intersection of all pairs of non-g-small
non-trivial submodules in M is not g-small, I;(M)
contains no triangles. Besides, S is the only non-zero
g-small submodule of M. At that time for every three
arbitrary vertices Ny, N, besides N of [;(M), at least
two of them are not g-small. Let S = N;. ASN, N N;
is not a g-small submodule of M, then N, —S — N;
is a path. Also, if S # N;, for i = 1,2,3. Since N; n
N; is not a g-small submodule in M, fori #j,i,j =
1,2,3, then in the graph I, (M), Ny, N, and N; are
not adjacent vertices. Hence, there is no triangle in
[o(M). O

Results and Discussion

Some results are proven, such as the graph I;(M) is
connected if M is g-supplemented or Socg(M) #

(0).
Conclusion

In this paper, an undirected graph I, (M), the g-small
intersection graph of M where V(I';(M)) are non-
trivial submodules of M and two different vertices N
and L are adjacent if and only if NN L <z M was

Remark 3: Let M be a module with Radg(M) # (0)
and |Tg(M)| = 3. If M is finitely generated, then
[;(M) has a triangle.

Proof: Straightforward. o

Definition 4: A graph T is called planar if I' can be
drawn in the plane so that its edges intersect only at
their ends.

Lemma 7: (Theorem 10.30)* T is planar if and only

if it has no subdivision of either K5 or K3 3.

Proposition 15: If [Sg(M)| =1 or |Sg(M)| = 2,
then T,(M) is a planar graph, whenever the
intersection of all pairs of non-g-small submodules
in M is not a g-small.

Proof: If |Sg(M)| = 1, then Ix(M) has a vertex I
which is adjacent to another vertex. According to the
assumption, if J =1 and K # I are two distinct
vertices of T,(M), then ] and K are not adjacent
vertices. As a result, I';(M) is a star graph with the
center I. Thus, Tz(M) is planar. Now, if [Sg(M)| =
2, then I (M) does not contain K5 or K3 3 and by the
definition of a planar graph in Lemma 7. o

Proposition 16: For any module M, if |[Sg(M)| = 3,
then I;(M) is not a planar graph.

Proof: Assume that [Sg(M)| = 3. Now there are
0#FKgM and 0 #N <Ky M and 0 # P Kz M.
Obviously, any one of the vertices F + N, N + P,
and F + P are non-zero submodules as well as
adjacent to each of the submodules F, N, and P in
[y (M). As aresult, [ (M) contains a complete graph
K5 such as the subgraph induced on { F, N, P, F +
N, N + P}. Thus, by the definition of a planar graph
in Lemma 7, [;;(M) is not a planar graph. o

introduced and studied. Here, I';(M) is complete if

M is a generalized hollow module or M is a direct
sum of two simple modules. Girth, diameter,
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domination, and planar property of the graph I,(M)
are studied.
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