Analysing the Performance of M/M(a, b)/1/MWV Queuing Model with the Busy Period Breakdown

Lidiya P* 🗖 🖾 , K Julia Rose Mary 🗖 🖄

Department of Mathematics, Nirmala College for Women, Bharathiar University, Coimbatore, Tamil Nadu, India. *Corresponding Author.

Received 31/05/2023, Revised 27/04/2023, Accepted 29/04/2024, Published Online First 20/07/2024

© 2022 The Author(s). Published by College of Science for Women, University of Baghdad. This is an open-access article distributed under the terms of the <u>Creative Commons Attribution 4.0 International License</u>, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

This paper aims to analyze the M/M(a,b)/1 multiple working vacations queuing model with a breakdown. Instead of the server being fully idle during the vacation period, the server serves at a different rate during multiple working vacations. The system has only one server, and the service rate varies depending on the arrival state. Customers' enter the system to get service with parameter λv following the Poisson distribution. The server provides service for customers' in regular busy periods with parameter μ and under multiple working vacations, the server provides service with parameter μ v with the exponential distribution. In this model, batches of customers are served as a group under the general bulk service rule, which was introduced by Neuts. In the batch service process, the service times for each customer within a batch may be independent and random variables. The number of customers' in each batch can also vary. Thus, each batch of service contains a minimum of 'a' units and a maximum of 'b' units of customers'. Suppose that the number of customers waiting in the queue is less than 'a' server begins a vacation random variable V with parameter η , the breakdown β v occurs during the busy state. This paper analyzed the steady-state equation, steady-state solutions, and measures of system performance. Specifically, various performance analyses, namely the mean length and other characteristics like the probability that the server is idle, regular busy and working vacation periods are analyzed. Finally, this paper computed the results with the working vacation and the classical multiple working vacation models.

Keywords: Breakdown, Busy State, Idle, Multiple Working vacation (MWV), Working State.

Introduction

In the past, numerous papers have been published on queuing models with server breakdowns and vacations. For example, Servi and Finn¹ introduced the working vacation policy, in which instead of the server fully stopping the service during the vacation period, the server serves at a different service rate during the working vacation. In addition, Tian *et al*²., developed a M/M/1 queue model with a single working vacation. Jain³ analyzed the queuing models of working vacations with multiple types of server breakdowns. Choudhury⁴ analyzed a batch service single vacation Mx/G/1 queuing model with a single server policy. Finally, to analyse the service time characteristics of fast-food establishments, Moussa *et al*⁵., used an M/M/S queuing model. Abdelmawgoud *et al*⁶., examined the impact of lengthy wait times on customer satisfaction at fivestar hotels. Azmi and Namh⁷ derived the $M/E_r/1/N$ queuing system, which was considered in equilibrium based on the Erlang study.

Berdjoudj *et al*⁸, developed the sensitivity analysis of the M/M/1 retrial queue with working vacations and vacation interruptions. Chakravarthy and Rakhee⁹ analyzed a queuing model with server breakdowns, repairs, vacations, and backup servers. Seenivasan *et al*¹⁰, developed the performance analysis of two heterogeneous server queuing model with intermittently obtainable server using a matrix geometric method. A Discrete-Time GIX/Geo/1 Queue with multiple working vacations under late and early arrival system was presented by Barbhuiya and Gupta¹¹. In addition, the cost optimization of single server retrial queuing model with Bernoulli schedule working vacation, vacation interruption and balking developed by Kumar *et al*¹².; the performance analysis of retrial queuing model with working vacation, interruption, waiting server, breakdown and repair analyzed by Gupta and Kumar¹³; and Agrawal et al¹⁴., suggested the M/M/1 queuing model with working vacation and two type of server breakdown. Moreover, Markovian queueing model with single working vacation and catastrophic is presented by Seenivasan and Abinava^{15.}

Ayyappan & Meena¹⁶ analyzed server vacation, repair with breakdown in Phase type queuing model. Agarwal *et al*¹⁷, studied the working breakdown queuing model for heterogeneous servers using PSO. Working Breakdown queue with vacation analyzed by Somasundaram *et al*¹⁸. Mathew *et al*¹⁹., discussed the server breakdown and impatience customer model. MAP/PH/1 queuing system with breakdown, setup time and repair derived by arulmozhi²⁰. Algorithm using circular queue data structure developed by Ibraheem and Hasan²¹, which is applicable in personal information security and network communication security. Khan & Paramasivam²² analyzed the encouraged arrival vacation queuing model with breakdown. Working vacation queuing system with impatient customers with breakdown developed by Manoharan &

Raman²³. Su *et al*²⁴., presented the traffic breakdown and human driven vehicles. Working vacation and server breakdown with Markovian queue analyzed by Liu *et al*²⁵. Setup time, Repair and breakdown in retrial queue analyzed by Tian *et al*²⁶.

Finally, in this paper, the multiple working vacation customers are served according to the general bulk service rule, and there was a breakdown in busy periods. This paper aims to analyze the steady-state probability equation and the measures of system performance.

Methodology

In this model, this paper assumes the arrival Poisson process with parameter λ_{ν} . The exponential service process μ and the service offered during the vacation is μ_v .When the vacation is over, server switches his service μ_{ν} to μ . The model denoted as M/M(a,b)/1/MWV with breakdown. In addition, batches of customers are served under the general bulk service rule. Thus, each batch of service contains minimum 'a' units of and maximum 'b' units. Moreover, this model supposes that the number of customers waiting in the queue is less than 'a' server begins a vacation random variable V with parameter η . Finally, the steady states are analyzed and the measures of system performance are derived, considreing that the breakdown denoted as β_{ν} occurs in the busy period.

Let $N_Q(t)$ = the number of customers in the queue at time t and J(t) = 0, 1or 2 according to whether the server is idle, working vacation or regular busy on vacation state respectively.

$$\begin{aligned} R_n^I(t) &= \Pr\{N_Q(t) = n, J(t) = 0\}; 0 \le n \le a - 1 \\ Q_n^V(t) &= \Pr\{N_Q(t) = n, J(t) = 1\}; n \ge 0 \\ P_n^B(t) &= \Pr\{N_Q(t) = n, J(t) = 2\}; n \ge 0 \end{aligned}$$

J(t) = 0, the size of the queue and the system are same. J(t) = 1 or 2, the size of the queue and systems are $a \le x \le b$ customers.

Probabilities of the steady state are;

$$\begin{aligned} Q_n^V &= \lim_{t \to \infty} Q_n^V(t); \ R_n^I &= \lim_{t \to \infty} R_n^I(t); \\ P_n^B &= \lim_{t \to \infty} P_n^B(t) \end{aligned}$$

Exist, the Chapman Kolmogrove equations satisfied by them in the steady state are given by;

$$\lambda_{\nu}R_0^I = \mu P_0^B + \mu_{\nu}Q_0^V \tag{1}$$

$$\lambda_{\nu} R_{n}^{I} = \lambda_{\nu} R_{n-1}^{I} + \mu P_{n}^{B} + \mu_{\nu} Q_{n}^{V}; \ 1 \le n \le a - 1 \ 2$$

$$(\lambda_{\nu} + \eta + \mu_{\nu})Q_{0}^{\nu} = \lambda_{\nu}R_{a-1}^{I} + \mu_{\nu}\sum_{n=a}^{b}Q_{n}^{\nu}$$

$$(\lambda_{\nu} + \eta + \mu_{\nu})Q_{n}^{\nu} = \lambda_{\nu}Q_{n-1}^{\nu} + \mu_{\nu}Q_{n+b}^{\nu}; n \ge 1 \qquad 4$$

$$(\lambda_{\nu} + \mu + \beta_{\nu})P_0^B = \mu \sum_{n=a}^b P_n^B + \eta Q_0^V \qquad 5$$

$$(\lambda_{\nu} + \mu + \beta_{\nu})P_n^B = (\lambda_{\nu} + \beta_{\nu})P_{n-1}^B + \mu P_{n+b}^B + \eta Q_n^V; n \ge 1$$

$$6$$

Steady State Solution

To solve the steady state equation, the forward shifting operator E on P_n^B and Q_n^V are introduced as;

$$E(P_n^B) = P_{n+1}^B; E(Q_n^V) = Q_{n+1}^V; for n \ge 0$$

Thus the Eq 4 gives homogeneous difference equation;

$$[\lambda_{v} + \mu_{v}Q_{b+1}^{v} - (\lambda_{v} + \mu_{v} + \eta)E]Q_{n}^{v} = 0; n \ge 0 \quad 7$$

The characteristic equation of the difference equation is given by;

$$h(z) = \lambda_v + \mu_v z^{b+1} - (\lambda_v + \mu_v + \eta)z = 0$$

By taking $f(z) = (\lambda_v + \mu_v + \eta)z$ & $g(z) = \lambda_v + \mu_v z^{b+1}$, here |g(z)| < |f(z)| on |z| = 1. By Rouche's theorem h(z) has unique root r_v inside the contour |z| = 1. The solution of the homogeneous difference Eq 7 is given by;

$$Q_n^V = (r_v^n) Q_0^V \tag{8}$$

From Eq 6 can be written as;

$$[\lambda_v + \beta_v + \mu E^{b+1} - (\lambda_v + \mu + \beta_v)E]P_n^B = -\eta r_v^{n+1}Q_0^V \qquad 9$$

Again by Rouche's theorem, the equation $\lambda_v + \beta_v + \frac{\beta_v}{2} + \frac{\beta_v}{2}$

Baghdad Science Journal

 $\mu z^{b+1} - (\lambda_v + \mu + \beta_v) z = 0 \text{ has a unique root r}$ with |r| < 1 provide $\frac{\lambda_v}{b\mu} < 1$.

The solution of the non-homogeneous difference Eq 9 is given by;

$$P_n^B = (Zr^n + Z^* r_v^n) Q_0^V$$
 10

Where;

$$Z^* = \frac{\eta r_v}{\lambda_v(r_v - 1) + \beta(r_v - 1) + \mu r_v(1 - r_v^b)} \qquad if r_v \neq r \ 11$$

The expression for R_n^I is obtained by adding Eqs 1 and 2 and substitute P_n^B and Q_0^V value to get;

$$R_n^I = \left[\frac{\mu}{\lambda_v} \left(\frac{Z(1-r^{n+1})}{(1-r)} + \frac{Z^*(1-r_v^{n+1})}{(1-r_v)}\right) + \frac{\mu_v}{\lambda_v} \frac{(1-r_v^{n+1})}{(1-r_v)}\right] Q_0^V$$
12

Now to calculate Z,consider Eq 5 and substitute P_n^B and Q_n^V value to get;

$$\frac{Z\mu(1-r^a)}{(1-r)} = \frac{\eta}{(1-r_v)} - \frac{Z^*\mu(1-r_v^a)}{(1-r_v)}$$
13

Hence the steady state queue size probability of the model are expressed in terms of Q_0^V and are given by;

$$Q_n^V = (r_v^n) Q_0^V; \ n \ge 0$$
 14

$$P_n^B = (Zr^n + Z^* r_v^n) Q_0^V; \ n \ge 0$$
 15

Where;

$$Z = \frac{(1-r)}{\mu(1-r^a)} \left[\frac{\eta}{(1-r_v)} - \frac{Z^* \mu(1-r_v^a)}{(1-r_v)} \right]$$
 16

$$Z^* = \frac{\eta r_v}{\lambda_v (r_v - 1) + \beta (r_v - 1) + \mu r_v (1 - r_v^b)}$$
 17

And;

$$R_n^I = \left[\frac{\mu}{\lambda_v} \left(\frac{Z(1-r^{n+1})}{(1-r)} + \frac{Z^*(1-r_v^{n+1})}{(1-r_v)}\right) + \frac{\mu_v}{\lambda_v} \frac{(1-r_v^{n+1})}{(1-r_v)}\right] Q_0^V = 0; 0 \le n \le a-1$$
18

By using normalizing condition and calculate the value of Q_0^V

$$\sum_{n=0}^{\infty} Q_n^V + \sum_{n=0}^{\infty} P_n^B + \sum_{n=0}^{a-1} R_n^I = 1.$$

Published Online First: July, 2024 https://doi.org/10.21123/bsj.2024.9155 P-ISSN: 2078-8665 - E-ISSN: 2411-7986

It obtain, $(Q_0^V)^{-1} = \omega(r_v, \mu_v) + Z\omega(r, \mu) + Z^*\omega(r_v, \mu).$

Where,
$$\omega(x, y) = \frac{1}{(1-x)} (1 + \frac{y}{\lambda_v} (c - \frac{x(1-x^a)}{(1-x)}))$$

Performance Measures

Mean Queue Length

The expected queue length is given by,

$$L_q = \sum_{n=1}^{\infty} n(Q_n^V + P_n^B) + \sum_{n=1}^{a-1} nR_n^I$$
 19

Substituting the values of Q_n^V , P_n^B and R_n^I to get;

$$L_q = Z\omega^*(r,\mu) + Z^*\omega^*(r_v,\mu) + \omega^*(r_v,\mu_v)$$

Where, $\omega^*(x, y) = \frac{x}{(1-x)^2} + \frac{y}{\lambda_v(1-x)} \left\{ \frac{a(a-1)}{2} + \frac{ax^{a+1}(1-x) - x^2(1-x^a)}{(1-x)^2} \right\}.$

and *Z* & *Z*^{*} are given by Eqs 16 & 17.

Other Characteristics

If $Pr_{(wv)}$, $Pr_{(busy)}$ and $Pr_{(idle)}$ denote the probability that the server in idle, regular busy and working vacation period then;

$$Pr_{(idle)} = \sum_{n=0}^{a-1} R_n^I$$

Where the R_n^I is given by Eq 18.

$$Pr_{(busy)} = \sum_{n=0}^{\infty} P_n^B = \left(\frac{Z}{(1-r)} + \frac{Z^*}{(1-r_v)}\right)Q_0^V$$
$$Pr_{(wv)} = \sum_{n=0}^{\infty} Q_n^V = \frac{Q_0^V}{(1-r_v)}$$

Where $Z \& Z^*$ are given by Eqs 16 & 17.

Particular Cases

Case 1: M/M/1 Model

Letting a=b=1 and $\beta_v = 0$ in Eqs 14 to 18. It obtain,

$$Q_n^V = (r_v^n)Q_0^V; \ n \ge 0$$
$$P_n^B = \frac{Z^*}{r_v}(r_v^{n+1} - r^{n+1})Q_0^V; \ n \ge 0$$

and $R_0^I = \frac{Q_0^V}{r_v}$

Where
$$r = \frac{\lambda_v}{\mu} = \rho_v$$
, $Z = -\frac{Z^* \rho_v}{r_v}$
And $Z^* = \frac{\eta r_v}{\mu(1-r_v)(r_v - \rho_v)}$.

The above equations gives the probabilities of M/M/1 working vacation queuing model analyzed by Liu *et al*²⁷.

Case 2: Heterogeneous Arrival M/M(a, b)/1/ MWV Model with Breakdown in Busy Period

In this study considered homogeneous arrival, suppose arrival process is hetetogeneous. Hetetogeneous arrival refers each stage has differend arrival rate, that is $\lambda_v = \lambda_{iv}$ in idle sate, $\lambda_v = \lambda_{wv}$ in working vacation sate, and $\lambda_v = \lambda_{bv}$ in busy sate. The probabilities of the queue of the form;

$$Q_0^V = (r_v^n) Q_0^V \text{ and}$$

$$P_n^B = (Zr^n + Z^* r_v^n) Q_0^V; n \ge 0$$

$$R_n^I = \left[\frac{\mu}{\lambda_{iv}} \left(\frac{Z(1 - r^{n+1})}{(1 - r)} + \frac{Z^*(1 - r_v^{n+1})}{(1 - r_v)}\right) + \frac{\mu_v}{\lambda_{iv}} \frac{(1 - r_v^{n+1})}{(1 - r_v)}\right] Q_0^V = 0$$
Where, $Z = \frac{(1 - r)}{\mu(1 - r^a)} \left[\frac{\eta}{(1 - r_v)} - \frac{Z^*\mu(1 - r_v^a)}{(1 - r_v)}\right]$
and $Z^* = \frac{\eta r_v}{\lambda_{bv}(r_v - 1) + \mu r_v(1 - r_v^b)}$

Further;

$$(Q_0^V)^{-1} = \omega(r_v, \mu_v) + Z\omega(r, \mu) + Z^*\omega(r_v, \mu)$$

where, $\omega(x, y) = \frac{1}{(1-x)} \left(1 + \frac{y}{\lambda_{iv}} \left(c - \frac{x(1-x^a)}{(1-x)}\right)\right)$ and $L_q = Z\omega^*(r, \mu) + Z^*\omega^*(r_v, \mu) + \omega^*(r_v, \mu_v)$

where , $\omega^*(x, y) = \frac{x}{(1-x)^2} + \frac{y}{\lambda_{i\nu}(1-x)} \left\{ \frac{a(a-1)}{2} + \frac{ax^{a-1}(1-x) - x^2(1-x^a)}{(1-x)^2} \right\}$

These above equation gives the queue probabilities of heterogeneous arrival on M/M(a, b)/1/MWV queuing model with breakdown that analysed by Lidiya and Mary²⁸.

Results and Discussion

Here the M/M(a, b)/1/MWV queuing system with breakdown in the busy period is analyzed, for this model the steady state equations and mean queue length are calculated. When a=b=1 and $\beta_v =$ 0 this model deduces to M/M/1 working vacation model and when $\beta_v = 0$ this model coincides with the classical M/M(a, b)/1/MWV model. When a

Conclusion

This paper analyzed the M/M(a,b)/1/MWVmodel with a breakdown. The arrival rate varies depending on the server's state. Whereas, the breakdown occurs during the busy state. In addition, this paper developed the steady-state probability equation and the measures of system performance. In specific, various performance

Acknowledgment

The authors would like to extend their sincere gratitude to the editors, associate editors and reviewers for their valuable commands and

Authors' Declaration

- Conflicts of Interest: None.
- No animal studies are present in the manuscript.
- No human studies are present in the manuscript.

Authors' Contribution Statement

This work was carried out in collaboration with both authors. L.P. designed the paper, analyzed the study data, wrote the manuscript, and planned the publication. J.R.M. provided insightful suggestions

References

- Servi LD, Finn SG. M/M/1 Queue with Working Vacations (M/M/1/WV). Perform Evaluation. 2002; 50(1): 41-52.
- Tian N, Wang K, Zhao X. The M/M/1 queue with single working vacation. Int J Inf Manag Sci. 2008; 19(4): 621-634. Available from:
- Jain M, Jain A. Working Vacations Queuing Models with Multiple Types of Server Breakdowns. Appl Math. Model. 2010; 34(1): 1-13. https://doi.org/10.1016/j.apm.2009.03.019.

breakdown occurs during a busy period it can have an impact on the system's operations and it may increase the waiting time. It leads to customers losing trust in the system. Understanding the queuing model with breakdown it may predict the customer's behaviour and improve the system's performance.

analysis namely the mean length and other characteristics like the probability that the server is idle, regular busy and busy vacation periods are analyzed. Finally, it computed the results with the working vacation and classical multiple working vacation models.

suggestions which have improved the quality of the work.

- Ethical Clearance: The project was approved by the local ethical committee at Bharathiar University, Coimbatore, Tamil Nadu, India.

and revisions throughout the research process, ensuring the accuracy and clarity of the final manuscript. Both authors read and approved the final manuscript.

- Choudhury G. A batch arrival queue with a vacation time under single vacation policy. Comput Oper Res. 2002; 29(14): 1941-1955. <u>https://doi.org/10.1016/S0305-0548(01)00059-4</u>.
- Be Moussa MH, Abd Elmawgoud MTA, Elias ANE. Measuring Service Time Characteristics in Fast Food Restaurants in Cairo: A Case Study. Tour Today. 2015; 1(15): 90-104..
- 6. Abdelmawgoud MTA, Dawood AAA, Moussa MHB. The Impact of Prolonged Waiting Time of Food Service on Customers' Satisfaction. Minia J Tour Hosp

Published Online First: July, 2024 https://doi.org/10.21123/bsj.2024.9155 P-ISSN: 2078-8665 - E-ISSN: 2411-7986

Res. 2016; 1(1): 247-251. http://dx.doi.org/10.21608/mjthr.2016.262117.

- Abid NA, Al-Madi AK. On The Queuing System M/Er/1/N. Baghdad Sci J. 2012; 9(2): 367–371. https://doi.org/10.21123/bsj.2012.9.2.367-371.
- Berdjoudj L, Ameur L, Abbas K. Sensitivity analysis of the M/M/1 retrial queue with working vacations and vacation interruption. Int J Manag Sci Eng Manag. 2019; 14(4): 293-303. http://dx.doi.org/10.1080/17509653.2019.1566034.
- Chakravarthy SR, Shruti, Kulshrestha R. A queueing model with server breakdowns, repairs, vacations, and backup server. Oper Res Perspect. 2020; 7: 1-13. https://doi.org/10.1016/j.orp.2019.100131.
- 10. Seenivasan M, Indumathi M, Chakravarthy VJ. Performance Analysis of Two Heterogeneous Server Queuing Model with Intermittently Obtainable Server Using Matrix Geometric Method. International Conference on Recent Trends in Applied Mathematical Sciences (ICRTAMS), 26-27 September 2020, Tiruvannamalai, India. J Phys.: Conf Ser 2020; 1724: 012001. https://doi.org/10.1088/1742-6596/1724/1/012001
- 11. Barbhuiya FP, Gupta UC. A Discrete-Time GI^X/Geo/1 Queue with Multiple Working Vacations under Late and Early Arrival System. Methodol Comput Appl Probab. 2020; 22: 599-624. https://doi.org/10.1007/s11009-019-09724-6.
- Kumar N, Gupta P. Cost Optimization of Single Server Retrial Queuing Model with Bernoulli Schedule Working Vacation, Vacation Interruption and Balking. J Math Comput Sci. 2021; 11(3): 2508-2523. <u>https://doi.org/10.28919/jmcs/5552</u>.
- 13. Gupta P, Kumar N. Performance Analysis of Retrial Queueing Model with Working Vacation, Interruption, Waiting Server, Breakdown and Repair. J Sci Res. 2021; 13(3): 833-844. https://doi.org/10.3329/jsr.v13i3.52546.
- 14. Agrawal P, Jain A, Madhu J. M/M/1 queuing model with working vacation and two type of server breakdown. 2nd National Conference on Recent Advancement in Physical Sciences, (NCRAPS) 2020 19-20 December 2020, Uttarakhand, INDIA. J Phys: Conf Ser. 2021; 1849: 012021. https://doi.org/10.1088/1742-6596/1849/1/012021.
- 15. Seenivasan M, Abinaya. Markovian queuing model with single working vacation and catastrophic. Mater Today Proc. 2022; 51(8): 2348-2354. https://doi.org/10.1016/j.matpr.2021.11.572.
- Ayyappan G, Meena S. Phase Type Queuing Model of Server Vacation, Repair and Degrading Service with Breakdown, Starting Failure and Close-Down. Reliab Theory Appl. 2023; 18(1(72)): 464-483.

https://doi.org/10.24412/1932-2321-2023-172-464-483.

- 17. Agarwal R, Agarwal D, Upadhyaya S. Cost optimisation of a heterogeneous server queueing system with working breakdown using PSO. Int J Math Oper Res. 2023; 26(3): 410-424. https://doi.org/10.1504/IJMOR.2023.134842.
- 18. Somasundaram B, Karpagam S, Kumar KS, Kala R. Analysis of Priority Queueing System with Working Breakdown, Vacation and Vacation Interruption under Random Environment. Southeast Europe j. soft computing. 2023; 12(2): 57-66. <u>http://dx.doi.org/10.21533/scjournal.v12i2.264</u>.
- 19. Mathew N, Joshua VC, Krishnamoorthy A, Melikov A, Mathew AP. A production inventory model with server breakdown and customer impatience. Ann Oper Res. 2023; 331(2): 1269-1304. https://doi.org/10.1007/s10479-023-05659-x.
- 20. Arulmozhi N. (R2053) Analysis of MAP/PH/1 Queueing Model Subject to Two-stage Vacation Policy with Imperfect Service, Setup Time, Breakdown, Delay Time, Phase Type Repair and Reneging Customer. Appl Appl. Math Int J (AAM). 2023; 18(1): 1-33.
- 21. Ibraheem N, Hasan M. Combining Several Substitution Cipher Algorithms using Circular Queue Data Structure. Baghdad Sci J. 2020; 17(4): 1320. <u>https://doi.org/10.21123/bsj.2020.17.4.1320</u>.
- 22. Khan IE, Paramasivam R. Analysis of Batch Encouraged Arrival Markovian Model Due to a Secondary Optional Service, Break-Down and Numerous Vacations. Math Stat Eng Appl. 2023; 72(1): 1166-1177. https://doi.org/10.17762/msea.v72i1.2213.
- 23. Manoharan P, Raman KS. Impatient customers in a Markovian Queue with Multiple Working Vacation and Server Breakdown. J Pharm Negat Results. 2023; 14(2): 1729-1737. https://doi.org/10.47750/pnr.2023.14.02.218.
- 24. Su L, Wei J, Zhang X, Guo W, Zhang K. Traffic Breakdown Probability Estimation for Mixed Flow of Autonomous Vehicles and Human Driven Vehicles. Sens. 2023; 23(7): 1-14. https://doi.org/10.3390/s23073486.
- 25. Liu T-H, Hsu H-Y, Ke J-C, Chang F-M. Preemptive Priority Markovian Queue Subject to Server Breakdown with Imperfect Coverage and Working Vacation Interruption. Computation. 2023; 11(5): 89.page

https://doi.org/10.3390/computation11050089.

26. Tian R, Wu X, He L, Han Y. Strategic Analysis of Retrial Queues with Setup Times, Breakdown and Repairs. Discrete Dyn Nat Soc. 2023: 2023: 13 pages. https://doi.org/10.1155/2023/4930414. Published Online First: July, 2024 https://doi.org/10.21123/bsj.2024.9155 P-ISSN: 2078-8665 - E-ISSN: 2411-7986

- 27. Xu X, Liu M, Zhao X. The bulk input M^[X]/M/1 queue with working vacation. J Syst Sci Syst Eng. 2009; 18(3): 358-368. <u>https://doi.org/10.1007/s11518-009-5111-4</u>.
- 28. Lidiya P, Mary K. Performance study on heterogeneous arrival of batch service for multiple working vacations queuing system with breakdowns in

the busy period. In 2023 First International Conference on Advances in Electrical, Electronics and Computational Intelligence (ICAEECI). IEEE Xplore. 2023; 1-6. https://doi.org/10.1109/ICAEECI58247.2023.103709

https://doi.org/10.1109/ICAEECI58247.2023.103709 86

دراسة أداء M / M (أ ، ب) MWV (/ مع التقسيم في فترة العمل

ليدياف، جوليا روز ماري ك

قسم الرياضيات، كلية نير مالا للبنات، جامعة بهار اتيار، كويمباتور، تاميل نادو، الهند.

الخلاصة

في هذه الورقة ، نقوم بتحليل) M / M أ ، ب MWV / I / (مع الانهيار .بدلاً من أن يكون الخادم خاملاً تمامًا خلال فترة الإجازة ، يخدم الخادم بمعدل مختلف أثناء إجازات العمل المتعددة .يختلف سعر الخدمة حسب حالة الوصول .يصل العميل إلى النظام مع المعلمة v_يدم الخادم بمعدل مختلف أثناء إجازات العمل المتعددة .يختلف سعر الخدمة حسب حالة الوصول .يصل العميل إلى النظام مع المعلمة مع التوزيع الأسي .في هذا النموذج ، يتم تقديم دفعات العملاء بموجب القاعدة العامة للخدمة العامل يوفر الخدمة مع المعلمة v مع التوزيع الأسي .في هذا النموذج ، يتم تقديم دفعات العملاء بموجب القاعدة العامة للخدمة المجمعة .وبالتالي تحتوي كل دفعات من الخدمة على وحدات" أ "كحد أدنى وحد أقصى" ب ."لنفترض أن العملاء المنتظرين في قائمة الانتظار أقل من خادم يبدأ متغيرًا عشوائيًا المحملة مع المعلمة على وحدات" أ "كحد أدنى وحد أقصى" ب ."لنفترض أن العملاء المنتظرين في قائمة الانتظار أقل من خادم يبدأ متغيرًا عشوائيًا الخدمة على وحدات" أ "كحد أدنى وحد أقصى" ب ."لنفترض أن العملاء المنتظرين في قائمة الانتظار أقل من خادم يبدأ متغيرًا عشوائيًا الخدمة على مع المعلمة .م هنا يحدث الانهيار v أثناء حالة الانشغال .قمنا بتحليل معادلة الحالة المستقرة و مقاييس الأداء النظام .تحليل أداء مختلف ، أي متوسط الطول وخصائص أخرى مثل احتمال تحليل الخادم في فترة الحمول ، و الانشغال المنتظم ، والإجازة المزدحمة . وم أيضًا بحساب النتائج باستخدام نماذج الإجازات المتعددة الكلاسيكية و عطلات العمل المعددة.

الكلمات المفتاحية: الانهيار ، حالة الانشغال ، الخمول ، إجازة عمل متعددة (MWV) ، حالة العمل.