

Page | 3289

2024, 21(01): 3289-3303

https://doi.org/10.21123/bsj.2024.2109

P-ISSN: 2078-8665 - E-ISSN: 2411-7986

Baghdad Science Journal

Parallel lightweight Block Cipher algorithm for Multicore CPUs

Hawraa J. Hamiza * , Ahmed Fanfakh

Computer Science Department, College of Science for Women, University of Babylon, Babil, Iraq.

*Corresponding Author.

Received 01/05/2023, Revised 92/12/9192, Accepted 21/12/9192, Published Online First 91/12/9192,

Published 01/01/2024

 © 2022 The Author(s). Published by College of Science for Women, University of Baghdad.

This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License,

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly

cited.

Introduction

With the development of new security attacks that

take advantage of the attackers' increased processing

capacity, data security is experiencing growing

difficulties. Attacks on data security might be active

or passive. While active attacks may substantially

jeopardize data availability, authenticity, and

integrity, passive attacks have the potential to

seriously threaten data secrecy. While passive

attackers just intercept the conveyed data, active

attackers may add, delete, or change the substance of

the data. Although passive attacks are more difficult

to identify, they should be taken into consideration to

Abstract

Data protection has become one of the top issues despite major advancements in communications and

technology. For web-based technology to send data quickly and safely, the data must be encrypted.

Encryption is the process of turning plain text into ciphred text, which bad people can't read or change.

Both the cryptanalysis and decryption procedures required a large amount of time in order to maintain

the requisite level of security. However, a number of researchers developed the cryptography approach

in parallel in order to reduce the amount of time needed for the encryption and decryption procedures

to be finished. The investigation of the issue has produced a number of viable solutions. Researchers

were able to attain improved performance levels on the encryption technique by using parallelism to

increase the throughput and boost the efficiency of encryption methods. To achieve high performance,

lightweight speck cipher algorithms have been presented and implemented on CPU platforms with

various improvements. Thus, in this work, a lightweight cipher scheme is proposed which only employs

one round of block cipher technique that is applied in parallel over a multicore processor. The proposed

message encryption algorithm uses two subblocks of 128 bits of plain message and substitution box and

splitmix64 PRNG to encrypt the plain message and obtain two encrypted subblocks, making it a fast

technique to encrypt and decrypt blocks of messages. In comparison to the existing method. According

to the performance findings, it is able to reach a high data throughput in comparison to some lightweight

methods that already exist, with a throughput that is higher than 25 Gigabits per second on an Intel Core

i7 central processing unit. The proposed encryption method outperforms the parallel speck method by

an average of 14.10 times faster when executed over a multicore CPU. The average speedup compared

to the sequential version of the proposed algorithm and its parallel implementation is 4.70. Also, the

proposed encryption method offers a substantial amount of randomness and passes PractRand's

statistical tests. Thus, the suggested method is a strong contender for high-security implementation on

multicore processors.

Keywords: Cryptography, Lightweight, Multicore CPU, One round cipher, Parallel Computing.

https://doi.org/10.21123/bsj.2024.9052
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0009-0003-9116-0818
mailto:hawraa.hamiza.gsci106@student.uobabylon.edu.iq
https://orcid.org/0000-0002-6177-0012
mailto:ahmed.fanfakh@uobabylon.edu.iq

Page | 3290

2024, 21(01): 3289-3303

https://doi.org/10.21123/bsj.2024.2109

P-ISSN: 2078-8665 - E-ISSN: 2411-7986

Baghdad Science Journal

protect data confidentiality 1. Cryptography may help

you protect your data from hackers more efficiently.

Cryptography is the practice and study of techniques

for secure communication in the presence of third

parties, known as adversaries. It involves

transforming information (referred to as plaintext)

into an unreadable form (cipher text) to prevent

unauthorized access and then transforming the cipher

text back into the original form (plaintext) for

authorized access 2. Cryptography is focused on the

safety and confidentiality of data. It consists of a

group of algorithms that are aimed at protecting

information and data 3.

Cryptology, whose primary goal is to safeguard data

from malicious users, can be divided into two main

branches: asymmetric cryptography, in which

communicating parties do not need to share a

common secret beforehand (such as RSA).

Asymmetric cryptography, commonly referred to as

"public-key cryptography," is a technique for

encrypting and decrypting data using two separate

keys: a public key that is available to everyone and a

private key that is typically kept private and is known

only to the owner, while symmetric cryptography,

where a secret must be shared beforehand (such as

AES), has significantly better performance and

smaller implementations 4,5.

Symmetric cryptography, also known as shared-key

cryptography, is a method of encryption and

decryption where the same secret key is used to both

encrypt and decrypt a message. It may be divided

into block ciphers and stream ciphers, respectively.

Whereas block ciphers need many keys, most

recently 64 bits, and only encode as a single entity,

stream ciphers encrypt one bit of text at a time 6.

Currently, there are more than 4.95 billion internet

users, and the development of information security

has profoundly changed our way of life due to the

accessibility and availability of information. The rise

of internet banking and electronic commercial

exchanges has made it possible for operations like

banking and trading to be done predominantly

online, making it essential to protect all data and

resources from numerous security risks. These

security functions, which can all be secured using

widely accepted cryptographic algorithms, include

source authentication, data integrity, and information

confidentiality7. Moreover, Lightweight ciphers are

relevant in wireless communication, as evidence

such as the works in 8-10.

Using the principles of parallel computing, a large

message may be broken down into more manageable

chunks that can then be distributed among several

processors. Several researchers implemented the

cryptography method in parallel. The research that

has been done on the problem has uncovered several

potential answers. Researchers used parallelism to

improve the throughput of their algorithms, which

allowed them to achieve higher performance levels

on the encryption algorithm. On the other side,

researchers use data-level parallelism to speed up

their encryption methods. To meet this need, many

parallel platforms were used. As a result, this work

makes the following contribution:

1: One round encryption algorithm designed to

explore the features of multicore CPUs is proposed.

2: The proposed parallel lightweight encryption

algorithm improves the overall performance of the

proposed method.

3: The proposed parallel encryption algorithm is

compared to the parallel speck lightweight

technique.

The remainder of the paper is structured as follows:

The lightweight weight-speck algorithm is described

in Section 3. Section 4 then goes through the

background information required for CPU multicore

and compares the proposed encryption technique to

similar lightweight ciphers. Then, in Section 5, a

thorough description of the suggested one-round

block cipher method for CPU multicore

implementations is given. In Section 6, the suggested

block cipher scheme's resilience is discussed. In

order to confirm the effectiveness of the suggested

solutions in terms of throughput, speed-up, and

execution time, many performance tests were carried

out and are discussed in Section 7. In Section 8, a

conclusion and future work are offered.

Related works

In this section, the provide several relevant studies

that deal with a few encryption techniques used on

various parallel systems in an effort to enhance

throughput. A cryptographic system's throughput is

the number of bits or bytes it can process and encrypt

in a certain amount of time, usually measured in

https://doi.org/10.21123/bsj.2024.9052

Page | 3291

2024, 21(01): 3289-3303

https://doi.org/10.21123/bsj.2024.2109

P-ISSN: 2078-8665 - E-ISSN: 2411-7986

Baghdad Science Journal

seconds or milliseconds. It's essential to keep this in

mind while developing cryptographic systems,

especially for uses involving the safe processing and

transmission of huge volumes of data.

The authors in 11 proposed Speck-R a lightweight

symmetric key cryptographic scheme designed

specifically for IoT applications. It is designed to

provide confidentiality and integrity for data

transmitted over wireless networks, while

minimizing the computational overhead required for

encryption and decryption. One of the most popular

lightweight cryptography methods is speck. It used

64-bit blocks, CTR mode, and the 96-bit Speck

version. The study's primary success is the decrease

in the number of Speck rounds from 26 to 7, while

still retaining a good degree of security. By reducing

the number of repeats, execution times will be

decreased.

Researchers in 12 have concentrated on hardware and

lightweight cryptography. Other authors have

implemented AES, SIMON, SPECK, PRESENT,

LED, and TWINE, which are six block ciphers that

can be implemented both in software and hardware

employing the proprietary configurable

microcontroller. Other authors have also focused on

lightweight cryptography. Because they are both

implemented on comparable Xilinx Kintex-7

FPGAs, it is possible to make direct comparisons

between these architectures in terms of frequency,

position, throughput-to-area (TP/A), voltage, and

expense.

The authors in 13 presented AES (Advanced

Encryption Standard), a symmetric key encryption

algorithm that is widely used to secure data in

wireless sensor networks. The S-box in AES is a non-

linear substitution table used in the encryption

process. The S-box splitting technique involves

dividing the S-box into multiple sub-tables and using

these sub-tables in different rounds of the encryption

process. They have compared their proposed

enhanced AES (EAES)

algorithm to other encryption techniques used in

sensor networks, such as RC5, Blowfish, and

Skipjack. When dealing with various base process

lengths, key lengths, and rounding, the EAES

algorithm performs better. The suggested enhanced

EAES algorithm improves the throughput and

longevity of the WSN as a consequence.

Researchers in 14 presented FPGAs as a type of

reconfigurable digital circuit that can be used to

implement various encryption algorithms, including

the Advanced Encryption Standard (AES). Pipelined

AES encryption systems are designed to process

multiple blocks of data in parallel, while parallel

AES encryption systems are designed to process

different parts of a single block of data in parallel.

Another study, demonstrated in 15, suggested

conducting the performance evaluation of the

blowfish technique in an alternate setting. The MPI

industry standard was used in the development of the

technique, and the investigations were performed on

the IMAN1 computer. The results of the experiments

show that the blowfish system's run time decreases

and its performance increases in direct proportion to

the number of processors in use. When using 32

processors, it achieves the best performance for a

plaintext length of 160 MB. The greatest results can

be achieved with 2, 4, or 8 CPUs, and the

simultaneous effectiveness can reach 99%, 98%, or

66%, depending on the number of processors used

(16, 32, 64, or 128).

Researcher 16 has suggested a compact stream cipher

technique built on a dynamic key strategy that

combines two distinct pseudo-random number

generators (PRNGs). Comparing the method to

existing encryption standards like AES, it offers a

high degree of safety with less delay and the required

support. The suggested encryption is fairly strong,

with capacities of more than 115 gigabytes on a Titan

X GPU and significantly more than 372 gigabytes on

a Tesla V100 GPU. The big crushing of TestU01,

frequency, and key responsiveness make it a strong

stream cipher alternative due to its high amount of

unpredictability.

The authors in 17 presented a proposed encryption

called "ORSCA" that only required one round and

made use of the dynamic resource approach. The

recommended cryptosystem was designed with the

characteristics of the GPU in mind. For large-scale

applications, this work featured a key stream with

just one iteration. It can process more data than

previous methods, according to productivity

findings, with a capability of around 5 terabits per

second on a Tesla A100 GPU. The provided

cryptography outperforms the most powerful GPU

implementations of AES, Simons, and Speck,

making it more appropriate for use in practical

applications.

https://doi.org/10.21123/bsj.2024.9052

Page | 3292

2024, 21(01): 3289-3303

https://doi.org/10.21123/bsj.2024.2109

P-ISSN: 2078-8665 - E-ISSN: 2411-7986

Baghdad Science Journal

The authors in 18, 19 introduced a one-round

encryption technique for the authentication of

messages that may be carried out in parallel across a

multicore processor and GPUs.

Overall, while the mentioned studies make

significant contributions to the field of encryption in

parallel systems, additional research and analysis are

needed to address the highlighted research gaps and

provide a more comprehensive understanding of the

performance, security, and practical applicability of

these encryption techniques. However, this work

advances the field of data encryption by presenting a

strong contender for high-security one-round

encryption implemented on multicore processors,

offering improved throughput, efficiency, and

statistical robustness compared to existing methods.

Table 1ز Comparison between parallel encryption techniques

Ref Algorithm Key Size Block Size #Rounds parallel architecture

11 Speck-R 96 bits 64 bits 26 -

11,12 Speck 128 bits 128 bits 32 -

12 Simon 128 bits 128 bits 64 -

13 EAES 128,192, 256

bits

128 bits 10,12,

14

Multi core

processors

14 AES 128,192, 256

bits

128 bits 10,12,

14

Multi processors

platform,

Pipeline

15 Blowfish 32-448 bits 64 bits 16,18 Multi core processors

16 ESSENCE 512 bits 128 bits One GPU

17 ORSCA 512 bits 256 bits One GPU

18 MEAA 512 bits 256 bits One GPU

19 MAA 512 bits 64 bits One Multi core CPU

Proposed One round 512 bits 128 bits One Multi core CPU

Lightweight Cryptography Algorithms:

Lightweight cryptography is a type of symmetric

encryption with minimal computational complexity

and/or low memory requirements. It is now going

through a process of compiling international

standards and recommendations with the aim of

increasing the application of cryptography on

restricted devices. The use of lightweight

cryptography should be simple on a range of

hardware and software systems. Such general-

purpose, lightweight designs are uncommon, and

creating cryptography of this kind is quite difficult.

The US National Security Agency (NSA) has

unveiled the general-purpose lightweight block

cipher family Speck, each of which offers great

performance in both hardware and software.

Additionally, lightweight cryptography offers the

right level of protection. Trade-offs in terms of

security are not always made by lightweight

encryption. New, simple cryptographic primitives

are presented.

Speck Cryptography:

Speck is a lightweight block cipher family that was

publicly revealed in June 2013 by the NSA (National

Security Agency). Speck has undergone

performance improvements for software

applications. The add-rotate-xor (ARX) cipher is

what the Speck cipher uses, as shown in Fig. 1. Speck

is a family of block ciphers with different key sizes

and block sizes. The most common versions of Speck

are Speck32/64, Speck48/72, and Speck64/128. The

numbers in the names refer to the block size and key

size of the cipher. The Speck cipher is represented as

Speck2n/wn, where it has a 2n-bit block and a wn-bit

key. The cipher's round functions involve combining

various n-bit word operations 19:

https://doi.org/10.21123/bsj.2024.9052

Page | 3293

2024, 21(01): 3289-3303

https://doi.org/10.21123/bsj.2024.2109

P-ISSN: 2078-8665 - E-ISSN: 2411-7986

Baghdad Science Journal

● Bitwise XOR

● Modular Addition

● Left and right circular shift

Figure 1. Speck round function.

Background: message encryption and parallel

computing

Encryption is a part of our everyday lives, although

it is mostly invisible. It is used to secure network

connections, make e-commerce and e-banking

feasible, prevent eavesdropping on our conversations

through mobile phone calls and the Internet, and

generally conceal information from prying eyes.

New encryption techniques have been developed

throughout civilization as previous ones have been

cracked. On the other hand, parallel computing

describes the use of numerous processors or

computers to carry out a single calculation or

activity. This may speed up the calculation and

considerably decrease the amount of time needed to

finish it. The suggested message encryption

technique can be executed more quickly than

previous lightweight ciphers because of the

utilization of parallel computing20, 21. A multi-core

processor is an integrated circuit having two or more

multifunctional processing cores linked to it in order

to boost performance while also reducing power

consumption, as seen in Fig. 2.

Figure 2. Multi-core architecture

Table 2. Notations table.
Symbol Definition

K

IV

CTR

DK

K1 and K2

S1 and S2

KSeed

N

KSA

M

C

BLi

CBLi

 Shared secret key

 Initial vector that changes per input

message

 Counter mode

 Key dynamically modified for each

input message

Substitution sub-keys

 Tables of substitutions generated with

the use of kS1 and kS2, respectively.

 The seed sub-key, and it is used in the

process of producing N seeds.

 Size of initial seeds

 RC4's Key Establishment Algorithm.

 Original message

 Message that is encrypted

 ith original plaintext block

 ith encrypted plaintext block

Proposed One Round Cryptography Algorithm

This section presents the proposed one-round cipher

algorithm, designed to outperform the multi-round

Speck cipher. The algorithm has been implemented

in parallel to enhance encryption performance. To

assess its effectiveness, the proposed cipher

underwent randomness tests, including the

PractRand test, and its performance was compared to

well-known lightweight encryption algorithms such

as Speck. The proposed system consists of three

main steps: mixing, PNRG (Pseudo-Random

Number Generator), and substitution. Each step has

been meticulously designed to ensure both the

security and efficiency of the cipher. Fig. 3.

illustrates the general encryption process,

highlighting the various steps involved.

Additionally, Table 2 provides a list of notations

https://doi.org/10.21123/bsj.2024.9052

Page | 3294

2024, 21(01): 3289-3303

https://doi.org/10.21123/bsj.2024.2109

P-ISSN: 2078-8665 - E-ISSN: 2411-7986

Baghdad Science Journal

used throughout this paper. Fig. 3 showcases the

scheme of the proposed one-round block cipher.

Algorithm 1 is designed to perform one-round

encryption on an input message divided into two 64-

bit blocks, represented by the variable 'at'. The input

undergoes bitwise XOR operations with the key,

block counter CTR, and initial vector using the

PRNG xorshift64. The resulting value is stored in

another variable. Temporary variables R1 and R2 are

then calculated by performing XOR operations

between the initial variables (i) and the dynamic key,

followed by applying the splitmix64 function to R1.

R2 undergoes byte substitution using Sbox1, which

replaces each byte with a new value based on a

lookup table. Subsequently, XOR operations are

performed between R1 and R2, and the result is

stored in R1. Finally, the encrypted values are stored

in the output array 'out', and the index variable 'k' is

updated.

Figure 3. Scheme of the proposed one-round

block cipher.

Algorithm 1: Proposed Encryption algorithm

Input:

 in: plain block array of size 64-bit

 Sbox1: arrays of size 256 bytes representing

substitution boxes

 DK: array of size 512 bytes

 v: array of initial vector of size 64-bit

 start: Starting index for the encryption loop

 end: Ending index for the encryption loop

Output:

 out: encrypted block array of size 64-bit

Start

 1: Set k to 0

 2: For i = start to end (increment by 2):

 3: R1 = ((j) Ꚛ (((ulong*) DK) [i&63])) Ꚛ v[j]

 4: R2 = ((j+1) Ꚛ (((ulong*) DK) [i&63])) Ꚛ v[j+1]

 5: R1 = Splitmix64 (R1)

 6: R2 = Substitution (R2, Sbox)

 7: R1 = R1 ^ R2

 8: out [k] = R2 ^ plain [j]

 9: out [k+1] = R1 ^ plain [j+1]

 10: Increasing k by 2

 11: End For

 12: End

Dynamic key generation method:

The suggested solution is founded on the dynamic

key-dependent methodology, in which a dynamic

key DK is utilized in order to generate a collection of

dynamic cryptographic primitives. (Substitution

tables in addition to a set of N seeds, where each seed

can be a word of 32 or 64 bits.) This dynamic key Dk

is acquired by performing an XOR operation

between an initial vector and CTR (counter mode),

which should be refreshed and distinctive for each

communication. This process is carried out in the

manner depicted in Fig. 4, and it is outlined in the

equation as follows:

DK = (IV Ꚛ CTR) 1

This dynamic key DK is broken up into three sub-

keys, with each of the first two sub-keys (K1 and K2)

having a length of 128 bits, while the third sub-key

(Kseed) having a length of 256 bits 16.

https://doi.org/10.21123/bsj.2024.9052

Page | 3295

2024, 21(01): 3289-3303

https://doi.org/10.21123/bsj.2024.2109

P-ISSN: 2078-8665 - E-ISSN: 2411-7986

Baghdad Science Journal

Figure 4. Displays the proposed dynamic key

generation and construction cryptographic

primitives.

The following provides an explanation of these sub-

keys for your reference 17 :

1. K1 is the first substitution sub-key, and it

symbolizes the first 128 least significant bits of

DK. This is the case because K1 is the first

subkey. This sub-key is utilized in the creation of

the very first substitution table, which is denoted

by S1. In this stage, you are free to employ any

technique you choose to generate dynamic-key

dependent substitution tables. For instance, the

Key Setup Algorithm (KSA) of RC4 was

implemented in 16. Therefore, dynamic

substitution tables could be created. At this point,

we also make use of the KSA algorithm that is

used by RC4.

2. K2 is the second substitution sub-key, and it

symbolizes the second of the 128 least important

bits of DK. K2 comes after K1. Using the same

process that is used with K1, which is the KSA

for RC4, this sub-key is used to generate the

second substitution table, which is referred to as

S2.

3. KSeed serves as a representation for the first 256

most significant bits (MSB) of DK. This sub-key

is used as a hidden seed in conjunction with any

PRNG in order to generate a key stream with a

length of N words, where each word's length can

range between 32 and 64 bits. Because of this,

KSeed is where one can acquire N seeds. Each

process will choose one of these produced

samples, which will be generated in a manner

that is dynamically simulated to be random.

Splitmix64 PRNG:

SplitMix64 is a fast and highly robust 64-bit random

number generator. It is designed to generate random

numbers with high quality, uniform distribution and

low correlation, even in the presence of multiple

concurrent streams. Splitmix64 PRNG employs

logical (xor and rotation) and

arithmetic (addition and multiplication) operations.

The splitmixt64 algorithm's phases are shown in

Algorithm 2. Splitmix64 is not a secure PRNG, but

it was chosen since it is quick to develop and efficient

(low execution time). The proposed block cipher

uses huge key space and the use of dynamic

cryptographic primitives provides a high degree of

security 16,17.

The Proposed Parallel Encryption Method:

To provide clarity on the operational process of a

one-round cipher, Fig. 5 presents a graphical

illustration of the parallel implementation of the

proposed cipher. The plain messages are divided into

groups of blocks, with each block having a size of 64

bits. The block size, size, is computed by dividing the

message size by the number of parallel threads.

Subsequently, all sub-blocks have the same size, and

each one is sent to its respective thread. The

encryption algorithm is then applied to each thread,

generating a set of encrypted blocks. Moreover, all

encrypted blocks are gathered asynchronously.

Figure 5. The parallel encryption method.

The parallel proposed Encryption method is a

function that takes in several parameters as shown in

algorithm 3. In the following the description of the

algorithm parameters:

• IV: A pointer to the 64-bit initialization vector.

https://doi.org/10.21123/bsj.2024.9052

Page | 3296

2024, 21(01): 3289-3303

https://doi.org/10.21123/bsj.2024.2109

P-ISSN: 2078-8665 - E-ISSN: 2411-7986

Baghdad Science Journal

• Sbox: A pointer to an array of 256 bytes that

represents an S-box substitution table.

• ThreadId: the index of the parallel thread

dedicated to each block of data.

• Blocksize is the size of block data that each

parallel thread computes.

• plain is an array of 64-bit elements representing

the plain message.

• encrypt: A subarray of a 64-bit output buffer to

store the encrypted cipher text.

• crypted_Block0, crypted_Block1: are the final

output for the encrypted blocks per iteration.

Algorithm 3: Parallel One-Round Cipher Encryption

 Inputs: initial vector (V), Sbox, ThreadId, Blocksize,

DK, plain, cipher

 output: crypted_Block0, crypted_Block1

 1: Start = ThreadId*blocksize;

 2: End = start+(blocksize-1)

 3: For j = start to end (increment by 2):

 4: Compute R1 = ((j) Ꚛ (((ulong*) DK) [i&63]))

Ꚛ v[j]

 5: Compute R2 = ((j+1) Ꚛ (((ulong*) DK)

[i&63])) Ꚛ v[j+1]

 6: R1 Splitmix64 (R1)

 7: R2 Substitution (R2, Sbox)

 8: R1 R1 ^ R2

 9: cipher [k] = R2 ^ plain [j]

 10: cipher [k+1] = R1 ^ plain [j+1]

 11: Increasing k by 2

 12: End For

 13: Call MPI_Igather (cipher, bl_size, MPI_INT64_T,

allcipher, blocksize,

 MPI_INT64_T,0, MPI_COMM_WORLD)

Presented here is algorithm 3, which is a block cipher

encryption algorithm that uses a parallel one-round

encryption technique. An starting vector (V), a Sbox

substitution table, a ThreadId, a Blocksize, a DK

(derived key), plaintext (plain), and an encryption

function are all inputs that the algorithm receives.

The method then generates two encrypted blocks

(crypted_Block0 and crypted_Block1) as output.

The method performs its operations on each block of

the plain message in parallel. It does this by dividing

the plain message into sub-blocks of size 'blocksize'

and assigning each sub-block to a distinct thread that

is identified by 'ThreadId'. Each thread on the

assigned sub-block performs parallel processing.

Before processing each sub-block, the method first

computes R1 and R2 based on the starting vector V,

the derived key DK, and the sub-block index j. This

procedure is repeated until all of the sub-blocks have

been processed. In the subsequent step, the

operations Splitmix64 and Substitution are applied to

R1 and R2, respectively. After the R1 and R2 values

have been generated, they are joined via the

employment of an XOR operation. The resultant

values are then utilized to encrypt two plain values (j

and j+1) through the utilization of the encryption

function that has been given. The 'encrypt' array is

being used to hold the values of the cipher message

that was generated. Repeating this operation for each

and every plaintext sub-block that is allocated to the

current thread is the next step.

The method utilizes MPI_Igather to collect the

resultant cipher message values from all threads and

stores them in the 'allcipher' array when it has

finished processing all of the sub-blocks that have

been allocated to the current thread before moving on

to the next thread. The cipher message values that

have been obtained are of the type MPI_INT64_T

and have a size of 'blocksize'. These values come

from all of the threads that are used in the buffer,

which is referred to as allcipher. The use of

asynchronous gathering helps to cut down on the

amount of time spent communicating. For the most

part, the technique that has been shown is a parallel

block cipher encryption algorithm. This means that it

acts on plain messages in parallel, which makes it

appropriate for use in systems that require the

encryption of huge amounts of data in an efficient

and scalable manner.

Results and Discussion

Security Analysis

A suggested encryption scheme is tested for safety

and security using well-known attacks such as

statistical, linear, nonlinear, or brute-force assaults
16,17. Extensive tests are carried out in this part to

demonstrate the resilience of the suggested cipher

system. While the suggested encryption system may

be used for any data type, only the results for

multimedia content are presented.

Statistical analysis tests:

A cipher must possess two crucial criteria, namely

randomness and uniformity, in order to be regarded

as safe against statistical assaults 16. In order to

properly perform text cryptanalysis, methods

https://doi.org/10.21123/bsj.2024.9052

Page | 3297

2024, 21(01): 3289-3303

https://doi.org/10.21123/bsj.2024.2109

P-ISSN: 2078-8665 - E-ISSN: 2411-7986

Baghdad Science Journal

including probability density function (PDF)

analysis, entropy analysis, and correlation between

the original and encrypted texts should be utilized.

Further to doing PractRand tests. These criteria are

detailed in the subsections that follow in order to

verify the cryptographic security of newly developed

pseudo-random bit generators.

Histogram analysis

This encryption satisfies the uniformity condition

only if the encrypted image has a histogram with a

uniform distribution. This indicates that the

frequency with which each symbol appears is

proportional to the total number of symbols in the

message. In other words, must be close to message-

size / number of symbols. Figs. 6-c and 6-d is a

histogram comparing the original plain-images of

size 512 x 512 with their cipher-image counterparts.

The histogram of the encrypted images is

demonstrated to be quite near to a

uniform distribution (about 1024).

Uniformity analysis:

The probability density function (PDF) of the

encrypted text is often examined when statistical

analysis tests are run on it. The likelihood of an

individual value appearing in the cipher text is

described in the PDF. One common PDF analysis

test is to calculate the frequency distribution of each

symbol in the cipher text. This can be done by

counting the number of times each letter appears in

the text and dividing by the total number of letters in

the text. Figs. 6-e and 6-f displays the original PDF

and the accompanying encrypted messages. With a

value of around 0.039 (1/256 = 3.9 × 103) for all

cipher text symbols, the PDFs of the encrypted

messages can be thought of as being close to the

uniform distribution.

(a)

(b)

(c)

(e)

(d)

https://doi.org/10.21123/bsj.2024.9052

Page | 3298

2024, 21(01): 3289-3303

https://doi.org/10.21123/bsj.2024.2109

P-ISSN: 2078-8665 - E-ISSN: 2411-7986

Baghdad Science Journal

(f)

Figure 6. (a) and (b) show the recurrence of the

original and cipher message, respectively. (c) and

(d) are the histograms of the original and

encrypted messages. The PDFs of the original and

cipher message are presented in (e) and (f),

respectively.

Entropy Analysis:

Entropy analysis is a popular statistical analysis test

used to assess the randomness or unpredictability of

cipher text. Entropy analysis's fundamental goal is to

gauge the degree of uncertainty or information

present in a transmission. The message's

informational entropy M is a metric that defines the

degree of a random variable's uncertainty as follows:

H(m) = -Σ p(Mi) × log2 (1/p(Mi)) 2

Where H is the entropy, p(Mi) is the probability of

the ith symbol occurring in the message, and log2 is

the logarithm base 2. The binary secret data should

have an entropy value of 1 or close to it for optimum

encryption. Fig. 7b shows the distribution of the

entropy values obtained from testing encrypted text

collected at the byte level. Almost exactly at the

theoretical maximum (log2 (Tb/8) = 5 for Tb = 256),

the entropy values have a normal distribution with a

mean of 4.97 and a standard deviation of 0.0362. The

uniformity of the distribution of the entropy values

in Fig. 7b indicates that the encrypted message

follows the same pattern. As a result, the suggested

encryption system is sufficiently safe from any

entropy attack.

(a)

(b)

Figure 7. Analysis of the entropy of (a) the plain

message and (b) the generated cipher message at

the sub-matrix level of size 16*16 in comparison

to 1,000 random secret keys.

Correlation coefficient (CC):

The correlation coefficient (CC) is a statistical

measure that quantifies the strength of the linear

relationship between two variables. Its significance

demonstrates the differences between them. the plain

and encrypted messages. If the correlation

coefficient is close to 1, it suggests a strong

correlation between the cipher message and the

expected plain message frequencies, which in turn

suggests that the encryption method may be

vulnerable to frequency analysis attacks. If the

correlation coefficient is close to 0, it suggests no

correlation between the cipher and the expected plain

message frequencies, which indicates a stronger

encryption method. The following equation is used

to compute the correlation coefficient corr(x, y) 17 :

Corr(x, y) =
𝐂𝐨𝐯(𝐱,𝐲)

√𝐄(𝐱) × 𝐄(𝐲)

where:

Cov(x, y) =
𝟏

𝐍
 × ∑ (𝐱𝐢 − 𝐂(𝐱)) (𝐲𝐢 − 𝐂(𝐲))

𝒏

𝒌=𝟏
 3

Cx =
𝟏

𝐍
 × ∑ 𝐱𝐢 𝒏

𝒌=𝟏

Ex =
𝟏

𝐍
 × ∑ (𝐱𝐢 − 𝐂(𝐱))𝟐𝒏

𝒌=𝟏

https://doi.org/10.21123/bsj.2024.9052

Page | 3299

2024, 21(01): 3289-3303

https://doi.org/10.21123/bsj.2024.2109

P-ISSN: 2078-8665 - E-ISSN: 2411-7986

Baghdad Science Journal

Figure 8. PDF of the correlation coefficients

between plain and cipher messages for a group of

1024 bytes.

In Fig. 8, the findings of the correlation test between

the original and encrypted messages are shown for

one random key per iteration and a total of 1,000

random keys. The findings unmistakably

demonstrate that the correlation coefficient is very

low, almost very close to zero, which validates the

randomness and independence of the created cipher

text.

Table 3. The comparison of the security results
Security

Measure

Average results

Proposed cipher Speck cipher

Histogram 748.98 748.92

PDF 0.003942 0.003921

Entropy 4.9712 4.9749

Correlation

coefficient

0.000696 0.00496

Table 3 shows the comparison of the security results

between the proposed and speck ciphers. It indicates

that both ciphers are very close in terms of security

level.

Statistical tests with PRACTRAND:

PractRand is a statistical testing suite designed to test

the randomness of pseudorandom number generators

(PRNGs)22. The test suite includes various statistical

tests that analyze the distribution, frequency, and

correlation of random numbers generated by the

PRNG. The purpose of this tool is to identify minor

faults or biases in random number generators, which

may not be obvious through the use of

straightforward statistical tests. As was said earlier,

the proposed block cipher was put through its paces

by utilizing 64 seeds and Practrand, and it was able

to pass each and every test with flying colors.

PractRand will analyze the created sequence and

produce a report indicating whether or not the

sequence was successful in passing the tests. In order

to analyze the cipher message that was generated, the

most difficult statistical tests, known as PractRand,

were utilized. The results of this test demonstrate that

the key stream that was generated satisfies the

essential standards for randomization and

uniformity.

Performance Analysis

In this part, a comparison is made between the

recommended encryption technique and several

lightweight ways of encrypting data on CPU-based

devices. The comparison is carried out in parallel,

utilizing the suggested encryption method. A Linux

operating system and the parallel message passing

(MPI) platform were utilized in the process of

carrying out this investigation. An experiment with

an Intel multicore i7-7700HQ processor was used to

test how well the recently suggested encryption

method works in a parallel computing setting. A

comparison of the parallelized lightweight Speck

cipher method on two, four, six, and eight threads, as

well as on a variety of message sizes—four, eight,

sixteen, thirty-two, sixty-four, and one hundred and

twenty-six megabytes—was the primary emphasis of

the evaluation. This section presents an analysis of

the results based on parallel throughput, encryption

time, and speedup metrics for both the Speck and

proposed ciphers. As a concluding note, Table 4

displays the average of the comparison results for

execution time and throughput across all message

sizes.

Throughput evaluation:

The throughput metric is the ratio between the

message size to the execution time of the

encryption/decryption process. The presented results

in Fig. 9 show that the proposed encryption

technique exhibits significantly higher throughput

compared to the modern speck cipher algorithm

when executed on a multicore processor. The actual

transmission rates achieved are subject to variability

based on the quantity of data subjected to encryption

and the computational ability of the CPU. The

obtained results demonstrate that the suggested

algorithm for the one-round cipher offers superior

performance in comparison to stream encryption

algorithms utilized for a range of message sizes.

https://doi.org/10.21123/bsj.2024.9052

Page | 3300

2024, 21(01): 3289-3303

https://doi.org/10.21123/bsj.2024.2109

P-ISSN: 2078-8665 - E-ISSN: 2411-7986

Baghdad Science Journal

Figure 9. Shows the throughput results of the

proposed encryption in comparison to speck

ciphers.

Execution time evaluation:

Fig 10 shows the results of the execution time to

encrypt or decrypt a message of different sizes

executed over different numbers of parallel threads.

The chose seven different sizes of data, from 4

megabytes to 256 megabytes. According to the

figure, the can see that the encryption time goes

down as the number of threads goes up. This can be

seen clearly when executing over more parallel

threads. However, based on the collected results, the

proposed consecutive algorithm for the one-round

cipher had the lowest processing time when

compared to the Speck algorithm for different

message sizes.

Figure 10. The execution time comparison results

Speedup evaluation

In parallel computing, the speedup factor is the ratio

of the execution time of a sequential application

divided by the execution time of its parallel

implementation. Moreover, it can indicate any

acceleration between two different speeds 18. In Figs.

11 a and b, it is demonstrated that, on average, the

proposed

encryption algorithm is significantly faster than the

parallel implementations of the Speck cipher.

Specifically, in Fig. 11 a, the proposed algorithm is

14.10 times faster than the parallel implementation

of Speck. These findings indicate that the proposed

algorithm may be a more efficient option for

encryption compared to existing parallel

implementations of other popular lightweight

ciphers. On the other hand, the parallel execution of

the proposed one-round cipher is compared to its

sequential version in Fig. 11 b. The latter shows that,

on average, it is 4.27 times faster than a sequential

implementation. Indeed, the speedup ratio is limited

to the communication and computation ratios. In

other words, the proposed parallel cipher is limited

to the number of communications in the parallel

system.

(a)

 (b)

Figure 11. The speedup ratio of the parallel

implementation of the Speck and proposed cipher

and, (b) the speedup ratio of the sequential and

parallel proposed methods.

https://doi.org/10.21123/bsj.2024.9052

Page | 3301

2024, 21(01): 3289-3303

https://doi.org/10.21123/bsj.2024.2109

P-ISSN: 2078-8665 - E-ISSN: 2411-7986

Baghdad Science Journal

Table 4. The comparison results
#threads Average overall message sizes

Execution time (s) Throughput Gbits/s

Proposed Speck Proposed Speck

2 0.098 2.088 11.062 1.069

4 0.18 1.22 19.69 1.95

6 0.13 1.60 20. 31 1.94

8 0.087 1.073 25.69 2.44

Conclusion

In conclusion, this work proposes an efficient,

optimized one-round cipher scheme. It is designed to

be specifically fulfilled on parallel platforms.

However, this study provides a ground-breaking

method for concurrent message encryption that

makes use of a new lightweight cipher. Our

methodology entails segmenting the plain message

into two sub blocks of 128 bits, each of 64 bits, and

subsequently executing encryption operations within

a single round. Empirical evaluations show that our

suggested method outperforms competing

approaches, such as the Speck method, which

demands numerous rounds and, in contrast to our

method, shows reduced speed and performance. The

suggested encryption method, when executed on a

multicore CPU, is 14.10 times faster on average than

the parallel speck approach, making it more suitable

for real-time applications. When implemented in

parallel, the suggested approach outperforms its

sequential version by a factor of 4.27. Additionally,

the recommended encryption method offers a high

amount of randomness and has passed the

demanding PractRand randomness test. This

accomplishment highlights the suggested approach's

dependability and robustness. The use of the

suggested techniques on GPUs with many cores

offers promise as a future research direction for

additional performance improvement and reaching

faster processing rates.

Acknowledgment

The researchers would like to thank the University of

Babylon - College of Science for Women for

supporting this work.

Authors’ Declaration

- Conflicts of Interest: None.

- We hereby confirm that all the Figures and Tables

in the manuscript are ours. Furthermore, any

Figures and images, that are not ours, have been

included with the necessary permission for re-

publication, which is attached to the manuscript.

- Ethical Clearance: The project was approved by

the local ethical committee at University of

Babylon.

Authors’ Contribution Statement

In the research study titled "Parallel lightweight

Block Cipher Algorithm for Multicore CPUs," the

contributions of the authors are as follows. H.J

played a significant role in the conceptualization and

methodology of the algorithm. A.F, the

corresponding author, contributed to the

methodology, software implementation, validation,

writing, and project administration. Together, these

authors collaborated to develop and implement the

Parallel lightweight Block Cipher Algorithm for

Multicore CPUs.

https://doi.org/10.21123/bsj.2024.9052

Page | 3302

2024, 21(01): 3289-3303

https://doi.org/10.21123/bsj.2024.2109

P-ISSN: 2078-8665 - E-ISSN: 2411-7986

Baghdad Science Journal

References

1. Logunleko KB, Adeniji OD, Logunleko A. A

Comparative Study of Symmetric Cryptography

Mechanism on DES , AES and EB64 for Information

Security. Int J Sci Res. Comput Sci Eng. 2020; 8(1):

45-51.

2. Hemamalini V, Zayaraz G, Susmitha V, Gayathri M,

Dhanam M. A Survey on Elementary , Symmetric and

Asymmetric Key Cryptographic Techniques. Int J

Adv Comput Sci Appl. 2016; 5(1): 11-26.

3. Asaad R, Abdulrahman S, Hani A. Advanced

Encryption Standard Enhancement with Output

Feedback Block Mode Operation. Acad J Nawroz

Univ. 2017; 6(3): 1-10.

https://dx.doi.org/10.25007/ajnu.v6n3a70

4. ABood OG, Guirguis SK. A Survey on Cryptography

Algorithms. Int J Sci Res Publ. 2018; 8(7): 7978-23.

https://doi.org/10.29322/ijsrp.8.7.2018.p7978

5. Shukur WA, Qurban LK, Aljuboori A. Digital Data

Encryption Using a Proposed W-Method Based on

AES and DES Algorithms. Baghdad Sci J. 2023;

20(4): 1414–1424.

https://dx.doi.org/10.21123/bsj.2023.7315

6. Suhael SM, Ahmed ZA, Hussain AJ. Proposed

Hybrid Cryptosystems Based on Modifications of

Playfair Cipher and RSA Cryptosystem. Baghdad Sci

J. 2023; 20(5): 1-10.

https://doi.org/10.21123/bsj.2023.8361

7. Sleem L. Design and implementation of lightweight

and secure cryptographic algorithms for embedded

devices Lama: HAL Id : tel-03101356. 2021.

8. Al-Shareeda MA, Manickam S. A Systematic

Literature Review on Security of Vehicular Ad-Hoc

Network (VANET) Based on VEINS Framework.

IEEE Access. 2023; 11: 46218–28

9. Al-Mekhlafi ZG, Al-Shareeda MA, Manickam S,

Mohammed BA, Alreshidi A, Alazmi M, et al.

Efficient Authentication Scheme for 5G-Enabled

Vehicular Networks Using Fog Computing. Sensors.

2023; 23(7): 3543 –18.

10. Al-Shareeda MA, Manickam S. COVID-19 Vehicle

Based on an Efficient Mutual Authentication Scheme

for 5G-Enabled Vehicular Fog Computing. Int J

Environ Res Public Health. 2022; 19(23):15618 – 16.

https://doi.org/10.3390/ ijerph192315618

11. Sleem L, Couturier R. Speck-R: An ultra light-weight

cryptographic scheme for Internet of Things.

Multimed Tools Appl. 2021; 80(11): 17067-17102.

https://doi.org/10.1007/s11042-020-09625-8

12. Dutta IK, Ghosh B, Bayoumi M. Lightweight

cryptography for internet of insecure things: A

survey. 2019 IEEE 9th Annu Comput Commun Work

Conf CCWC 2019. Published online 2019: 475-481.

https://doi.org/10.1109/CCWC.2019.8666557

13. Gupta M, Sinha A. Enhanced-AES encryption

mechanism with S-box splitting for wireless sensor

networks. Int J Inf Technol. 2021; 13(3): 933-941.

https://doi.org/10.1007/s41870-021-00626-w

14. Nabil M, Khalaf AAM, Hassan SM. Design and

implementation of pipelined and parallel AES

encryption systems using FPGA. Indones J Electr Eng

Comput Sci. 2020; 20(1): 287-299.

https://doi.org/10.11591/ijeecs.v20.i1.pp287-299

15. Asassfeh MR, Qatawneh M, Al Azzeh FM.

Performance evaluation of blowfish algorithm on

supercomputer IMAN1. Int J Comput Networks

Commun. 2018; 10(2): 43-53.

https://doi.org/10.5121/ijcnc.2018.10205

16. Couturier R, Noura HN, Chehab A. ESSENCE: GPU-

based and dynamic key-dependent efficient stream

cipher for multimedia contents. Multimed Tools

Appl. 2020; 79(19-20): 13559-13579.

https://doi.org/10.1007/s11042-020-08613-2

17. Fanfakh A, Noura H, Couturier R. ORSCA-GPU: one

round stream cipher algorithm for GPU

implementation. J Supercomput. 2022; 78(9): 11744-

11767. https://doi.org/10.1007/s11227-022-04335-4

18. Fanfakh A, Noura H, Couturier R. Simultaneous

encryption and authentication of messages over

GPUs. Multimed Tools Appl . 2023;29:1-22.

https://doi.org/10.1007/s11042-023-15451-5

19. Alaa Y, Fanfakh A., Hadi E. Parallel Message

Authentication Algorithm Implemented Over

Multicore CPU. Int. J Intell Eng Syst. 2023;

16(4):642–54.

https://doi.org/10.22266/ijies2023.0831.52

20. Aldahdooh RMN, Mahmoud AY. Parallel

Implementation and Analysis of Encryption

Algorithms.2018:76.

https://www.researchgate.net/publication/324747960

.

21. Fanfakh ABM. Predicting the Performance of MPI

Applications over Different Grid Architectures. J

Univ Babylon Pure Appl Sci. 2019; 27(1):468–77.

22. Sleem L, Couturier R. TestU01 and Practrand: Tools

for a randomness evaluation for famous multimedia

ciphers. Multimed Tools Appl. 2020; 79(33–34):

24075–88. https://doi.org/10.1007/s11042-020-

09108-w

https://doi.org/10.21123/bsj.2024.9052
https://dx.doi.org/10.25007/ajnu.v6n3a70
https://doi.org/10.29322/ijsrp.8.7.2018.p7978
https://dx.doi.org/10.21123/bsj.2023.7315
https://doi.org/10.21123/bsj.2023.8361
https://doi.org/10.3390/%20ijerph192315618
https://doi.org/10.1007/s11042-020-09625-8
https://doi.org/10.1109/CCWC.2019.8666557
https://doi.org/10.1007/s41870-021-00626-w
https://doi.org/10.11591/ijeecs.v20.i1.pp287-299
https://doi.org/10.5121/ijcnc.2018.10205
https://doi.org/10.1007/s11042-020-08613-2
https://doi.org/10.1007/s11227-022-04335-4
https://doi.org/10.1007/s11042-023-15451-5
https://doi.org/10.22266/ijies2023.0831.52
https://www.researchgate.net/publication/324747960
https://www.researchgate.net/publication/324747960
https://doi.org/10.1007/s11042-020-09108-w
https://doi.org/10.1007/s11042-020-09108-w

Page | 3303

2024, 21(01): 3289-3303

https://doi.org/10.21123/bsj.2024.2109

P-ISSN: 2078-8665 - E-ISSN: 2411-7986

Baghdad Science Journal

 المعالجة المركزية متعددة النواةمتوازية لوحدات الخوارزمية تشفير كتلة خفيفة الوزن

 احمد بدري مسلم فنفخ، حوراء جابر حمزة

 .سم علوم الحاسوب، كلية العلوم للبنات ، جامعة بابل ، بابل ، العراقق

 ةالخلاص

 أصبحت حماية البيانات واحدة من أهم القضايا على الرغم من التقدم الكبير في الاتصالات والتكنولوجيا. لكي ترسل التكنولوجيا المستندة

إلى الويب البيانات بسرعة وأمان ، يجب تشفير البيانات. التشفير هو عملية تحويل النص العادي إلى نص مشفر ، لا يستطيع الأشرار

تغييره. تتطلب كل من إجراءات تحليل التشفير وفك التشفير قدرًا كبيرًا من الوقت من أجل الحفاظ على المستوى المطلوب من قراءته أو

 .الأمان. ومع ذلك ، طور عدد من الباحثين نهج التشفير بالتوازي من أجل تقليل مقدار الوقت اللازم لإنهاء إجراءات التشفير وفك التشفير

هذه القضية عدداً من الحلول القابلة للتطبيق. تمكن الباحثون من تحقيق مستويات أداء محسّنة في تقنية التشفير باستخدام أنتج التحقيق في

 ىالتوازي لزيادة الإنتاجية وتعزيز كفاءة طرق التشفير. لتحقيق أداء عالٍ ، تم تقديم خوارزميات تشفير البقعة خفيفة الوزن وتنفيذها عل

لجة المركزية مع تحسينات مختلفة. وبالتالي ، في هذا العمل ، تم اقتراح مخطط تشفير خفيف الوزن يستخدم جولة منصات وحدة المعا

ن يواحدة فقط من تقنية تشفير الكتلة التي يتم تطبيقها بالتوازي على معالج متعدد النواة. تستخدم خوارزمية تشفير الرسائل المقترحة كتلت

لتشفير الرسالة العادية والحصول على كتلتين splitmix64 PRNGئل العادية ومربع الاستبدال و بت من الرسا 092فرعيتين من

ه قادر نفرعيتين مشفرتين ، مما يجعلها تقنية سريعة لتشفير وفك تشفير كتل الرسائل. بالمقارنة مع الطريقة الحالية. وفقاً لنتائج الأداء ، فإ

في كيكابت 90ت مقارنة ببعض الأساليب خفيفة الوزن الموجودة بالفعل ، مع معدل نقل أعلى من على الوصول إلى إنتاجية عالية للبيانا

مرة 02.01. تتفوق طريقة التشفير المقترحة على طريقة البقع المتوازية بمعدل Intel Core i7الثانية على وحدة المعالجة المركزية

نواة. متوسط التسريع مقارنة بالنسخة التسلسلية للخوارزمية المقترحة والتنفيذ أسرع عند تنفيذها على وحدة معالجة مركزية متعددة ال

. PractRand. أيضًا ، توفر طريقة التشفير المقترحة قدرًا كبيرًا من العشوائية وتجتاز الاختبارات الإحصائية لـ 1..2المتوازي لها هو

 ي الأمان على المعالجات متعددة النواة.وبالتالي ، فإن الطريقة المقترحة هي منافس قوي للتنفيذ عال

 .التشفير احادي الجولة , حوسبة المتوازية , التشفير, خفيف الوزن , وحدة معالجة مركزية متعددة النواة الكلمات المفتاحية:

https://doi.org/10.21123/bsj.2024.9052

