

Principally ss-Supplemented Modules

Ahmed H. Alwan* 匝 🖂

Department of Mathematics, College of Education for Pure Sciences, University of Thi-Qar, Thi-Qar, Iraq. *Corresponding Author.

Received 06/05/2023, Revised 08/09/2023, Accepted 10/09/2023, Published Online First 20/03/2024, Published 01/10/2024

© 2022 The Author(s). Published by College of Science for Women, University of Baghdad. This is an open-access article distributed under the terms of the <u>Creative Commons Attribution 4.0 International License</u>, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In this paper, we introduce and study the concepts of principally ss-supplemented and principally ss-lifting modules. These two concepts are natural generalizations of the concepts of ss-supplemented and ss-lifting modules. Several properties of these modules are proven. Here, principally ss-lifting modules are focused on. New characterizations of principally ss-supplemented modules are made using principally ss-lifting modules. Here, weakly principally ss-supplemented is defined. It is proved that a module T is weakly principally ss-supplemented module if and only if it is principally ss-supplemented. One of the first results states that every strongly local module is principally ss-supplemented. It is shown that if T be a hollow module, then T is principally ss-supplemented if and only if it is strongly local. If Rad(T) small in T, then T is principally ss-supplemented if and only if T is principally supplemented and $Rad(T) \subseteq Soc(T)$. Moreover, if $T = T_1 \oplus T_2$ with T_1 and T_2 principally ss-supplemented modules and T is a duo, then T is principally ss-supplemented. It is also shown that, if T is indecomposable, then T is principally ss-lifting if and only if T is a principally hollow module besides if T is a principally hollow module then T is principally ss-supplemented. In this work, the following results are proved: if T be a module with the property (ss - PD_1), then every indecomposable cyclic submodule of T is either small in T or a summand of T. Also, if T is a module over a local ring R and T has the property $(ss-PD_1)$, then every cyclic submodule of T is either small in T, or a summand of T.

Keywords: Principally ss-supplemented module, Principally ss-lifting module, Ss-supplemented module, Ss-lifting module, Strongly local module.

Introduction

Throughout this paper, *R* will denote a commutative ring with identity and *T* be a unitary left *R*-module. A submodule *N* of an *R*-module *T* is called *small* or *superfluous* in *T* (we write $N \ll T$), if any submodule $X \le T$, with N + X = T involves that X = T. The radical of *T*, indicated by Rad(T), is the sum of small submodules of *T*. *T* is called *hollow*, if any proper submodule of *T* is small in *T*, see for example^{1,2}. A module *T* is named local, if it has a unique maximal submodule, i.e., a proper submodule which contains all other submodules. *T* is said to be *simple*, if it has no nontrivial submodule, *T* is called *semisimple* if *T* is a direct sum of simple submodules. The socle of *T*, indicated by Soc(T), is the sum of all simple submodules in *T*. Let *L* and *K* be submodules of *T*. *K* is named a *supplement* of *L* in *T* if it is minimal with respect to T = L + K. A submodule *K* of *T* is a supplement of *L* in *T* if and only if T = L + K and $L \cap K \ll K$. A module *T* is called *supplemented* if each $L \leq T$ has a supplement in *T*.

A submodule $K \leq T$ has ample supplements in T if every $L \leq T$ with T = K + L contains a supplement of K in T. A module T is called amply supplemented if each submodule of T has ample supplements in T. Local modules are hollow, and hollow modules are clearly amply supplemented¹. A module T is called *lifting* if, for all $N \leq T$, there exists a decomposition $T = A \oplus B$ with $A \leq N$ and $N \cap B$ is small in T, see^{1,3}. Kaynar, Calisici and Türkmen⁴ define sssupplemented modules as a proper generalization of semisimple modules. T is named ss-supplemented if any submodule U of T has a supplement V in T with $U \cap V$ is semisimple (namely, ss-supplements). Zhou and Zhang⁵ generalized the notion of socle of T to $Soc_s(T), Soc_s(T) = \sum \{L \ll T | L \text{ is simple} \}$. Clearly $Soc_{s}(T) \subseteq Rad(T), \quad Soc_{s}(T) \subseteq Soc(T),$ where $Soc_s(T) = Soc(T) \cap Rad(T)$. Kaynar et.al⁴. call T is strongly local if it is local and $Rad(T) \subseteq Soc(T)$, T is called ss-supplemented if every as well submodule *K* of *T* there exists *M* in *T* with T = K + KM and $K \cap M \subseteq Soc_s(T)$. For more details on sssupplemented modules see^{6,7}. Eryilmaz⁸ calls a module T called ss-lifting if for any $A \leq T$, T = $T_1 \oplus T_2$ with $T_1 \leq A$ and $A \cap T_2 \subseteq Soc_s(T)$.

Inspired by these results, here, the notion of principally ss-supplemented (principally ss-lifting) modules is introduced and studied. Section 2 is devoted to introducing the notion of principally ss-supplemented modules. Here, for a projective module T with $Rad(T) \ll T$ and $Rad(T) \subseteq Soc(T)$, T is principally ss-supplemented if and only if T/Rad(T) is principally semisimple are proved. Section 3 discusses principally ss-lifting modules.

Principally ss-Supplemented Modules

In this section, principally ss-supplemented modules which generalize principally supplemented modules and ss-supplemented modules are introduced.

For the local \mathbb{Z} -module $T = \mathbb{Z}_8$, Soc $(T) \subset Rad(T)$. So *T* is not a strongly local module.

Proposition 1: Every factor module of strongly local

module is strongly local.

Proof: See Proposition 8 in⁴. \Box

Lemma 1: Suppose that *T* is an *R*-module. Then $Soc(Rad(T)) \ll T$. **Proof:** See (2.8(9))¹. □

Lemma 2: Let *T* be a module and $x \in T$ ($X \le T$). Then

- (1) If Rx is a semisimple submodule in T with $Rx \le Rad(T)$. Then $Rx \ll T$.
- (2) If X is a semisimple submodule in T with $X \le Rad(T)$. Then $X \ll T$.

Proof: Suppose Rx is a semisimple submodule of T. Then Soc(Rx) = Rx and since $Rx \subseteq Rad(T)$, $Soc(Rx) \subseteq Soc(Rad(T))$. By Lemma 1, $Soc(Rad(T)) \ll T$. By Lemma 5.1.3 of ⁹, $Rx \ll T$.

Lemma 3: Let T be a module. Then $Soc_s(T) = Rad(T) \cap Soc(T)$.

Proof: See Lemma 2 of⁴. \Box

Definition 1:¹⁰ A module *T* is called a principally supplemented module if for all $t \in T$ there exists $A \leq T$, T = Rt + A and $(Rt) \cap A \ll A$. A module *T* is called a weakly principally supplemented module if for all $t \in T$ there exists a submodule *A* with T = Rt + A and $(Rt) \cap A \ll T$.

Now one gives the definition of principally sssupplemented modules.

Definition 2: A module *T* is called principally sssupplemented if for every cyclic submodule *U* in *T*, there exists a submodule *V* of *T* with T = U + V, $U \cap V \ll V$ and $U \cap V$ is semisimple. Also, a module *T* amply principally ss-supplemented if every cyclic submodule of *T* has ample ss-supplements in *T*.

Lemma 4: Let T be a module and U, V be submodules of T. Then the following statements are equivalent:

- (1) T = U + V and $U \cap V \subseteq Soc_s(V)$.
- (2) T = U + V and $U \cap V \ll V$ and $U \cap V$ is semisimple.
- (3) T = U + V, $U \cap V \le Rad(V)$ and $U \cap V$ is semisimple.
- **Proof:** See Lemma 3 of⁴. \Box

Baghdad Science Journal

By⁴ one says that V an ss-supplement of U in T if the equal conditions in the above lemma are satisfied. It is clear that the following implications on submodules in a module hold⁴:

Direct summand \Rightarrow ss-supplement \Rightarrow supplement \Rightarrow Rad-supplement.

One call T ss-supplemented if every submodule of T has ss-supplement in T.

Definition 3: Let *N* be a cyclic submodule of *T*. A submodule $L \le T$ is called a principally ss-supplement of *N* in *T* if *N* and *L* satisfy the conditions in Lemma 4 and the module *T* is called principally ss-supplemented if every cyclic submodule of *T* has a principally ss-supplement in *T*.

Ss-supplemented module is supplemented, so principally ss-supplemented module is principally supplemented. A module *T* is called a weakly principally supplemented module if for all $t \in T$ there exists a submodule *A* with T = Rt + A and $(Rt) \cap A \ll T$ and $(Rt) \cap A$ is semisimple. By Lemma 4, *T* is weakly principally ss-supplemented if and only if it is principally ss-supplemented.

Example 1: Consider \mathbb{Q} as a \mathbb{Z} -module of rational numbers, \mathbb{Q} contains no maximal submodules. If $F \leq \mathbb{Q}$ is cyclic then $F \ll \mathbb{Q}$, and so \mathbb{Q} is principally ss-supplemented. Note that \mathbb{Q} is not supplemented and it is not ss-supplemented.

Proposition 2: Let *T* be a module and *U* be a maximal submodule in T. $V \le T$ is ss-supplement to *U* in *T* if and only if T = U + V and *V* is strongly local.

Proof: Suppose *V* is an ss-supplement to *U*. Note *U* is local and $U \cap V = Rad(V)$ is unique maximal submodule of *V*. As $U \cap V$ is semisimple, now $Rad(V) \subseteq Soc(V)$. Thus *V* is strongly local. Conversely, since *V* local and T = U + V, one can write $U \cap V \subseteq Rad(V)$. The hypothesis give $L \cap V$ is semisimple. Thus *V* is an ss-supplement of *U*. \Box

Lemma 5: (Lemma 13 of⁴) Let T be an sssupplemented module and $N \ll T$. Then $N \subseteq Soc_s(T)$. **Corollary 1:** (Corollary 14 of⁴) Let *T* be an sssupplemented module and $Rad(T) \ll T$. Then $Rad(T) \subseteq Soc(T)$.

Proposition 3: Every strongly local module is principally ss-supplemented.

Proof: Assume *T* is local as a result it is principally supplemented. Since $Rad(T) \subseteq Soc(T)$, so *T* is principally ss-supplemented. \Box

The converse of Proposition 3 is not true in general as in Example 3.

Proposition 4: (Proposition 16 of⁴) Let T be a hollow module. Then T is ss-supplemented if and only if it is strongly local.

Now, the following main result is proved:

Theorem 1: Let T be a hollow module. Then T is principally ss-supplemented if and only if it is strongly local.

Proof: Suppose *T* is principally ss-supplemented. Let $x \in Rad(T)$. Now, by Lemma 5.1.4 of⁹, $Rx \ll T$. As *T* is principally *ss*-supplemented, by Lemma 5, $Rx \subseteq Soc_s(T)$. So $x \in Soc(T)$, and so $Rad(T) \subseteq Soc(T)$. Suppose T = Rad(T). Since T = Rad(T) = Soc(T), and the radical of a semisimple module is zero, one gets T = 0, a contradiction since *T* is hollow. So $T \neq Rad(T)$, that is, *T* is local. So *T* is strongly local. The converse is clear from Proposition 3. \Box

Example 2: For p is prime integer, $r \ge 3$. Let $T = \mathbb{Z}_{p^r}$ be a \mathbb{Z} -module. $Soc_s(\mathbb{Z}_{p^r}) = Soc(\mathbb{Z}_{p^r}) \cong \mathbb{Z}_p$ and $Rad(T) = p\mathbb{Z}p^r$, T is not strongly local and so it is not (principally) ss-supplemented.

Lemma 6: Let *T* be a principally supplemented module and $Rad(T) \subseteq Soc(T)$. Then *T* is principally ss-supplemented.

Proof: Let $L \leq T$. As *T* is principally supplemented, there exists $M \leq T$ with T = L + M and $L \cap M \ll M$. Then $L \cap M \subseteq Rad(M) \subseteq Rad(T) \subseteq Soc(T)$. Thus $L \cap M$ is semisimple. So *M* is a principally ss-supplemented of *L* in *T*. \Box

Baghdad Science Journal

Theorem 2: If $Rad(T) \ll T$, then the following statements are equivalent.

- (a) *T* is principally ss-supplemented,
- (b) T is principally supplemented and Rad(T) has a principally ss-supplement in T,
- (c) T is principally supplemented and $Rad(T) \subseteq Soc(T)$.

Proof: Now (a) \Rightarrow (b) Obvious. (b) \Rightarrow (c) By Lemma 5. (c) \Rightarrow (a) By Lemma 6. \Box

Theorem 3: Let $T = \bigoplus_{i \in I} T_i$, where each T_i is a strongly local module. Then *T* is principally ss-supplemented.

Proof: By using Theorem 27 in⁴. \Box

Now we give an example of a principally sssupplemented (ss-supplemented) module which is not strongly local.

Example 3: The \mathbb{Z} -module $T = \mathbb{Z}_4 \oplus \mathbb{Z}_4$ is sssupplemented as a sum of strongly local modules see Example 25 of⁴. So, *T* is principally sssupplemented. However, *M* is not (strongly) local by Example 25 of⁴.

A submodule $N \leq T$ is called fully invariant if for each endomorphism f to T, $f(N) \leq N$. Ozcan, Harmanci and Smith¹¹ call a module T is called a duo module provided any submodule of T is fully invariant. A module T is distributive if for all submodules \mathcal{K} , \mathcal{X} , and \mathcal{P} , $\mathcal{P} \cap (\mathcal{K} + \mathcal{X}) = \mathcal{P} \cap$ $\mathcal{K} + \mathcal{P} \cap \mathcal{X}$ or $\mathcal{P} + (\mathcal{K} \cap \mathcal{X}) = (\mathcal{P} + \mathcal{K}) \cap (\mathcal{P} + \mathcal{X})$ (see for example¹⁰).

A finite direct sum of ss-supplemented modules is ss-supplemented, but this is not the case for principally ss-supplemented. However, it is the case to certain classes of modules.

Theorem 4: Let $T = T_1 \oplus T_2$ with T_1 and T_2 principally ss-supplemented modules. If *T* is duo, then *T* is principally ss-supplemented.

Proof: Analogous to proof of Theorem 9 of¹⁰. \Box

Theorem 5: Let T be a principally ss-supplemented and duo. Then any direct summand to T is a principally ss-supplemented.

Proof: Analogous to proof of Theorem 10 of¹⁰. \Box

Lemma 7: Let $T = T_1 \oplus T_2 = K + N$ and $K \le T_1$. If *T* is distributive and $K \cap N \ll N$, then $K \cap N \ll T_1 \cap N$.

Proof: Let $T_1 \cap N = (K \cap N) + L$ with $L \leq T_1 \cap N$. Since *T* is distributive, $N = T_1 \cap N \bigoplus T_2 \cap N$. One has $T = K + N = K + T_1 \cap N + T_2 \cap N = K + L + (T_2 \cap N)$ and $N = K \cap N + L + (T_2 \cap N)$. Now $N/(L \bigoplus (T_2 \cap N)) = ((N \cap T_1) \bigoplus (N \cap T_2))/(L \bigoplus (T_2 \cap N)) \cong (N \cap T_1)/L$. Hence $N = L \bigoplus (T_2 \cap N)$. Thus $N = (N \cap T_1) \bigoplus (N \cap T_2)$ and $L \leq T_1 \cap N$ imply $L = T_1 \cap N$. So $K \cap N \ll T_1 \cap N$.

Theorem 6: Let T be a principally ss-supplemented distributive module. Then every direct summand of T is a principally ss-supplemented module.

Proof: Assume $T = T_1 \oplus T_2$ and $x \in T_1$. Now, there is $N \leq T$, T = Rx + N and $Rx \cap N$ is small in N. Then $T_1 = Rx + (T_1 \cap N)$ and by Lemma 7, $Rx \cap (T_1 \cap N)$ is small in $T_1 \cap N$. \Box

Proposition 5: Let T_1 and T_2 be principally sssupplemented modules and $T = T_1 \oplus T_2$. If *T* is distributive, then *T* is principally ss-supplemented.

Proof: Let $T = T_1 \oplus T_2$ be a distributive module and $Rx \leq T$. Then $Rx = (Rx \cap T_1) \oplus (Rx \cap T_2)$. Since $Rx \cap T_1$ and $Rx \cap T_2$ are cyclic submodules of T_1 and T_2 respectively, there is $M \leq T_1$ with $T_1 = (Rx \cap T_1) + M$ and $M \cap (Rx \cap T_1) = M \cap Rx$ is small in $M, M \cap Rx$ is semisimple, and $N \leq T_2$ such that $T_2 = (Rx \cap T_2) + N, N \cap (Rx \cap T_2) = N \cap Rx$ is small in $N, N \cap Rx$ is semisimple. Then T = Rx + M + N.

One now claims that $Rx \cap (M + N) = (Rx \cap M) + (Rx \cap N)$. The inclusion $(Rx \cap M) + (Rx \cap N) \leq Rx \cap (M + N)$ always holds. For the inverse inclusion, $Rx \cap (M + N) \leq M \cap (Rx + N) + N \cap (Rx + M) = M \cap ((Rx \cap T_1) + T_2) + N \cap (T_1 + (Rx \cap T_2))$. On the other hand $M \cap ((Rx \cap T_1) + T_2) \leq (Rx \cap T_1) \cap (M + T_2) + T_2 \cap ((Rx \cap T_1) + M) = Rx \cap M$. Similarly, $N \cap (T_1 + (Rx \cap T_2)) \leq Rx \cap N$. Hence $(Rx \cap (M + N) \leq Rx \cap M + Rx \cap Page | 3201$

N. Therefore, the claim $(Rx \cap (M + N) = Rx \cap M + Rx \cap N)$ is defensible. Since $Rx \cap M \ll M$ and $Rx \cap N \ll N$, so, one has $Rx \cap (M + N) \ll M + N$. But $Rx \cap (M + N)$ is semisimple. Hence *T* is principally ss-supplemented. \Box

A module *T* is named a principally semisimple if any cyclic submodule is a direct summand to *T*. See¹⁰. However, one can say that (semisimple module \Rightarrow principally semisimple module). Any principally semisimple module is principally *ss*lifting, and as a result principally ss-supplemented.

Lemma 8: Let *T* be a principally ss-supplemented distributive module. Then T/Rad(T) is a principally semisimple module.

Proof: Take $\bar{a} \in T/Rad(T)$. There exists $N^{\alpha} \leq T$, $T = Ra + N^{\alpha}$ besides $Ra \cap N^{\alpha} \ll N^{\alpha}$, so $Ra \cap N^{\alpha} \ll T$ and $Ra \cap N^{\alpha}$ is semisimple. The distributivity of *T* implies $R\bar{a} \cap (N^{\alpha} + Rad(T)) = (Ra \cap T) + Ra \cap Rad(T) = Rad(T)$. Since $Ra \cap N^{\alpha} \leq Rad(T)$. Thus

 $T/Rad(T) = [(Ra + Rad(T))/Rad(T)] + [(N^{\alpha} + Rad(T))/Rad(T)] =$

 $[R\bar{a}/Rad(T)] \oplus [(N^{\alpha} + Rad(T))/Rad(T)]$. Also, thus every principal submodule in T/Rad(T) is a direct summand. \Box

A module *T* is called refinable if for submodules U, V of *T* with T = U + V there is a direct summand U' of *T* with $U' \le U$ and T = U' + V (See for instance¹⁰).

Theorem 7: Let *T* be a projective module with Rad(T) is small in *T* and $Rad(T) \subseteq Soc(T)$. Consider following conditions:

(1) T is principally ss-supplemented.

(2) T/Rad(T) is principally semisimple.

Then (1) \Rightarrow (2). If *T* is refinable module then (2) \Rightarrow (1).

Proof: (1) \Rightarrow (2) Since *T* is a principally sssupplemented module, so T/Rad(T) is principally semisimple by Lemma 8.

(2) \Rightarrow (1) Let *Rt* be any cyclic submodule of *T*. Using (2) There exists $U \leq T$ with

 $T/Rad(T) = [(Rt + Rad(T))/Rad(T)] \oplus [U/Rad(T)].$

Then T = (Rt) + U and $(Rt + Rad(T)) \cap U = (Rt) \cap U + Rad(T) = Rad(T)$. Since T = (Rt) + U, being *T* refinable there exists a direct sumand *A* to *T* with $A \le U$ and $T = (Rt) + U = (Rt) + A = B \bigoplus A$. $(Rt) \cap U \ll T$ so it is small in *U* since *U* is summand. But, $(Rt) \cap U \subseteq Soc(T)$. This completes the proof. \Box

Principally ss-Lifting Modules

In this section, principally ss-lifting modules which generalize principally lifting modules are introduced. In 2006, Clark, Lomp, Vanaja and Wisbauer¹ introduced the concept of principal lifting modules. In 2007, the principally lifting modules were considered by Kamal and Yousef¹² as follows:

Definition 4: A module *T* is called principally lifting (or has (PD_1)) if for all $a \in T$, $T = N \bigoplus S$ with $N \leq Ra$ and $Ra \cap S \ll T$, (See¹).

Similar to $(22.7)^1$ the following definition is introduced.

Definition 5: A module *T* is called principally sslifting (or has $(ss-PD_1)$ for short) if for all $a \in T$, $T = N \bigoplus S$ with $N \le Ra$ and $Ra \cap S \subseteq Soc_s(T)$, where $Soc_s(T) = Soc(T) \cap Rad(T)$.

Definition 6: A nonzero module *T* is called a principally hollow (*P*-hollow) if every proper cyclic submodule is small in *T*. Observe that every *P*-hollow module satisfies the condition (ss- PD_1), (See for example^{1,12}).

Similar to Proposition 2.7 of¹², the following proposition is introduced.

Proposition 6: The condition $(ss-PD_1)$ is inherited by summands.

Proof: Let *T* have condition $(ss-PD_1)$ and *B* a direct sumand to *T*, if $k \in B$, now *T* has a decomposition $T = N \bigoplus S, N \le Rk$ and $Rk \cap S \ll T$. It follow that $B = N \bigoplus (B \cap S)$, and $Rk \cap (B \cap S) \le Rk \cap S \ll T$, so $Rk \cap (B \cap S) \ll B$ (due to *B* a summand of *T*). So, *B* has $(ss-PD_1)$. \Box

It is known that an indecomposable module is lifting if and only if it is a hollow module; the next Lemma gives an similarity to this fact.

Lemma 9: The following are equivalent for an indecomposable module *T*:

(1) T has (ss- PD_1).

(2) T is a P-hollow module.

Proof: Follows directly from the defining condition of $(ss-PD_1)$. \Box

Lemma 10: The following are equivalent for a module *T*.

- (1) T has (ss- PD_1).
- (2) Every cyclic submodule *C* in *T* can written by $C = N \bigoplus S$ with *N* is a direct summand in *T* and $S \ll T$.
- (3) For each $a \in T$, there is principal ideals *I* and *J* in *R* with $Ra = Ia \bigoplus Ja$, where *Ia* is a direct summand in *T* and $Ja \ll T$.

Proof: (1) \Rightarrow (2) It is obvious.

 $(2) \Rightarrow (1)$ Lease *C* be a cyclic submodul of *T*, now by $(2) C = N \bigoplus S$ with *N* is a sumand in *T* besides $S \ll T$. Write $T = N \bigoplus N'$, it follows that $C = N \bigoplus$ $C \cap N'$. Now take $\pi: N \bigoplus N' \to N'$ be a natural projection, one get $C \cap N' = \pi(C) = \pi(N \bigoplus S) =$ $\pi(S) \ll T$. So *T* has $(ss-PD_1)$.

(2)⇒(3) Obvious. \Box

Clearly, all ss-supplemented module and all sslifting module, and so any principally ss-lifting module is principally ss-supplemented. However, there is principally ss-supplemented (ss-lifting) but not ss-supplemented.

Results and Discussion

Some results are proved, such as if T_1 and T_2 are principally ss-supplemented modules with T =

Conclusion

In this paper, a principally ss-supplemented and principally ss-lifting modules was introduced and studied. Here, observed that if $T = T_1 \oplus T_2$ with T_1 and T_2 principally ss-supplemented modules and *T* is

Authors' Declaration

- Conflicts of Interest: None.

Lemma 11: Let *T* be an indecomposable module. Consider following conditions:

(1) T is principally ss-lifting.

(2) T is a principally hollow module.

(3) T is principally ss-supplemented.

Then (1) \Leftrightarrow (2) and (2) \Rightarrow (3).

Proof: (1) \Leftrightarrow (2) Using Lemma 9.

(2)⇒ (3) Let $a \in T$. Using (2) every cyclic submodule is hollow. Now T = Ra + T and $(Ra) \cap T \ll T$. □

Reminder that Lemma 11 (3) \Rightarrow (2) does not hold in general since there is an indecomposable principally supplemented but not principally hollow as in Example 15 of¹⁰.

Lemma 12: Let *T* be a module with $(ss-PD_1)$. Then every indecomposable cyclic submodule *C* of *T* is either small in *T* or a summand of *T*.

Proof: Similar to proof of Lemma 2.16 in¹². \Box

Proposition 7: Let *T* be a module over a local ring *R*. If *T* has $(ss-PD_1)$, then every cyclic submodule is either small in *T*, or a summand of *T*.

Proof: The proof follows from Lemma 12, and the fact that every cyclic module over a local ring is a local module. \Box

 $T_1 \oplus T_2$ and *T* is distributive, then *T* is principally ss-supplemented.

a duo, then T is principally ss-supplemented. Besides, if T is indecomposable, then T is principally ss-lifting if and only if T is a principally sssupplemented module.

- Ethical Clearance: The project was approved by the local ethical committee at University of Thi-Qar.

References

- Clark J, Lomp C, Vanaja N, Wisbauer R. Lifting Modules. supplements and Projectivity in module theory. Frontiers in Mathematics, Birkauser Verlag; 2006. <u>https://doi.org/10.1007/3-7643-7573-6</u>
- 2. Alwan AH. g- Small intersection graph of a module. Baghdad Sci J. 2024. https://doi.org/10.21123/bsj.2024.8967
- Hussain MQ, Dheyab AH, Yousif RA. Semihollowlifting modules and Projectivity. Baghdad Sci J 2022; 19(4): 811-815. http://dx.doi.org/10.21123/bsj.2022.19.4.0811
- Kaynar E, Calisici H, Türkmen E. ss-Supplemented modules. Commun Fac Sci Univ Ank Ser A1 Math Stat. 2020; 69 (1): 473-485. https://doi.org/10.31801/cfsuasmas.585727
- Zhou DX, Zhang XR. Small-essential submodules and morita duality, Southeast Asian Bull. 2011; 35(6): 1051-1062.
- 6. Soydan I, Türkmen E. Generalizations of sssupplemented modules. Carpathian Math Publ. 2021;

13(1): 119-126. <u>https://orcid.org/0000-0001-7032-</u> 6485

- Türkmen BN, Kılıç B. On cofinitely ss-supplemented modules. Algebra Discrete Math. 2022; 34(1): 141-151. <u>https://doi.org/10.12958/adm1668</u>
- 8. Eryilmaz F. ss-Lifting modules and rings. Miskolc Math. Notes. 2021; 22(2): 655-662. https://doi.org/10.18514/MMN.2021.3245
- 9. Kasch F. Modules and Rings. University of Stirling, Stirling, Scotland, Academic Press, London; 1982.
- 10. Acar U, Harmanci A. Principally Supplemented Modules. Albanian J Math. 2010; 4(3): 74-78.
- 11. Ozcan AC, Harmanci A, Smith PF. Duo Modules. Glasg Math J. 2006; 48(3): 533-545. https://doi.org/10.1017/S0017089506003260
- 12. Kamal MA, Yousef A. On Principally Lifting Modules. IEJA. 2007; 2(2): 127-137. <u>https://dergipark.org.tr/en/pub/ieja/issue/25209/26640</u> <u>4</u>

المقاسات التكميلية الرئيسية من النمط _ss

أحمد حسن علوان

قسم الرياضيات، كلية التربية للعلوم الصرفة، جامعة ذي قار، ذي قار، العراق.

الخلاصة

الكلمات المفتاحية: مقاس تكميلي رئيسي من نمط-أس أس، مقاس رفع رئيسي من نمط-أس أس، مقاس تكميلي من نمط-أس أس، مقاس رفع من نمط-أس أس، مقاس محلي بقوة.