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Introduction 

Walking stability is known as the gait pattern that 

does not cause falling or stumbling. It is 

accomplished by all the anatomical elements and the 

integrity of the neuromuscular system, which is 

responsible for movement orders modified according 

to human movement parameters 1. The stability of 

human gait is affected by the position of the body’s 

center of mass (COM) according to the support base, 

which expresses the area of the foot that contacts the 

floor. Gait stability also depends on the 

biomechanics of the body which can involve: a large 

mass position lying in a high area versus a small 

support area; any minor deviation in the anatomical 

structure of the foot may appear as a variation of the 

gait acceleration; and a rapid change in the position 

of the COM ending with stumbling and falling 2. 

Therefore, abnormal gait patterns and patient 

movement can be caused by abnormal changes in the 

shape of the foot and enforce the patient to exert 

more energy to perform his daily tasks 3. The foot is 

prone to many deformities 4 where it can be flat or 

inclined on the medial, or lateral side or deformities 

in its arch. These deformities normally originated 

from congenital causes, an accident, or caused by 

improper loading 5. There is increasing suffering 

from chronic pain in the foot caused by a flat foot 6. 
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In addition to inheritance, foot abnormalities could 

be originated from several factors such as the type of 

shoes, overweight, and body fitness 7. The stability 

of the human gait cycle is controlled through the 

right positioning of the foot, which represents the 

main condition for moving forward, and it also helps 

in stabilizing the body based on inertial dynamics. 

Normal foot conditions can be defined in terms of a 

good alignment of the feet and ankles. In this case, 

loading pressure could be evenly distributed on foot 

area 8. The presence of medium, high, low, or 

completely collapsed arches disrupts the distribution 

of body weight across the foot, impairing shock 

absorption and causing constrained foot stretching 

and tension 9. Feet can be classified into three general 

categories based on how they absorb the shock and 

propel the body forward 10. Low or collapsed arches 

are often related to overpronation, while high arches 

are often associated with excessive supination. Over-

pronation can also occur with high arches. Flat Foot 

distortion represents flattened arches on the bottom 

of the foot and is caused by a weakness of the 

abrasive muscles and congenital foot surface 11.  

Diabetic foot and foot deformities are diagnosed by 

simple radiography 12 computed tomography 13, or 

magnetic resonance imaging (MRI) 14. Although 

these methods are very common due to their high 

accuracy in determining the nature of the deformity, 

they are expensive and require complex work 

systems 15. In contrast, non-radial systems, such as 

force plates or sensors need simple installation, and 

they are easy to install on patient 16. Recently, due to 

tremendous continuous technological advancement, 

several devices and sensors have been developed to 

facilitate the medical analysis of the applied pressure 

of the foot based on the sensing insole. These 

systems can be used for long-term or real-time 

patient monitoring 17. 

Force sensitive resistors (FSRs) are sensors that 

change their resistance according to the applied force 

or pressure. They can be used for gait assessment by 

measuring the underfoot pressures during different 

phases of walking or running. FSR-based insoles 

have been used in many foot biomechanics systems 

(FBSs) as low-cost acquisition systems 18.  

Fazio et al. presented a pressure sensor array that 

incorporated a Velostat electrostatic-sensitive layer 

to convert applied pressure into an electrical signal. 

The provided insole is based on a 3-axis capacitive 

accelerometer to measure patient gait parameters 

(during swing and stance phases). While the system 

demonstrated the feasibility of using pressure 

sensors and accelerometers for gait analysis, its 

accuracy may be limited by the use of only one type 

of sensor 19. In contrast, the proposed system uses a 

combination of FSRs and accelerometers, which can 

provide more accurate and comprehensive data on 

foot biomechanics. 

Wang et al. used an array structure of pressure 

sensors to analyze standing and walking during 

normal and sports movement activities 20. The study 

highlighted the possible use of high-frequency 

pressure sensors and the acquired values have shown 

an accuracy of 92%. While the system demonstrated 

high accuracy, the use of high-frequency pressure 

sensors may limit the system's applicability to 

specific scenarios. In contrast, the proposed system 

uses FSRs, which are low-cost and can be used in 

various situations. 

Park et al. presented a new design of foot insole with 

high-sensitive stress sensors that consisted of 

industrial rubber, stainless steel, and a 3D-printed 

frame 21. The device was able to distinguish the 

distribution of the load on the whole surface of the 

foot. While the system demonstrated high sensitivity 

and durability, the use of industrial rubber and 

stainless steel may limit the system's flexibility and 

comfort for the wearer. In contrast, the proposed 

system uses soft and flexible materials, which can 

provide more comfort and flexibility for the wearer. 

Suprapto et al. used a structure of double electrode 

sensors on the upper and lower part of a layer of 

Valdosta material 22. Experimental results showed 

that the force sensors array has a linear response to 

electrical conductivity. While the system 

demonstrated the feasibility of using double 

electrode sensors for force measurement, the use of 

Valdosta material may limit the system's 

applicability to specific scenarios. In contrast, the 

proposed system uses FSRs, which can be used in 

various situations. Ló et al. implemented a new 

design of a smart insole for real-time plantar pressure 

measurement 23. The recorded pressure values had an 

accuracy of 93%, pressure sensors were calibrated, 

and the results were compared to a Kistler system. 

While the system demonstrated high accuracy, the 

use of a Kistler system for comparison may limit the 

system's applicability to specific scenarios. In 

contrast, the proposed system uses a combination of 

FSRs and accelerometers, which can provide more 

accurate and comprehensive data on foot 

biomechanics. 
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These approaches highlighted in the previous works 

have their own strengths and weaknesses in terms of 

accuracy, sensitivity, durability, flexibility, and 

applicability to specific scenarios. The proposed 

system using FSRs and accelerometers can provide a 

low-cost and comprehensive solution for gait 

assessment and foot biomechanics, with potential 

applications in sports, rehabilitation, and footwear 

design. 

On the other hand, advanced devices with many 

sensors and long-term data tracking require an 

automated software system that relies on the 

experience of doctors and specialists to process the 

data and give an immediate diagnosis of the situation 
24. Hence comes the need for the use of machine 

learning (ML) and artificial intelligence (AI) 

techniques with a robust data set for training and 

validation. Lately, a lot of research work has used AI 

and ML techniques to diagnose the recorded pressure 

values from sensors-based foot insoles. Density-

based spatial clustering with noise (DBSCAN) and 

K-means clustering techniques are used to extract 

gait features in cardiac stroke patients and evaluate 

their performance by comparing them with healthy 

people 25. Fine-tuned visual geometry group-16 

(VGG16) and K−nearest neighbor (k-NN) models 

are combined to classify foot deformities based on 

numerical foot pressure data. The results show better 

performance compared to individual models that 

were built using the same numerical data 26. K-NN 

algorithm with FSR-based sensing insole was able to 

estimate the type of footprint biomechanics in 

preschool and school children volunteers with a 

classification accuracy of 97.2%, where the foot 

types were normal, flat, and arched 27. A long short-

term memory (LSTM) model is used with numerical 

data from nine major sensors to evaluate the clinical 

rehabilitation status of feet. By comparing the 

performance of the LSTM with an adaptive neuro-

fuzzy interference system (ANFIS) using correlation 

coefficient and relative root mean square error, 

LSTM proved its efficiency in estimating pressure 

distribution of the whole foot region with correlation 

coefficients of 0.92 to 0.99 28. A one-dimensional 

convolutional neural network (1D-CNN) can be used 

to detect normal, cavus, and planus feet using 

numerical data of nine force sensors of type 

FlexiForce. The neural network shows an accuracy 

of 99.26% by combining angular velocity and force 

sensing 29. Support Vector Machines and artificial 

neural networks were combined to classify the foot 

deformity based on the Velostat sensors matrix. The 

proposed method can detect normal, high-arched, or 

low-arched with 95% accuracy 30. On the other hand, 

the SVM classifier reaches good accuracy of 

classification with an F1-score equal to 92.1% where 

the numerical data is integrated between inertial and 

plantar pressure sensors 31. Eight force-sensing 

resistors were used as input for cascade neural 

networks with node-decoupled extended Kalman 

filtering (CNN-NDEKF) to detect the gait pattern 

associated with postural kyphosis 32. 

Accordingly, the foot deformity diagnostic systems 

that use sensor-based insoles and ML techniques use 

the direct numerical values of pressure recordings 

which lead to an accuracy of 70-95% 28-31.  

 The non-radial systems such as pressure plates and 

sensing insoles become more reliable and efficient 

diagnostic tools for most clinicians and specialists 

because of their simple installation and the ability of 

home use by the patients 16. These systems can be 

used for long-term and real-time patient monitoring. 

Machine learning and artificial intelligence came to 

convert those types of medical examination tools into 

effective diagnostic tools for clinicians, orthotists, 

and prosthetists, and consider those portable devices 

as medical decision support systems. The long-term 

objective is to produce a smart insole that can 

measure and analyze the pressure distribution on the 

foot using capacitive pressure sensors. This system 

can provide valuable information about the balance, 

posture, gait, and risk of falls of the patients. The 

smart insole can also transmit the data wirelessly to 

a computer or a mobile device for further processing 

and visualization. ML and AI techniques can be 

applied to the data to extract meaningful features, 

identify patterns, classify different activities, detect 

anomalies, and provide feedback or 

recommendations. These techniques can enhance the 

accuracy, efficiency, and usability of the smart insole 

system as a medical decision-support tool. 

This paper presents an electronic system to record 

foot pressure values from FSR sensors placed on the 

bottom of the insole. The measuring system was 

calibrated by placing the FSR between beneath the 

calibrated weights. The recorded values from the 

FSR were used as reference values for the regression 

process to find a mathematical model that relates the 

force to the voltage output of the FSR. Then enhance 

the classification of foot deformities by studying the 

effect of using the differential values between 

sensors as input for the feedforward neural network 

(FNN) instead of the raw data based on calculating 
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the difference between the sensors value and the 

value of the most influencing sensor. Finally, the 

findings illustrate the performance of FNN with raw 

and differential numerical input by training and 

testing the FNN with different accuracy measures 

and using different amounts of data.  

Materials and Methods 

In this section, the used tools in this study is 

presented starting from hardware and sensor, 

collecting data, calibrating and validating recorded 

data, and finally classifying the foot deformities and 

illustrating the performance metrics. 

Hardware implementation and calibration 

The selection of appropriate sensors is essential for 

obtaining accurate and reliable measurements of foot 

biomechanics in the proposed system. The rationale 

behind the selection of sensors and the calibration 

procedures employed in this study are based on the 

principles of low cost, high sensitivity, ease of 

integration, and accuracy. The Interlink Electronics 

402 FSRs are a cost-effective and reliable option for 

measuring foot pressure distribution. The calibration 

system used in this study provides a reproducible and 

reliable solution for obtaining accurate and reliable 

measurements of force and pressure. They represent 

single-zone sensors with a diameter of 12.7 mm. The 

FSRs are low-cost, highly sensitive, and easy to 

integrate with the Arduino platform. The size of the 

FSRs is appropriate for measuring the pressure 

distribution of the foot, and the single-zone design 

allows for a simpler and more compact sensor array. 

The FSRs are connected to an Arduino Mega 

platform, which is used to interface the sensors and 

record their corresponding voltage values 33. The 

Arduino system transmits voltage values to a 

computer via the wireless module, with a sampling 

rate of 200 Hz and a resolution of 10 bits. The 

rationale of sensor placement and protocol 

specification are described in Mei et al. 29. 

The calibration of FSRs is essential for obtaining 

accurate and reliable measurements of force and 

pressure. The calibration system used in this study 

consists of a voltage-to-current converter circuit, a 

rigid dome coating, a load cell, and a data acquisition 

card. The circuit, shown in Fig. 1, converts the 

resistance value of the FSR into an inverse voltage 

output, ranging from 0 V to VREF. The value of the 

RM resistor is chosen according to the 

recommendation to optimize the sensitivity and limit 

the current in the sensor 34. The dome coating is made 

of fiberglass resin and has a diameter of 12.7 mm and 

a thickness of 3.3 mm. It is attached to the sensor 

using double-sided tape to distribute the force evenly 

over the sensor surface and to prevent saturation 

from punctual loads. The load cell is a calibrated 

device that measures the force applied to the sensor 

with high accuracy 35. 

The calibration procedure involves applying a range 

of known forces to the sensor using the load cell and 

recording the corresponding voltage values. The 

recorded data are then used to construct a calibration 

curve that relates the voltage output of the sensor to 

the applied force. The calibration curve can then be 

used to convert the voltage values recorded by the 

Arduino system into force and pressure values in 

real-time. 

 
Figure 1. The proposed electronic system with the 

FSR-based insole and acquisition circuit 

The calibration procedure involves placing the FSR 

between beneath the calibrated weights, which 

applies a controlled force. The voltage output from 

the FSR is acquired by the Arduino and sent to the 

computer to be stored in a spreadsheet file. The force 

values from the FSR are used as reference values for 

the regression process, which aims to find a 

mathematical model that relates the force to the 

voltage output of the FSR.  

Data collection 

This study involves 60 participants who were 

individually asked to make sessions with duration of 

60 seconds where every 15 participants were 

clinically diagnosed with the following cases: 

Normal, flat foot, excessive pronation, and excessive 

supination. The study involved measuring static foot 

loading and assessing the foot topology. Each subject 

wore shoes with sensor insole. The data from the 

insole were transmitted wirelessly to a computer and 

analyzed using custom software. Subjects with pain 

https://dx.doi.org/10.21123/bsj.2023.8968
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or injury in a foot, ankle, or knee, or who underwent 

surgery in these areas within the last six months 

before the experiment were excluded.  

The Data recording procedure were conducted based 

on the Declaration of Al-Andalus University 

Hospital, Tartous, Syria and the announcement of 

patients by specialists. The measurements are 

conducted on 60 subjects who had been diagnosed 

previously by specialized doctors with following 

cases: Normal, flat foot, excessive pronation, and 

excessive supination. The age of participants ranged 

from 20 to 25 years and their weight range was 70-

75 kg.  

Each participant was informed about the experiment 

in addition to the necessary consent forms. Before 

the experiment, each participant was asked to fill out 

a form about age, gender, height, weight, and health 

status related to motor function. All participating 

subjects hadn’t suffered pain or injury in the foot, 

ankle or knee and hadn’t undergone any surgery in 

their lower limbs during the past year prior to data 

collection. Foot pressure data were recorded for each 

subject during a period of 60 sec. All participants 

received written and oral information about the 

measurements. The participants provided written 

informed consent before the start of the 

measurements. The study was registered in the Al-

Andalus University Hospital Trials Register 

(AUHTR0002248).  In this study, only the values of 

right foot were considered since the gait is symmetric 

between two feet.  

Sensors values reliability 

To compare the performance of the different sensors, 

the mean and standard deviation (SD) of the five 

repetitions for each sensor value were calculated. 

Then, a One-Way ANOVA test was implemented 

using IBM SPSS Statistics (Version 27) to examine 

the effect of the sensor type and the foot deformity 

on the sensor values. A significance level of 0.05 was 

used to determine if there were any statistically 

significant differences between the sensors and the 

cases. 

Weight distribution and postural stability 

The footprint index (FPI) is a widely used tool to 

measure foot posture and identify different foot 

types. It is based on the rate of non-contacted to the 

contacted area of the foot, reflecting the shape and 

alignment of the foot 36. In this study, the FPI was 

applied to examined subjects with various foot 

conditions. The variations of this index were used to 

classify the subjects into four categories: Normal, flat 

foot, extra-pronation, and extra-supination. The 

results were compared with the different indices and 

evaluated their reliability and validity for foot 

typology assessment. 

Foot deformities classification 

The estimated dataset contains 60 records, each 

record contains seven values derived from the seven 

sensors and the eighth value refers to the pre-

diagnosed foot case. In pre-processing, the 

differential values were computed and replaced with 

the raw data of sensors as shown in Fig. 2. The 

principle of differential data depends on calculating 

the difference between each sensor value and the 

value of the fifth sensor which is considered the most 

influenced sensor in all cases as shown in Fig. 3 in 

the results section. Furthermore, the position of 

sensor five represents the pressure value of the spleen 

part with the foot liver which is more sensitive to a 

lot of foot deformities 36. The classification 

procedure of the dataset is accomplished using FNN, 

which is a type of artificial neural network that has 

no feedback or closed loop between nodes or layers. 

It is often referred to as a multi-layered network of 

neurons. The FNN consists of an input layer of 

neurons, several hidden layers, and an output layer 
36. The FNN was implemented using MATLAB 

(MathWorks, Natick, MA, United States) according 

to the following specifications: the input layer 

contains 7 nodes, the output layer contains a node 

(case type), the size of the hidden layer equals 3, the 

desired final performance value (10-8), and the 

number of iterations 500. The different ratio between 

training and testing samples was used to evaluate the 

efficiency of using differential input and the stability 

of FNN performance with the reduced number of 

training data. 

 
Figure 2. FNN network with differential input 

where the difference of each sensor is calculated 

based on the value of sensor five 

https://dx.doi.org/10.21123/bsj.2023.8968
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Figure 3. Calibration curve of FSR sensors using 

different weights 

Performance measures 

The performance is measured using a formula of 

accuracy (AC) (Eq. 1) and F1-score (Eqs. 2-4): 

FNFPTNTP

TNTP
Accuracy






  (1) 

2 Pr Re
1

Pr Re

× ×ecision call
F score

ecision call
 

  (2) 

FPTP

TP
ecision


Pr

   (3) 

FNTP

TP
call


Re

   (4) 

Where: 

True Positive (TP): The number of correctly 

classified data indicating the correct case. False 

Positive (FP): The number of incorrectly categorized 

data that is not indicative of the correct case. True 

Negative (TN): The number of data classified as not 

the correct case and not indicative of the case. False 

Negative (FN): The number of data classified as not 

the correct case and indicative of the case.

 

Results  

Here, the final collected data is presented, starting 

from validating the sensor calibration, then detecting 

deformities using FSR and graphed data. Finally, 

illustrates the classification results using the FNN 

network. 

Sensor calibration  

To achieve an efficient sensor calibration process, 

many reference weights were applied on the insole 

and then build up Eq. 5 based on the corresponding 

changes. 

 
0.98ln( ) 2.52outV W 

  (5) 

Where Vout is the output voltage, W is the applied 

weight. The outcomes of calibration in terms of the 

output voltage versus the applied weight are shown 

in Fig. 3. The figure also shows the equation of 

logarithmic fit, showing a high degree of accuracy 

for the calibration process.   

Sensor values reliability 

One-Way ANOVA test showed that both the main 

effects of the cases and the sensors were significant, 

as well as the interaction effect between them. This 

means that the values of the sensors varied depending 

on the case, and that some sensors were more 

sensitive to the changes in the cases than others. To 

further investigate the differences among the sensor 

values for each case, posthoc tests were performed 

using Bonferoni method. The posthoc tests revealed 

which pairs of sensors had significantly different 

mean values for each case, with a significance level 

of 0.05. The results of the post-hoc tests are 

summarized in Table 1, where an asterisk indicates a 

significant difference. The values of sensor 1 and 

sensor 7 were excluded from the analysis, because 

they did not show any noticeable variation across the 

cases. 

Weight distribution and postural stability   

In the first step, a scale for weight distribution was 

built over the used sensors during the different 

studied foot deformities: normal, flat foot, pronation 

and supination (Table 2). Initially, weight was evenly 

distributed over the sensors during the normal case. 

However, the deformities can be recognized based on 

the variations of loading percentage values, giving an 

indication of sensor dominance or the area of 

deformity. For example, flat foot deformity is 

characterized by a higher voltage on the medial side 

of the foot (sensor 4), while supination deformity is 

characterized by a higher voltage on the lateral side 

of the foot (sensors 3, 5, 7).  
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Table 1. Sensors values reliability where the 

significance of values differences has been tested 

using one-way ANOVA at the different foot cases: 

N, normal; F: flat foot; S: Supination; P: 

Pronation 

S
tu

d
ied

  

S
en

so
r
 

S
tu

d
ied

 

ca
se 

C
o

m
p

a
re

d
 

ca
se 

M
ea

n
  

D
iffer

en
ce

 

S
td

.  

E
rr

o
r
 

Sig. 

S
en

so
r 

2
 N 

F .00 .21378 1.00 

S -3.34* .21378 .000 

P 2.32* .21378 .000 

S
en

so
r 

3
 N 

F -.14 .13304 1.00 

S .28 .13304 .309 

P -6.52* .13304 .000 

S
en

so
r 

4
 N 

F -3.40* .11958 .000 

S -2.56* .11958 .000 

P 3.26* .11958 .000 

S
en

so
r 

5
 N 

F .16 .15843 1.00 

S 1.26* .15843 .000 

P -4.40* .15843 .000 

S
en

so
r 

6
 N 

F -.04 .22204 1.00 

S -3.22* .22204 .000 

P 2.72* .22204 .000 
 

Table 2. Weight distribution scale on the different 

sensors in the four studied cases 

 Normal 
Flat 

Foot 
Pronation Supination 

L
o

a
d

 

o
n

 

sen
so

r 1
 12% 11% 9% 12% 

L
o

a
d

 

o
n

 

sen
so

r 2
 14% 13% 22% 5% 

L
o

a
d

 

o
n

 

sen
so

r 3
 9% 9% 7% 27% 

L
o

a
d

 

o
n

 

sen
so

r 4
 18% 25% 22% 5% 

L
o

a
d

 

o
n

 

sen
so

r 5
 12% 11% 5% 28% 

L
o

a
d

 

o
n

 

sen
so

r 6
 17% 15% 21% 5% 

L
o

a
d

 

o
n

 

sen
so

r 7
 18% 16% 14% 18% 

 

In the second step, the FPI index was used to 

differentiate between deformities based on the rate of 

uncontacted area of the foot to the whole foot 

contacted area. A clear difference was noticed 

between the four studied cases in addition to 

differentiating between foot deformities based on 

FPI variations. The results are shown in Table 3. The 

normal case has a FPI value of 30%, while the 

flatfoot case was characterized by a value of 5%. The 

pronation case is characterized by a FPI value of 

15%, while the supination case has a FPI value of 

50%. These findings suggest that FPI can be used as 

an objective and quantitative measure to classify foot 

deformities and monitor their progression over time. 

Table 3. Foot print index variations in the four 

studied cases 

 Normal Flat Foot 
Pronatio

n 

Supinatio

n 

FP

I 

0.30±0.

1 

0.05±0.00

8 
0.18±0.07 0.50±0.1 

 

Deformities detection using FSR 

The final records set contains 60 samples divided 

equally into four cases of foot types and each sample 

or record consists of seven values obtained from the 

sensors in “Volt” in addition to the label of the pre-

diagnosed case from a clinician as the eighth value. 

The values of sensors concerning the four-foot cases 

are illustrated in Fig. 4 where each foot case is 

represented by the seven values. The normal foot has 

higher voltage in the outer part of the foot (Sensors 

1, 2, 3, 5, 6, and 7). The flat foot tends to have more 

equal distribution over sensors compared with the 

normal foot. In the overpronation foot, the inner 

pressure point of the foot sole must be higher than 

the outer points which are clear in Fig. 3, where 

sensors (2, 4, and 6) are higher than the rest. In 

contrast, excessive supination shows higher voltage 

in the outer points of the foot sole as shown in Fig. 3 

(sensors 1, 3, 5, and 7).  
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Figure 4. The numerical output of the seven sensors of all participants 

Classification using FNN 

The main aim of using FNN with an estimated 

dataset is to examine the idea of enhancing the 

classification using differential values of sensors and 

compare the performance of FNN with different 

ratios of testing/all data. The constructed dataset 

consists of 60 records, and each record contains 7 

sensors value (as input for FNN) and the label of 

diagnosed foot cases.  

During training FNN with different ratios of the 

dataset, the average accuracy ranges between 80% 

and 100% either using the raw values or differential 

values of sensors. The ratio of testing/all data 

variates between 50%, 70% and 80%which equals 

30/60, 42/60 and 48/60 are samples respectively. By 

considering those ratios, FNN on the remaining 

samples was trained and then FNN was evaluated 

using testing samples. Training and testing of each 

data ratio have been done twice, the first trial has 

been done using raw values of sensors where the 

input is the raw numerical values of the seven 

sensors, and the second trial has been achieved using 

the differential values of sensors. The differential 

values were computed between the values of sensor 

#5 from the values of remained sensors which 

express numerically how much the values of sensors 

are similar or close to sensor 5 as implemented in 

Fig. 2. The accuracy of using FNN with testing data 

after finishing the training stage based on raw and 

differential values are illustrated in Table 4. 

Table 4. The classification accuracy of the four 

foot cases using FNN 
 Raw 

input 

Differential input 

Testin

g/All 

data 

50% 70

% 

80% 50

% 

70

% 

80

% 

Accurac

y 

83.33

% 

73.8

% 

62.5

% 

96.6% 92.

8% 

90

% 

The accuracy of testing 50% of the dataset using 

differential values reached 96.6% while the raw data 

did not exceed 83.3%. By using 70% of the dataset 

as testing data, an accuracy of 73.8% was obtained 

based on raw data and 92.8% using differential 

values. 

On the other hand, Table 5 shows the F1-score with 

the same methodology of training and testing FNN. 

The efficient increase in the average F1-score from 

64.55-85.9% using raw input to 91.40-93.30% using 

differential input reflects the resolution of records 

within the dataset for each foot case and 

consequently enhances the performance of FNN. 

Considering the four values of testing/all data ratio 

in Table 5, the F1-score which mostly equals 93.3% 

proves that differential inputs can make FNN 

classifies each input into the correct case.  
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Table 5. F1-score values of classifying the four-

foot cases from samples using FNN 

 Raw input 

Testing/All data 50% 70% 80% 

Normal 83.3% 85.71% 57.14% 

Flat Foot 86.6% 88.89% 44.44% 

Over-pronation 50% 83.3% 83.3% 

Excessive 

supination 
86.6% 85.71% 73.3% 

Average 76.63% 85.90% 64.55% 

 Differential input 

Testing/All data 50% 50% 50% 

Normal 93.3% 93.3% 93.3% 

Flat Foot 93.3% 93.3% 93.3% 

Over-pronation 93.3% 93.3% 93.3% 

Excessive 

supination 
93.3% 93.3% 93.3% 

Average 93.30% 93.30% 93.30% 

Compared with related work in Table 6 that use 

different deep learning approaches to classify the 

foot case using the data of plantar pressure platforms, 

the usual ratio of training data is at least 65% of the 

samples 30, 37, 38 with classification accuracy between 

99.26% and 92%. The proposed FNN with 

differential input reached 96.6% accuracy using 50% 

of samples as training data, and 90% of accuracy by 

using only 70% of the dataset as testing samples.  

 

 

 

 

 

 

 

 

 

Table 6. Comparison with related work 

Ref. Foot cases 

D
a

ta
set 

(tra
in

in
g

#
, 

testin
g

#
) 

ML model 

A
cc

u
ra

cy
 

30 Normal, Cavus and Planus  foot (64, 16) 1D-CNN 99.26% 

37 Normal, cavus, hallux valgus (28,13) 
Multilayered backpropagation 

neural network 
92% 

38 cavus, planus (300,200) 
An adaptive neuro-fuzzy 

inference system 
95% 

P
ro

p

o
sed

 

w
o

rk
 

Normal, flat, over-pronation, and 

excessive supination foot 
(30,30) FNN with differential input 96.6% 

P
ro

p

o
sed

 

w
o

rk
 

Same types (18, 42) FNN with differential input 90% 

 

Discussion 

In this paper, the placements of sensors (Fig. 1) 

showed a high variance of the numerical output from 

the seven sensors (Fig. 3) which makes the sensing 

outcomes more reliable input for a lot of machine 

learning tools. The placements of sensors in this 

study and the good resolution of voltage values 

corresponding to the four-foot cases and the number 

of participants give a new proof of the usefulness of 

FSR-based sensing insoles in non-invasive gait 

assessment. The detectable difference in average and 

standard deviation between flat, over-pronation, and 

over-pronation feet using FSR-based sensing insole 

is not measured previously in the related works 19-22. 

Machine learning tools come to convert non-radial 

types of foot diagnostics systems into self-dependent 

devices that can support the medical decision about 

the foot case or deformity 29-32. In our paper, the 

second main objective is to examine the idea of using 

differential values of sensors as input for FNN 

instead of using the raw data even as numerical or in 

“Newton” (N). The accuracy of testing all foot cases 

equals 83.33% using 50% of data as testing samples 

and this accuracy decreased to 62.5% by using only 

30% of samples as training which makes the FNN 

unable to reach good classification performance. 

After using the differential input as implemented in 

(Fig. 2), the accuracy enhanced clearly to 96.6% 
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using 50% testing data, and 92.8% using 70% testing 

data. An 80% of the dataset was used to train 1D-

CNN 29 with an accuracy of 99.26% to classify 

normal, cavus, and planus feet. In the presented 

work, 50% of the samples as training data was 

enough to get a classification accuracy of 96.6%. The 

comparison with related work concerning the ML 

approach and training/testing ratio of samples (Table 

6) shows the benefit and the good impact of using the 

differential values as input for neural networks and 

that belongs to the enhanced variance in pre-

processed input compared with raw data. The idea of 

computing differential voltage values depends 

completely on determining the reference pressure 

point which is sensor 5 in our study. Additionally, 

FSR sensors can be enhanced based on micro bend 

multimode fiber 39.  

 

Conclusion 

An FSR-based sensing insole is presented to examine 

the normal, flat, overpronation, and excessive 

supination foot. The outputs of sensors show good 

differentiation in the values of sensors between the 

four-foot cases. By using differential values from 

sensors as input for FNN instead of using the raw 

data to classify the foot case, a notable increase 

occurred in the values of accuracy and F1-score. The 

efficiency of using differential input is proved by the 

increase in the accuracy of classification with the 

least amount of training data compared with testing 

data. The finding of this work implies the reliability 

of using a sensing insole in classifying the common 

forms of foot deformities, and the importance of 

considering the differential voltage between the 

sensing points or high-pressure points of the foot. 

In future work, it is important to improve the system 

by increasing the number of sensors and their 

accuracy. In addition, conducting more experiments 

with different types of shoes and walking styles to 

evaluate the performance and robustness of the 

system under various conditions. Additionally, 

exploring other possible applications of FSR-based 

sensing insoles such as sports performance analysis, 

posture correction and fall detection.  More 

experiments must be conducted in the near future to 

further validate and improve the proposed system 

and include individuals with a wide range of physical 

characteristics, foot deformities, and demographic 

factors to enhance the generalizability of the results. 
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لال من خ سكونيا هاتصنيفو الضغط الأوميةكشف تشوهات القدم المختلفة باستخدام حساسات 

 شبكات العصبونيةال

 3حسن محمد نزهه ،1مصري محمد، 1مجتبى علي ،1الكيال يمنأ ،1سماعيلاابراهيم ، 1،2أيهم درويش

 .ةكلية الهندسة الطبية، جامعة الأندلس للعلوم الطبية، طرطوس، سوري1
 .ةقسم الأتمتة الصناعية، كلية الهندسة التقنية، جامعة طرطوس، طرطوس، سوري2
 .ألمانيا ،الميكانيكا، كلية الهندسة الميكانيكية، جامعة أوتو فون جويريك، ماغديبورغ قسم3

 

 ةالخلاص

 ةتعُدَُّ أنظمة النعال الحسّاسة للحركة تقنية واعدة للعديد من التطبيقات في الرعاية الصحية والرياضة. حيث يمكن أن توفّر هذه الأنظم

معلومات قيمّة حول توزيع الضغط على القدم وأنماط المشي لأفراد مختلفين. ومع ذلك، فإن تصميم وتنفيذ مثل هذه الأنظمة يواجه العديد 

التحديات، مثل اختيار الحسّاسات والمعايرة ومعالجة البيانات والتفسير. في هذه الدراسة، نقترح نظام نعل حساس باستخدام مقاومات  من

استشعار القوى  لقياس الضغط المطبّق من القدم على مناطق مختلفة من النعل. يقوم هذا النظام بتصنيف أربعة أنواع من تشوهات القدم: 

، انحراف القدم إلى الداخل، وزيادة انحراف القدم إلى الخارج. تستخدم مرحلة التصنيف قيم الضغط الفرقية على نقاط طبيعي، مسطح

فرداً تم تشخيصهم بالحالات المدروسة. حقق تنفيذ  60الضغط كمدخلات لنموذج التغذية الأمامية للشبكات العصبية. تم جمع البيانات من 

من  ٪30باستخدام  ٪92.8من المجموعة البيانية كبيانات تدريبية و  ٪50باستخدام  ٪96.6لعصبية دقة بنسبة التغذية الأمامية للشبكات ا

البيانات التدريبية فقط. ويوضح المقارنة مع الأعمال ذات الصلة الأثر الإيجابي لاستخدام القيم الفرق لنقاط الضغط كمدخلات للشبكات 

 العصبية مقارنة بالبيانات الأولية.
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