Direct K$^+$ and Ag$^+$ Ion-exchanged into SAPO-34 Prepared via Microwave Irradiation and Its Performance in MTO

Mazin Jasim Mohammed*, Najwa Saber Majeed

Department of Chemical Engineering, College of Engineering, University of Baghdad, Baghdad, Iraq.

*Corresponding Author.

Received 30/04/2024, Revised 08/10/2023, Accepted 10/10/2023, Published Online First 20/05/2024

Abstract

Recently, light olefins became an important material for industrials, especially plastics. High olefins production cost from oil sources, made the researchers look for other methods. Methanol conversion to olefins over SAPOs was an excellent alternative. SAPO-34 molecular sieve is considered a proper catalyst used in this field. For this purpose, SAPO-34 with morpholine template was prepared under microwave irradiation. K and Ag ions were incorporated successfully by ion exchange method. The samples were analyzed by XRD, SEM, EDX, FT-IR, BET, and TGA techniques. XRD showed higher crystallinity of K-SAPO-34 and smaller crystallite size than Ag-SAPO-34. The SEM and EDX analysis indicated perfect distribution of K and Ag metal ions. Surface area reached to 287.64 and 254.59 m2/g for K-SAPO-34 and Ag-SAPO-34, respectively. TGA analysis showed high thermal stability opposite cracking at high temperature of 1100 °C. The catalyst performance on MTO was performed in trickle bed reactor at temperature of 350, 400, 450 and 500 °C at 7.7 hrs$^{-1}$. The conversion was 100% for the two samples. At 400 °C, olefins selectivity was 85% of K-SAPO-34. Ag-SAPO-34 showed longer lifetime of 475 min with 74% olefins selectivity. Weight hourly space velocity of 15 and 21.1 hrs$^{-1}$ at 450 °C for K-SAPO-34 were also investigated. As the velocity increased, the conversion and selectivity decreased. It was found that adding K and Ag by ion exchange to SAPO-34 improve surface area and enlarge the pores diffusion. This might hinder the coke deposition in pores and improve olefin selectivity.

Keywords: Ion exchange, Microwave irradiation, MTO, SAPO-34 zeolite catalyst, Selectivity.

Introduction

Light olefins like ethylene, propylene, and butylene are the key components raw material of industries. In chemical industries processes, light olefins mainly produced by fluid catalytic cracking, steam cracking, naphtha cracking and natural gas1. The challenges forced these processes such as high price of crude oil, pollutions, high consumption of energy; create a gap between demand and supply of olefins2. However, these challenges forced the researchers to search for alternative technologies for producing light olefins from non-oil sources3. Zeolite catalyst is typical type for producing oil from low-cost feedstock4,5. Zeolite can be prepared with recycled raw materials, scrap tires and papers6. Methanol has proved to be successful conversion to light olefins7. For many industrial processes, catalysts are necessary to improve products8. In most studies, introducing metals in the framework of catalyst give the catalyst more stability, activity and surface area$^9-11$. SAPO-34 zeolite has shown an excellent proficiency for MTO process. It has small pore diameter 0.38 nm, moderate straight acidity, high selectivity of ethylene and propylene, large surface area and high stability. Hydrothermal is the most method used to prepare SAPO-34. Its limitations are long time of crystallization and its black box nature attracted to...
innovative approach of microwave heating12, 13. Microwave heating showed many advantages such as fast crystallization time, small size crystals, facial homogenous morphology and eliminating heating spot. As compared to conventional hydrothermal heating, using of microwave irradiation heating shortened the time of crystallization from two or three days to several hours14. Shalmani et al.15 prepared nanosized structure of SAPO-34 catalyst with different morphologies under microwave irradiation. They studied synthesis conditions such as crystallization time, chemical composition and microwave power. They found that chemical composition was the key role of phase purity, crystal size and distribution. Also, they reported that higher microwave power yield small crystals of SAPO-34. Álvaro-Muñoz et al.14 prepared nanocrystalline SAPO-34 using microwave-assisted hydrothermal synthesis method. Significant variation in shape and size was obtained with microwave as compared to hydrothermal synthesis. The nanosized SAPO-34 synthesized in microwave irradiation exhibited a longer lifetime in MTO conversion as compared to convection oven. The results showed that olefins selectivity reached to 90\% with longer lifetime of 22 hr at temperature of 673 k and weight hourly space velocity (WHSV) of 1.2 hr-1. Recently, prepared nanocrystals sized of SAPO-34 using dilute zeolite solutions by microwave irradiation assisted hydrothermal method. To increase selectivity and stability of light olefins, metal ions have incorporated in the zeolite framework16. The metal ions give SAPO-34 more activation in selective ethylene molecules and can be processed for longtime which repeals coke deposition. Xiang et al. used direct Cu+ ion-exchange into SAPO-34 by conventional hydrothermal method17. Their results showed that Cu-SAPO-34 display an excellent performance in the selective reduction of NO with NH\textsubscript{3}. Merza et al. used hydrothermal method with cheap template agents. Their results showed that the crystallinity increases when adding metal ions. They reported that incorporation Ag and K ions increase ethylene selectivity to 68.56 and 80\%, respectively, as compared with 56.34\% of unmodified SAPO-34. They also reported that the lifetime prolongs to 10 hrs-1. The surface area and weak and strong acid sited increased18. Eslami et al. synthesized nanostructured MnAPS0-34 catalyst via microwave and hydrothermal heating methods. They found that incorporating of Mn metal with hydrothermal heating enhanced olefins selectivity and lifetime. The olefins selectivity reached to 87\% at 690 min. in the other hand, microwave heating produced low crystallinity of catalyst with low olefins selectivity19.

In this work, SAPO-34 zeolite molecular sieves were prepared under microwave irradiation using of Aluminium chloride with Morpholine template, cheap and available. K and Ag metal was incorporated into SAPO-34 by ion-exchanged method. The catalyst synthesis and characterization was studied. The performance of modified SAPO-34s on activity, selectivity and lifetime in MTO reaction conversion was also investigated.

Materials and Methods

In a typical microwave synthesis, aluminum chloride hexahydrated AlCl\textsubscript{3}.6H\textsubscript{2}O, 99\%, Fluka, tetraethylorthosilicate TEOS, 100\%, Aldrich, phosphoric acid H\textsubscript{3}PO\textsubscript{4}, 85\%, Merck, potassium nitrate KNO\textsubscript{3}, 99\%, Himedia, and silver nitrate AgNO\textsubscript{3}, 98\%, Himedia, were used as Al, Si, P, K and Ag, respectively. Morpholine MOR, 99\%, Aldrich, was used as structured directing agent SDS.

Synthesis of K-SAPO-34 and Ag-SAPO-34

Firstly, 9 g of AlCl\textsubscript{3}.6H\textsubscript{2}O was mixed 16.5 ml of demineralized water and stirred at room temperature for 30 min. 3 ml of H\textsubscript{3}PO\textsubscript{4} was added in dropwise to the mixture. After that, the solution was mixed for 20 min. then, 2 ml of TEOS added to the solution. Then, 6 ml of MOR added slowly and the mixture was stirred for 2 hrs. The gel molar ratio was AL\textsubscript{2}O\textsubscript{3}:P\textsubscript{2}O\textsubscript{5}:0.6SiO\textsubscript{2}:4MOR:60H\textsubscript{2}O. In next step, the mixed colloidal was transferred into 100 ml stainless steel Teflon autoclave. It then placed in microwave irradiation with 800 w for 200 min without stirring manner. In the final step, the product mixture was centrifuged in 2200 rpm for 30 min, washed three times with distilled water and filtered.

In order to prepare K-SAPO-34 and Ag-SAPO-34 catalyst, Ag and K were incorporated to SAPO-34 catalyst by direct method of ion exchange. To achieve that, Ag and K were incorporated into SAPO-34 with two times ion exchange between KNO\textsubscript{3} and AgNO\textsubscript{3} solutions in water of 0.02 M and then mixing for 1 hr. at room temperature, and then leave the precursor overnight without stirring. Modified SAPO-34 zeolite that designed as Ag-
SAPO-34 and K-SAPO-34 was centrifuged, dried at 120 °C for 24 hrs. and calcined at 560 °C for 5 hrs. in order to remove template. Finally, the as-synthesis catalysts were tableted to small particles with 2-3 mm diameter to use in methanol to olefins reaction. The methanol to olefins reaction (MTO) using the two samples of prepared zeolite catalysts was done in a laboratory trickle-bed reactor.

The experimental setup for MTO conversion test of samples consists of gas and liquid feeding section, trickle-bed reactor, furnaces and analytical section. The operation process was continuous at atmospheric pressure. Proceeding to catalytic testing, 2.5 g of crushed catalyst was overloaded inside the reactor of internal diameter = 1.2 cm, length = 48 cm. The catalyst was held on quartz balls to fix it in place. N₂ carrier flow gas at 90 ml/min opened on to the catalyst at 650 °C for 1 hr. Then it cooled to desired reaction temperature. Then, the feed solution 30 wt% methanol, 70 wt% H₂O was pumped to primary heater which ascended the solution temperature to 250 °C. For each experimental test, the feedstock was changed with a fresh one to ensure that the feeding reactant concentration by bubbling the solution of methanol. The reaction temperature was 350, 400, 450 and 500 °C at 7.7 hrs⁻¹. WHSV 15 and 21.1 hr⁻¹ was studied also at 450 °C.

Nitrogen gas was used carrier gas of the reactants. Gas chromatograph BS-GC7820, BIOBASE, China, equipped with Plot-U column and flame-ionization FID detector was used to analyze the product compositions. The structural properties of prepared SAPO-34 with microwave irradiation are demonstrated in Table 1.

Table 1. The structural properties of prepared SAPO-34 with microwave irradiation.

<table>
<thead>
<tr>
<th>SAPO-34</th>
<th>Template</th>
<th>Ion Exchange</th>
<th>Microwave irradiation (W)</th>
<th>Time (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S-1</td>
<td>Morpholine</td>
<td>K</td>
<td>800</td>
<td>200</td>
</tr>
<tr>
<td>S-2</td>
<td>Morpholine</td>
<td>Ag</td>
<td>800</td>
<td>200</td>
</tr>
</tbody>
</table>

Results and Discussion

Catalyst Characterization

The samples of zeolite were characterized by XRD (X-ray diffraction), SEM (scanning electron microscopy), EDX (energy-dispersive X-ray spectroscopy), BET (Brunauer-Emmett-Teller), FT-IR (Fourier transforms infrared spectroscopy) and TGA (Thermogravimetric analyses) techniques. The XRD diffraction pattern was composed by a Bruker D8 diffractmeter CuKα radiation, = 1.54060 °A in 2θ range equal of 5–40. The relative crystallinity for SAPO-34 catalysts was determined by the using sum of intensities of the most important peaks of 2θ = 9.5, 13.0 and 20.5. The particles morphologies and sizes were conducted by SEM photo using instrument of Philips XL30. XRD analysis is used to identify crystal phases and size. BET surface area for the catalysts were measured by N₂ isotherms analyses collected by micrometrics ASAP 2010 device. An FTIR spectrum was performed to indicate the functional groups of catalyst. It was executed in wide range wavelength vibration of 400-4000 cm⁻¹ for more accuracy. The samples were composed with KBr-diluted palletized using a Bruker Tensor-27 spectroscopy. TGA-DTG data were obtained in N₂ gas using model of Shimadzu DTG-60. The TGA temperature range test was from 20 to 1100 °C. The flow temperature and rate of N₂ gas model were set to 20 °C/min and 20 ml/min, respectively. The catalyst characterization was performed at Ondokuz Mayis University in Turkey.

XRD Analysis

The X-Ray diffraction of samples is shown in Fig. 1. The standard peaks of SAPO-34 with MOR template with molar ratio of 4 at 2θ=9.5, 12.5, 15.5, 17.7, 20.5, 26 and 30.5. The diffraction peaks of MOR of low molar consumption affects the presence of SiO₂ in amorphous phase at this time. The diffraction peaks of K²⁺ and Ag⁺ ion exchange with morpholine template corresponds to CHA SAPO-34 phase which indicates purity phase catalyst. The peaks at 2θ= 9.31, 12.4, 15.5, 17.7, 20.5, 25.8 and 30.5. The relative crystallinity that related to SAPO-34 formation of K-SAPO-34 was higher than that of Ag-SAPO-34. The average crystal size of catalyst based on Scherrer equation from the XRD instrument was found to be 23, 24.9 and 25 nm. The longtime of microwave irradiation may create an amorphous phase between crystals which decreases the crystallinity and purity of SAPO-34 zeolite templated with MOR[^20]. The incorporation of K and Ag ions improved the crystallinity and purity. It seemed that ions attributed to increase the crystal growth and crystallite surface. When heated the gel in the microwave, the reaction temperature increases rapidly and nucleation goes fast, partial of nuclei results of amorphous phase between crystals and...
hence, the crystallinity becomes low21. The metal ions work like a seed that help of formation highly pure phase22.

![Figure 1. XRD patterns for SAPO-34 samples](image1.png)

BET Analysis

The BET surface area of samples was measured by applying Brunauer-Emmett-Teller equation as reported in Table 2. The results of surface area indicated to a successful synthesis of SAPO-34 catalyst under microwave crystallization. By exchanging Ag+, the area recorded to be 254 m2/g. The surface area increased to 287 m2/g when exchanged with K+ ions. As illustrated, K-SAPO-34 and Ag-SAPO-34 have highly pore volume about 0.32 and 0.40 ml/g, respectively. The major cause of decreasing pore volume when exchanging K+ ions is that for the metal oxides which may narrowing or blocking some of the micropores.

<table>
<thead>
<tr>
<th>Sample</th>
<th>BET surface area (m2/g)</th>
<th>Micropore volume (cm3/g)</th>
<th>Pore radius (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S-1</td>
<td>287.64</td>
<td>0.32</td>
<td>0.22</td>
</tr>
<tr>
<td>S-2</td>
<td>254.63</td>
<td>0.40</td>
<td>0.31</td>
</tr>
</tbody>
</table>

SEM Analysis

The scanning electron microscopy images are given in Fig. 2. As shown, the product of using Ag+ ions of sample S-2 tended to be more aggregated compared to sample S-1. The sample that exchanged with K+ ions revealed to be more uniform in distribution manner. The results of K-SAPO-34 and Ag-SAPO34 were distributed and the aggregation is almost not big crystals. The changed in morphology reflected the effect of metal ions which played a crucial role in the size control and shape of SAPO-342. It is also seen that the crystal shapes of K-SAPO-34 and Ag-SAPO4 are almost similar to each other. This phenomenon is that the metal ions have same effect in morphology and size of crystal23. It is also noticed that the size is smaller when using ions in microwave. This can be explained for the double effect of TEOS and metal ions. The double effect produced small particle size compared to other silica sources in absence of metal ions. In general preparation states, using MOR as template resulted in bigger crystal size15.

![Figure 2. SEM images of S-1 and S-2 samples](image2.png)

EDX Analysis

The EDX micrographs for S-1 and S-2 samples templated with MOR are illustrated in Fig. 3. The metal ions of K and Ag and the elements that used to prepare SAPO-34 are all observed in EDX analysis. Elements of Al, P, Si, O and C and also K and Ag can be shown in EDX dot-mapping. The images showed highly dispersion of elements and uniform morphologies for prepared catalysts with microwave irradiation. Element O had high ratio among others because it exist in the major compounds that forming zeolite catalyst such as Al\textsubscript{2}O\textsubscript{3}, P\textsubscript{2}O\textsubscript{5} and SiO\textsubscript{2}. The EDX dot-mapping and weight content indicated the successful synthesis of SAPO-34 catalyst. Also, the low molar percentage of K and Ag ions is as
expected, and hence, the ion exchange gets in good results in SAPO-34 framework. It appears that application of high energy power reflects perfect distribution of elements in catalyst. The proper distribution of metal ions and elements in SAPO-34 framework create Brønsted acidic sites inside pores. These new acidic sites could enhance catalyst performance with suitable silica distribution in framework. This may lead to effective conversion in MTO.

FTIR Analysis

The prepared catalyst corresponding to chabazite structure which characterized by FT-IR is shown in Fig. 4. For higher accuracy, infrared spectra of 400-4000 cm\(^{-1}\) gave a wide frequency range. The vibrations that recorded are similar to CHA framework of SAPO-34. The spectra showed vibration peaks of bridge hydroxyl groups such as Si-OH and P-OH at 3400 cm\(^{-1}\). The bands of 3150 cm\(^{-1}\) also reported of hydroxyl group. The hydroxyl groups reported played active sites roles for methanol-to-olefins conversion. The peaks of about 2440, 2190 and 2050 cm\(^{-1}\) can be assigned to CO\(_2\) absorbed from atmosphere. The stretching vibration of 1637 cm\(^{-1}\) can be indicated as absorbed water molecules physically. The band of 1100 ascribed to symmetric stretching T-O-T. The wave number peaks of 730, 630, 550 and 430 cm\(^{-1}\) indicated to the protonated morpholine template, O-P-O stretching, T-O double 6-rings bend and T-O bending of tetrahedral Si, respectively.

TGA and DTG

Thermogravimetric analyses TGA and differential temperature analyses for samples were performed in order to check the coke deposition formation on K-SAPO-34and Ag-SAPO-34 as shown in Fig. 5. The average weight loss of all catalysts samples did not exceed 22.7% of the initial weight for high temperature reached to 1100 °C. The results showed two differential regions of weight loss steps. The first occurred in temperature range of 160 to 190 °C which is attributed of endothermic of water desorption. The second region of weight loss occurred at temperature higher than 400 °C, specifically in range of 420 to
490 °C. The second weight loss indicates exothermic effect which is associated to calcination of coke. The cokes species combustion temperature are in similar manner, however, the weight of coke produced in the samples are not same. The weight loss of coke calcination of K-SAPO-34 is 3.54%, while the value is 2.81% for Ag-SAPO-34. The DTG curve for all samples showed same manner of rate of decreasing weight of catalyst. It showed a high decreasing rate of region 1 and less decreasing rate of region 2. So, it is expected that SAPO-34 particles will show better performance with a longer lifetime due to higher acid site density, low mass transfer resistance and high purity.

Figure 5. TGA and DTG of S-1 and S-2 samples.

Catalyst Performance

The performance of SAPO-34s synthesized with microwave irradiation for dehydration of methanol to light olefins was tested at 350, 400, 450 and 500 °C with WHSV feed of 7.7 hr\(^{-1}\) and 30 wt% methanol. Also, the S-1 catalyst performance in space velocities of 15 and 21.1 hr\(^{-1}\) at 450 °C was performed. The catalysts showed highly stable conversion up to 400 min. All the samples catalysts showed similar in trend into production light olefins, but on the other hand, the distribution for the products and the lifetimes varied significantly. Reaction conversion is almost 100% in specific reaction time, then it decreases when the reaction is continue.

Reaction Temperature of 350 °C

K-SAPO-34 and Ag-SAPO-34 performance on MTO conversion at 350 °C with 7.7 hr\(^{-1}\) space velocity are shown in Fig. 6. The reaction conversion for two catalysts not reaches to 100%, then they drops after 300 min. The conversion on K-SAPO-34 yield maximum value of light olefins reached to 78% at 200 min, while Ag-SAPO-34 yield total light olefins of 71% for 400 min and then drop to 57% after 500 min of reaction. It indicated that Ag ions give the catalyst more stability against decompositions and coke formation but also yield less amounts of olefins than K ions that promoted zeolite catalyst at low reaction temperature, i.e. 350 °C.

Figure 6. Methanol conversion and product selectivity over K-SAPO-34 and Ag-SAPO-34 catalysts: T=350 °C, WHSV=7.7 h\(^{-1}\).

Reaction Temperature of 400 °C

Fig. 7 illustrates the catalysts performance on MTO at 400 °C with WHSV of 7.7 hr\(^{-1}\) under
atmospheric pressure. The methanol conversion on S-1, S-2 is 100% for 300 min, 100% for 400 min, respectively. The total selectivity is the summation of selectivity of light olefins ethylene, propylene and butylene. The total selectivity recorded for S-1and S-2 is 78% for 400 min and 74% for 475 min, respectively.

Figure 7. Methanol conversion and product selectivity over K-SAPO-34 and Ag-SAPO-34 catalysts: T=400 °C, WHSV=7.7 h⁻¹.

Reaction Temperature of 450 °C
Fig. 8 demonstrates the S-1and S-2 catalyst samples performance on methanol conversion to light olefins at 450 °C and 7.7 hr⁻¹. It is shown that the conversion is high at long reaction time with less selectivity of total light olefin. It is noticed that selectivity is drop after 200 min of reaction which recorded about 55 to 51% for the two reactions. These results indicated that the temperature of 500 °C occurs in the range of second region of coke formation which allows the coke to deposit the pores which reflects inverse results in olefins products.

Figure 8. Methanol conversion and product selectivity over K-SAPO-34 and Ag-SAPO-34 catalysts: T=450 °C, WHSV=7.7 h⁻¹.

Figure 9. Methanol conversion and product selectivity over K-SAPO-34 and Ag-SAPO-34 catalysts: T=500 °C, WHSV=7.7 h⁻¹.
In general, the lifetime of catalysts of reaction temperature of 450 and 500 °C is less than 300 and 400 °C, but the total light olefins selectivity of 300, 400 and 500 °C is less than 450 °C. Incorporation of K and Ag ions in the catalysts improve the conversion of methanol and also enhance the light olefins selectivity. K ions improve the light olefins production more than Ag ions, but the last one improves the lifetime. The major expected reason for reducing lifetime when increasing temperature is that the reaction occurs in the second region of coke formation 420-490 °C27,28. The cokes that deposit on the active sites reduce the diffusion of reactant to the pores of the catalysts25. The reactions give high yield of light olefins in initial time but on continue reaction and increase coke formation, the quantities of olefins reduced and accompanied of that, the lifetime reduced in all types of catalysts25,26. SAPO-34 incorporated with Ag ions showed more stability than other types. This might be ascribed to its lower acid strength which leads to reduce cracking of ethylene and propylene18. Also, using microwave for preparing SAPO-34 enhanced lifetime for methanol conversion2.

Effect of Weight Hourly Space Velocity

The effect of WHSV of 7.7, 15 and 21.1 hrs-1 at 450 °C on MTO conversion are studied on K-SAPO-34 catalyst and shown in Fig. 10. As increasing in space velocity from 7.7 to 21.1 hr-1, the catalyst lifetime decreasing from 400 to 100 min. When space velocity increased, the molecules that reacted per time also increased, and hence, the rate of coke formations are increased simultaneously, which then decreases the SAPO-34 catalyst lifetime2.

![Figure 10. Methanol conversion over K-SAPO-34 with different WHSV at T=450 °C.](image)

Conclusion

Due to the growing the demand of the light olefins in industry, an alternative method for producing light olefins using methanol as source instead of oil becomes an effective process. Dehydration of alcohols over zeolite catalyst like SAPOs was an alternative and effective method. SAPO-34 showed an excellent and effective feature for MTO conversion process. SAPO-34 was prepared via microwave heating method. The catalyst was incorporated with K and Ag metals by direct ion-exchanged method. The catalyst characterization showed higher crystallinity and uniform distribution of metal ions. The surface area was 287.64 and 245.59 m2/g for S-1and S-2, respectively. TGA analysis showed high thermal stability against coke formation at high temperature of 1100 °C. Methanol to olefins conversion was performed in trickle bed reactor. Reaction temperatures of 350, 400, 450 and 500 °C at 7.7 hrs-1 were investigated. The results showed high conversion for all samples reached to 100%. The higher light olefins selectivity was 85% at 450 °C for S-1 sample. Longer lifetime was 475 min for S-2 sample with 74% light olefin selectivity. Increasing or decreasing temperature than 450 °C reduced selectivity of light olefins. Weight hourly space velocity of 15 and 21.1 hrs-1 at 450 °C were also investigated. It was found that increasing space velocity had a reverse effect on olefins selectivity. The coke deposition on catalyst increased when increasing space velocity.

Acknowledgment

We gratefully acknowledge the Chemical Engineering Department of University of Baghdad and also Baiji Oil Training Institute for assist and support this work.

Authors’ Declaration

- Conflicts of Interest: None.

- We hereby confirm that all the Figures and Tables in the manuscript are ours. Furthermore, any
Figures and Images, that are not ours, have been included with the necessary permission for republication, which is attached to the manuscript.

Ethical Clearance: The project was approved by the local ethical committee at College of Engineering, University of Baghdad.

Authors’ Contribution Statement

This work was carried out in collaboration between all authors. M. J. M diagnosed the cases then collected the samples and did the tests and also wrote the manuscript. N. S. M, edited the manuscript with revised the idea. N. S. M, analyzed the data. All authors read and approved the final manuscript.

References

https://doi.org/10.1039/D1CY01838H.

https://doi.org/10.1039/C5RA22868A.

https://doi.org/10.1016/j.powtec.2017.01.017.

https://doi.org/10.1002/adma.201902181.

https://doi.org/10.1109/MICEST54286.2022.9790195.

https://doi.org/10.31699/JJCEPE.2021.2.3.

https://doi.org/10.1016/j.jmrt.2020.08.067.

https://doi.org/10.1038/s41467-021-24403-2.
The direct exchange of potassium and silver ions in SAPO-34 and its application in converting methanol to olefins. Mazen Jassim Mohammed, Najwa Sabir Majeed. Department of Chemical Engineering, College of Engineering, University of Baghdad, Iraq.

Production of olefins is an important product for various industries, especially in the plastic industry. The high cost of producing olefins from traditional sources has prompted researchers to search for alternative methods. The conversion of alcohols to olefins through a助剂 is a good method. Silver-SAPO-34 is a suitable catalyst in this field. Therefore, the catalyst was prepared using morfoline as a template by microwave exposure. The exchanged K and Ag ions were successfully verified by XRD, FT-IR, EDX, SEM, BET, TGA, and DTG. The XRD analysis showed higher crystallinity for K-SAPO-34 and smaller crystal volume for Ag-SAPO-34. SEM and EDX analyses showed a uniform distribution of metal ions. The specific surface area reached 0.80 m²/g and 0.02 m²/g for K-SAPO-34 and Ag-SAPO-34, respectively. The temperature stability test showed high thermodynamic stability with a maximum decomposition temperature of 333 °C. Efforts to test the performance of the prepared catalysts in the MTO process in a triple bed reactor at temperatures of 333, 303, 293, and 283 °C with WHSV = 0.5 and 0.05 h⁻¹. It was found that increasing the WHSV decreases the conversion of methanol and the overall selectivity of olefins. The addition of K and Ag to SAPO-34 increases the specific surface area and improves the dispersion of the active materials within the cavities. Thus, it reduces the clogging of the microcrystals and improves the selectivity of the olefins. Key terms: ion exchange, microwave, methanol to olefins, catalyst.